\documentclass[reqno]{amsart} \begin{document} {\noindent\small {\em Electronic Journal of Differential Equations}, Vol.~2000(2000), No.~39, pp.~1--17.\newline ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu \newline ftp ejde.math.swt.edu \quad ejde.math.unt.edu (login: ftp)} \thanks{\copyright 2000 Southwest Texas State University and University of North Texas.} \vspace{1cm} \title[\hfilneg EJDE--2000/39\hfil Regular oblique derivative problem] { Regular oblique derivative problem in Morrey spaces } \author[D.K. Palagachev, M.A. Ragusa, \& L.G. Softova\hfil EJDE--2000/39\hfilneg] {Dian K. Palagachev, Maria Alessandra Ragusa, \& Lubomira G. Softova} \address{Dian K. Palagachev \hfill\break\indent Dipartimento Interuniversitario di Matematica, Politecnico di Bari, \hfill\break\indent Via E. Orabona, 4, 70125 Bari, Italy} \email{dian@@pascal.dm.uniba.it} \address{Maria Alessandra Ragusa \hfill\break\indent Dipartimento di Matematica, Universit\`{a} di Catania, \hfill\break\indent Viale A. Doria, 6, 95125 Catania, Italy} \email{maragusa@@dipmat.unict.it} \address{Lubomira G. Softova \hfill\break\indent Bulgarian Academy of Sciences, Institute of Mathematics and Informatics, \hfill\break\indent Dept. Math. Physics, \hfill\break\indent ``Acad. G. Bonchev'' Str., bl. 8, 1113 Sofia, Bulgaria} \email{luba@@dipmat.unict.it} \date{} \thanks{Submitted December 17, 1999. Published May 23, 2000.} \subjclass{35J25, 35B65, 35R05} \keywords{Uniformly elliptic operator, regular oblique derivative problem, Morrey spaces} \begin{abstract} This article presents a study of the regular oblique derivative problem $$ \displaylines{ \sum_{i,j=1}^n a^{ij}(x) \frac{\partial^2 u }{\partial x_i\partial x_j} =f(x) \cr \frac{\partial u }{\partial \ell(x)}+ \sigma(x) u = \varphi(x)\,. }$$ Assuming that the coefficients $a^{ij}$ belong to the Sarason's class of functions with vanishing mean oscillation, we show existence and global regularity of strong solutions in Morrey spaces. \end{abstract} \maketitle \newtheorem{thm}{Theorem}[section] \newtheorem{lem}[thm]{Lemma} \newtheorem{crlr}[thm]{Corollary} \newtheorem{prp}[thm]{Proposition} \newtheorem{rem}[thm]{Remark} \makeatletter \def\theequation{\thesection.\@arabic\c@equation} \makeatother \section{Introduction} The goal of the present paper is to study the global regularity in Morrey spaces for strong solutions to the {\it non-degenerate\/} oblique derivative problem \begin{equation}\label{1.1} \begin{gathered} \sum_{i,j=1}^n a^{ij}(x)\frac{\partial^2 u}{\partial x_i\partial x_j} =f(x)\quad \text{for almost all}\ x\in \Omega,\\[3pt] \frac{\partial u}{\partial \ell(x)}+ \sigma(x)u=\varphi(x) \quad \text{in the trace sense on}\ \partial \Omega\,. \end{gathered} \end{equation} Here the coefficients of the uniformly elliptic operator may be discontinuous and the first order boundary operator, prescribed in terms of directional derivative with respect to a unit vector field $\ell(x)$, may be {\it nowhere\/} tangential to the boundary of $\Omega$. More precisely, we assume that $a^{ij}$'s belong to the Sarason class, VMO, of functions with vanishing mean oscillation \cite{S}. The interests in the study of boundary-value problems for elliptic operators with principal coefficients in VMO increased significantly in the last ten years. This is mainly due to the fact that VMO contains as a proper subspace $C^0(\overline\Omega)$ that ensures the extension of the $L^p$-theory of operators with {\it continuous\/} coefficients to {\it discontinuous\/} coefficients \cite[Chapter~9]{GT}, \cite{LU}. On the other hand, the Sobolev spaces $W^{1,n}(\Omega)$ and $W^{\theta,\theta/n}(\Omega)$, $0<\theta<1$, are also contained in VMO, whence the discontinuities of $a^{ij}$'s expressed in terms of belonging to VMO become more general than those studied before (cf.\cite{Miranda}, \cite{CFL1}). We refer the reader to the survey \cite{C}, where an excellent presentation of the state-of-the-art and relations with another similar results can be found concerning the regularizing properties of these operators in the framework of Sobolev spaces. The Dirichlet problem for such kind of equations has been well studied both in the linear (\cite{CFL1}, \cite{CFL2}) and in the quasilinear (\cite{Pa}) cases. Concerning the regular oblique derivative problems for elliptic operators with VMO principal coefficients, we should mention the articles \cite{DP1} in the linear and \cite{DP2} in the quasilinear case, respectively. The results of \cite{DP1} have been extended also to elliptic operators with lower order terms and general boundary operators (\cite{MP}). Recently, the $W^{2,p}$-theory developed in \cite{MP} has been applied in the study of {\it degenerate\/} oblique derivative problem in Sobolev spaces (see \cite{MPV}). The degeneracy means that the field $\ell$ can be tangential to the boundary of $\Omega$ at the points of some non-empty subset. In the present paper we derive global regularizing property in Morrey spaces of elliptic operators with VMO coefficients. Precisely, it is proved that any strong solution $(u\in W^{2,p}(\Omega))$ of \eqref{1.1} with $f\in L^{p,\lambda}(\Omega)$ and $\varphi\in W^{(p,\lambda)}(\partial \Omega)$, $10}} \rho^{-\lambda} \int\limits_{B_\rho (x) \cap \Omega} |f(y)|^p dy \bigg)^{1/p} < +\infty\,, $$ where, hereafter $B_\rho(x)$ denotes an $n$-dimensional ball of radius $\rho$ and centered at the point $x$. We will consider also subspaces of $W^{k,p}(\Omega)$ formed by functions having their $k$-th order derivatives in $L^{p,\lambda}(\Omega)$. The symbol $W^{k,p,\lambda}(\Omega)$ stands for these subspaces. Precisely, $$ W^{k,p,\lambda}(\Omega)=\big\{ u\in W^{k,p}(\Omega)\colon\quad D^\alpha u\in L^{p,\lambda}(\Omega),\quad |\alpha|=k\big\}. $$ The norm in that space is naturally defined by $$ \|u\|_{W^{k,p,\lambda}(\Omega)} = \|u\|_{L^{p,\lambda}(\Omega)} + \|D^k u\|_{L^{p,\lambda}(\Omega)}. $$ By means of the interpolation inequality, it is clear that also the lower-order derivatives $D^\alpha u\in L^{p,\lambda}(\Omega)$ for $0<|\alpha|0}}{\rho^{-\bar\lambda}} \int\limits_{B_{\rho}(z')\cap \partial \Omega} |\varphi(x')|^p d \sigma_{x'}\bigg)^{1/p}\\ &+\bigg(\sup_{\underset{z',\, \bar z'\in \partial \Omega}{ \rho>0}} \rho^{-\lambda} \int\limits_{B_{\rho}(z')\cap \partial \Omega} \int\limits_{B_{\rho}(\bar z')\cap \partial \Omega} \frac{|\varphi(x')-\varphi(\bar x')|^p}{|x'-\bar x'|^{p+n-2}} d\sigma_{x'} d\sigma_{\bar x'} \bigg)^{1/p}, \end{align*} with $\bar \lambda=\max\{\lambda-1,0\}$. In order to formulate the regularity assumptions on the coefficients of the operator ${\mathcal L}$, we need also to recall the definitions of the John--Nirenberg space (\cite{JN}) of functions with bounded mean oscillation (BMO) and the Sarason class VMO of the functions with vanishing mean oscillation (\cite{S}). A locally integrable function $f(x)$ is said to belong to BMO if $$ \| f \|_* \equiv \sup_{B \subset {\mathbb R}^n} \frac{1}{|B|} \int\limits_B |f(x)-f_B| dx < +\infty $$ with $f_B$ being the integral average $\frac{1}{|B|} \int_B f(x)dx$ of the function $f(x)$ over the set $B$, and $B$ ranges in the class of balls of ${\mathbb R}^n$. If $f(x)\in BMO$ denote $$ \gamma (r) = \sup_{{\rho \leq r,}\ {x \in {\mathbb R}^n}} \frac{1}{|B_\rho|} \int\limits_{B_\rho} |f(x)-f_{B_\rho}| dx. $$ Then, $f(x)\in VMO$ if $\gamma(r) =o(1)$ as $r\to 0^+$ and refer to $\gamma(r)$ as the VMO-modulus of $f(x)$. It should be noted that replacing the ball $B$ above by the intersection $B\cap \Omega$, one obtains the definitions of $BMO(\Omega)$ and $VMO(\Omega)$. Later on, having a function defined on $\Omega$ that belongs to $BMO(\Omega)$ ($VMO(\Omega)$) it is possible to extend it to all ${\mathbb R}^n$ preserving its $BMO$ (VMO) character (see \cite[Proposition~1.3]{Acq}). We are in a position now to list our assumptions. Concerning the operator ${\mathcal L}$, we suppose that it is uniformly elliptic one with VMO coefficients. That is, \begin{equation}\label{2.2} \begin{gathered} \exists\ \kappa >0: \ \kappa^{-1} |\xi|^2 \leq a^{ij}(x) \xi_i\xi_j \leq \kappa |\xi|^2 \quad \forall \xi \in {\mathbb R}^n,\ \text{a.a.}\ x \in \Omega,\\ a^{ij}(x) \in VMO(\Omega),\quad a^{ij}(x)=a^{ji}(x). \end{gathered} \end{equation} We set also $\gamma_{ij}(r)$ for the VMO-modulus of the function $a^{ij}(x)$ and let $\gamma(r) = \left( \sum_{i,j=1}^n \gamma^2_{ij}(r)\right)^{1/2}$. An immediate consequence of \eqref{2.2} is the essential boundedness of $a^{ij}$'s. As it concerns the boundary operator ${\mathcal B}$, we assume \begin{equation}\label{2.3} \begin{gathered} \ell_i(x),\ \sigma(x)\in C^{0,1}(\partial\Omega),\quad \partial \Omega\in C^{1,1},\\ \ell(x)\cdot\nu(x)=\ell_i(x)\nu_i(x)>0,\quad \sigma(x)<0\quad \text{for each}\ x\in\partial \Omega, \end{gathered} \end{equation} with $\nu(x)=(\nu_1(x),\ldots,\nu_n(x))$ being the unit {\it inward\/} normal to $\partial \Omega$. The simple geometric meaning of \eqref{2.3} is that the field $\ell(x)$ is nowhere tangential to $\partial \Omega$, that is, \eqref{2.1} is a {\it regular oblique derivative problem\/} (see \cite{PP}). The main results of the paper are contained in the following theorems. \begin{thm}\label{thm2.1} Let $\eqref{2.2}$ and $\eqref{2.3}$ be true, $p\in(1,+\infty)$ and $\lambda\in(0,n)$. Assume further that $u\in W^{2,p}(\Omega)$ solves the problem $\eqref{2.1}$ with $f\in L^{p,\lambda} (\Omega)$ and $\varphi\in W^{(p,\lambda)}(\partial \Omega)$. Then $D_{ij}u \in L^{p,\lambda} (\Omega) $ and there is a constant $C=C(n,p,\lambda,\kappa,\gamma,\ell,\sigma,\partial \Omega)$ such that \begin{equation}\label{2.4} \|u\|_{W^{2,p,\lambda} (\Omega)} \leq C \left(\| u \|_{L^{p,\lambda} (\Omega)} + \|f \|_{L^{p,\lambda} (\Omega)} + \|\varphi\|_{W^{(p,\lambda)} (\partial \Omega)} \right). \end{equation} \end{thm} The regularizing property of the couple $({\mathcal L},{\mathcal B})$ implies well-posedness of the oblique derivative problem \eqref{2.1} in the Morrey space $W^{2,p,\lambda} (\Omega)$. \begin{thm}\label{thm2.2} Let $\eqref{2.2}$ and $\eqref{2.3}$ be satisfied, $p\in(1,+\infty)$ and $\lambda\in(0,n)$. Then, for every $f\in L^{p,\lambda}(\Omega)$ and $\varphi\in W^{(p,\lambda)}(\partial \Omega)$ there exists a unique solution of the oblique derivative problem $\eqref{2.1}$. Moreover, \begin{equation}\label{2.5} \| u \|_{W^{2,p,\lambda}(\Omega)} \leq C \left( \| f \|_{L^{p,\lambda}(\Omega)}+ \|\varphi\|_{W^{(p,\lambda)}(\partial \Omega)}\right) \end{equation} with a constant $C=C(n,p,\lambda,\kappa,\gamma,\ell,\sigma,\partial \Omega)$. \end{thm} An immediate consequence of Theorem~\ref{thm2.1} and the imbedding properties of the Morrey spaces for suitable values of $p$ and $\lambda$ (cf. \cite{Ca2}) is the next global H\"older regularity result for the gradient $Du$ of the strong solutions to \eqref{2.1}. \begin{crlr}\label{corol2.3} Let $u\in W^{2,p}(\Omega)$ be a strong solution to $\eqref{2.1}$ with $f\in L^{p,\lambda}(\Omega)$ and $\varphi\in W^{(p,\lambda)}(\partial \Omega)$. Then, if $n-p<\lambdan$ the Sobolev imbedding theorem yields $Du\in C^{\beta}(\overline\Omega)$ with $\beta=1-n/p$. On the other hand, Corollary~\ref{corol2.3} ensures H\"older continuity of the gradient {\it also\/} for $p\in(1,n]$, assuming {\it finer\/} regularity of the data expressed in terms of their belonging to the Morrey space $L^{p,\lambda}(\Omega)$ with $\lambda\in(n-p,n)$. \begin{rem}\em The results presented here can be applied in studying Morrey regularity of the strong solutions to \eqref{2.1} for general elliptic operators $$ {\mathcal L}\equiv a^{ij}(x)D_{ij} + b^i(x)D_i + c(x) $$ with $a^{ij}\in VMO(\Omega)$ and the lower order coefficients $b^i(x)$ and $c(x)$ owning suitable Lebesgue integrability. We refer the reader to \cite{MP} for details concerning the case of Sobolev spaces. \end{rem} \section{Auxiliary Results} \setcounter{equation}{0} \setcounter{thm}{0} Let $\tilde\Gamma$ be a portion of the hyperplane $\{x_n=0\}$, $x=(x_1,\ldots,x_{n-1},x_n)\equiv (x',x_n)$, and let $\tilde\varphi(x')$ be a function defined on $\tilde\Gamma$ which belongs to $W^{(p,\lambda)}(\tilde\Gamma)$. The Banach space $W^{(p,\lambda)}(\tilde\Gamma)$ is equipped now with the non-dimensional norm \begin{align*} \|\tilde\varphi\|^*_{W^{(p,\lambda)}(\tilde\Gamma)}=&\bigg( \sup_{\underset{z'\in\tilde\Gamma}{ \rho\in (0,d]}} {\rho^{-\bar\lambda}} \int\limits_{B'_{\rho}(z')\cap \tilde\Gamma} |\tilde\varphi (x')|^p dx'\bigg)^{1/p} \\ &+d^{1/2}\bigg( \sup_{\underset{z',\, \bar z'\in\tilde\Gamma}{ \rho\in (0,d]}} {\rho^{-\lambda}} \int\limits_{B'_{\rho}(z')\cap \tilde\Gamma} \int\limits_{B'_{\rho}(\bar z')\cap \tilde\Gamma} \frac{|\tilde\varphi(x')-\tilde\varphi(\bar x')|^p}{|x'-\bar x'|^{p+n-2}} dx' d\bar x' \bigg)^{1/p}, \end{align*} and $B'_{\rho}(z')$ is an $(n-1)$-dimensional ball of radius $\rho$ and centered at $z'\in\{x_n=0\}$, $\bar \lambda=\max\{\lambda-1,0\}$, $d=\text{diam\,}\tilde\Gamma$. Now, following \cite{GT} (see the proof of Theorem~6.26 therein), we take a function $\eta(y')\in C_0^2({\mathbb R}^{n-1})$ such that $\int_{{\mathbb R}^{n-1}} \eta(y')dy'=1$. Fixing arbitrary $x_0=(x'_0,0)$ and $R>0$, and denoting $B^+_R=B_R(x_0)\cap \{x_n>0\}$, $\Gamma_R=B_R(x_0)\cap \{x_n=0\}$, without loss of generality we may take $\Gamma_R$ instead of $\tilde\Gamma$ at the above definition of the norm $\|\tilde\varphi\|^*_{W^{(p,\lambda)}(\tilde\Gamma)}$ and set $d=R$. Later, having $\tilde\varphi\in W^{(p,\lambda)}(\Gamma_R)$ we suppose that $\tilde\varphi$ is extended to all ${\mathbb R}^{n-1}$ as a function with a compact support, preserving its $W^{(p,\lambda)}$-norm. Supposing that the boundary $\partial \Omega$ is locally flatten near the point $x_0$ such that $\Omega\subset \{x_n>0\}$, we recall that the {\it regular obliqueness condition\/} \eqref{2.3} ensures $\ell_n(x_0)\neq0$. Consider now the function \begin{equation}\label{3.1} \phi(x)=\phi(x',x_n)= \frac{x_n}{\ell_n(x_0)} \int\limits_{{\mathbb R}^{n-1}} \tilde\varphi(x'-x_n y') \eta(y') dy'. \end{equation} Essential step in our further considerations is ensured by the next \begin{lem}\label{lem3.1} The function $\phi(x)$ belongs to $W^{2,p,\lambda}(B^+_R)$ and satisfies \begin{equation}\label{3.2} \phi(x',0)=0, \quad \frac{\partial \phi}{\partial x_n}(x',0)= \frac{\tilde\varphi(x')}{\ell_n(x_0)}\quad \text{for}\quad x'\in\Gamma_R. \end{equation} Moreover, \begin{equation}\label{3.3} \|\phi\|^*_{W^{2,p,\lambda}(B^+_R)} = \|\phi\|_{L^{p,\lambda}(B^+_R)} + R\|D^2\phi\|_{L^{p,\lambda}(B^+_R)} \leq C R^{1/2} \|\tilde\varphi\|^*_{W^{(p,\lambda)}(\Gamma_R)} \end{equation} with $C=C(n,p,\lambda,\ell,\eta)$. \end{lem} \paragraph{Proof.} We will prove Lemma~\ref{lem3.1} in two steps. {\bf Step 1: A bound of $\boldsymbol{\|\phi\|_{L^{p,\lambda}(B^+_R)}.}$} Let $\rho\in(0,R]$, ${\bar x}\in B^+_R$ and $B^+_\rho(\bar x)=B_\rho(\bar x)\cap \{x_n>0\}$. Then, making use of the Jensen integral inequality as well as of Fubini's theorem, we obtain \begin{align*} &\rho^{-\lambda} \int\limits_{B^+_\rho(\bar x)\cap B^+_R} |\phi(x)|^pdx = \frac{1}{[\ell_n(x_0)]^p} \rho^{-\lambda} \int\limits_{B^+_\rho(\bar x)\cap B^+_R} \big| x_n \int\limits_{{\mathbb R}^{n-1}} \tilde\varphi(x'-x_n y')\eta(y')dy'\big|^p dx\\ &\quad \leq C(n,p,\ell,\text{supp\,}\eta) \rho^{-\lambda} \int\limits_{\text{supp\,}\eta} |\eta(y')|^p \big( \int\limits_{B^+_\rho(\bar x)\cap B^+_R} x_n^p |\tilde\varphi(x'-x_n y')|^p dx \big) dy'. \end{align*} Now, setting $ I_{B^+_\rho(\bar x)\cap B^+_R}(y')=\rho^{-\lambda} \int_{B^+_\rho(\bar x)\cap B^+_R} x_n^p |\tilde\varphi(x'-x_ny')|^p dx$ and $Q_\rho(\bar x)$ for the cube $\big\{x\in {\mathbb R}^n\colon$ $|x_i-\bar x_i|\leq \rho$ for $i\leq n-1;$ $\max\{0,-\rho+\bar x_n\}\leq x_n\leq \rho+\bar x_n\big\}$, we have \begin{align*} I_{B^+_\rho(\bar x)\cap B^+_R}(y')\leq &\ I_{Q_\rho(\bar x)}(y')= \rho^{-\lambda} \int\limits_{Q_\rho(\bar x)} x_n^p |\tilde\varphi(x'-x_ny')|^p dx' dx_n\\ \leq &\ \rho^{-\lambda} \int\limits_{\max\{0,-\rho+\bar x_n\}}^{\rho+\bar x_n} x_n^p \int\limits_{Q'_\rho(\bar x)} |\tilde\varphi(z')|^p dz' dx_n \end{align*} with $Q'_\rho(\bar x)=\big\{z'\in {\mathbb R}^{n-1}\colon$ $-\rho+\bar x_i-x_ny_i\leq z_i\leq \rho+\bar x_i-x_ny_i,$\quad $i\leq n-1\big\}$. Since, $\int_{Q'_\rho(\bar x)}|\tilde\varphi(z')|^p dz'\leq \rho^{\bar\lambda} \left(\|\tilde\varphi\|^*_{W^{(p,\lambda)}(\Gamma_R)}\right)^p$, $\bar\lambda=\max\{\lambda-1,0\}$, using $\bar x_n\leq R$, $\rho\leq R$, one has \begin{align*} & I_{B^+_\rho(\bar x)\cap B^+_R}(y')\leq \rho^{\bar \lambda-\lambda} \left(\|\tilde\varphi\|^*_{W^{(p,\lambda)}(\Gamma_R)}\right)^p \int\limits_{\max\{0,-\rho+\bar x_n\}}^{\rho+\bar x_n} x_n^p dx_n \\ &\quad\quad\quad \leq C(n,p,\ell) R^{p+\max\{1-\lambda,0\}} \left(\|\tilde\varphi\|^*_{W^{(p,\lambda)}(\Gamma_R)}\right)^p. \end{align*} The last bound and the fact that $y'\in \text{supp\,}\eta$ show that \begin{equation}\label{3.4} \|\phi\|_{L^{p,\lambda}(B_R^+)}\leq C(n,p,\ell,\text{supp\,}\eta) R^{1+\max\{1-\lambda,0\}/p} \|\tilde\varphi\|^*_{W^{(p,\lambda)}(\Gamma_R)}. \end{equation} {\bf Step 2: An estimate for $\boldsymbol{\|D^2\phi\|_{L^{p,\lambda}(B_R^+)}}$.} We will calculate now the first and second derivatives of the function $\phi$ given by \eqref{3.1}. For, after the change $z'=x'-x_ny'$ of the variables in \eqref{3.1}, one has $$ \phi(x',x_n)= \frac{x^{2-n}_n}{\ell_n(x_0)} \int\limits_{{\mathbb R}^{n-1}} \tilde\varphi(z') \eta\left(\frac{x'-z'}{x_n}\right) dz', $$ whence \begin{align*} \frac{\partial \phi}{\partial x_i}(x',x_n)=&\ \frac{x^{1-n}_n}{\ell_n(x_0)} \int\limits_{{\mathbb R}^{n-1}} \tilde\varphi(z') \frac{\partial \eta}{\partial x_i}\left(\frac{x'- z'}{x_n}\right) dz' \quad \text{for}\quad i0}} \rho^{-\lambda} \int\limits_{B_{\rho}(z')\cap \Gamma _R} \int\limits_{B_{\rho}(\bar z')\cap \Gamma _R} \frac{|\tilde\varphi(x')-\tilde\varphi(\bar x')|^p}{|x'-\bar x'|^{p+n-2}} d\sigma_{x'} d\sigma_{\bar x'} \end{align*} (see \cite{Ad}, \cite{Ca1}, \cite{Mi} for details). This implies \begin{equation}\label{3.9} \|D^2\phi\|_{L^{p,\lambda}(B_R^+)}\leq C \|\psi\|_{L^{p,\lambda}(B_R^+)}\leq C \|\tilde\varphi\|_{W^{(p,\lambda)}(\Gamma _R)}. \end{equation} The estimates \eqref{3.4} and \eqref{3.9} yield \eqref{3.3}. \hfill $\diamondsuit$ \smallskip In our further considerations we will need some precise results on the boundedness in Morrey spaces of suitable integral operators. We refer the readers to the corresponding theorems and proofs given in \cite{DPR} and \cite{DR2}. \begin{prp}\label{prp3.2} {\em \cite[Theorem~2.3]{DR2}} Let $U$ be an open subset of ${\mathbb R}^n$, $f \in L^{p,\lambda}(U)$, $p\in(1,+\infty)$, $\lambda\in (0,n)$, $a \in VMO \cap L^\infty ({\mathbb R}^n)$. Let $k(x,z)$ be a Calder\'on--Zygmund kernel (see \cite{CFL2}) in the $z$ variable for almost all $x \in U$ such that $$ \max_{|\alpha|\leq 2n} \left\| \frac{\partial^\alpha}{\partial z^\alpha} k(x,z) \right\|_{L^\infty (D \times \Sigma)} = M < +\infty, $$ with $\Sigma=\{x\in{\mathbb R}^n\colon\ |x|=1\}$. For an arbitrary $\varepsilon > 0$ set \begin{align*} K_\varepsilon f (x) =&\ \int\limits_{\underset{x\in U}{|x-y|>\varepsilon}} k(x,x-y) f(y) dy,\\ C_\varepsilon (a,f) (x) =&\ \int\limits_{\underset{x\in U}{|x-y|>\varepsilon}} k(x,x-y) (a(x)-a(y)) f(y) dy. \end{align*} There exist $Kf$, $C(a,f) \in L^{p,\lambda}(U)$ such that $$ \lim_{\varepsilon \to 0} \| K_\varepsilon f - K f \|_{L^{p,\lambda} (U)} = \lim_{\varepsilon \to 0} \| C_\varepsilon (a,f) - C(a,f) \|_{L^{p,\lambda} (U)}=0. $$ Moreover, $$ \| K f \|_{L^{p,\lambda} (U)} \leq C \| f \|_{L^{p,\lambda} (U)}, \quad \| C(a,f) \|_{L^{p,\lambda} (U)} \leq C \| a \|_* \| f \|_{L^{p,\lambda} (U)} $$ for some positive constant $ C = C(n,p,\lambda,M)$. \end{prp} \begin{prp}\label{prp3.3} {\em \cite[Theorem~2.5]{DPR}} Let $x\in {\mathbb R}^n_+$ and define $$ \tilde Kf (x) = \int\limits_{{\mathbb R}^n_+} \frac{f(y)}{|\tilde x - y|^n} dy, \quad \tilde x \equiv (x_1,\dots,x_{n-1},-x_n). $$ There exists a constant $C$ independent of $f(x)$, such that $$ \| \tilde Kf \|_{L^{p,\lambda}({\mathbb R}^n_+)} \leq C \| f \|_{L^{p,\lambda}({\mathbb R}^n_+)}. $$ \end{prp} \begin{prp}\label{prp3.4} {\em \cite[Theorem~2.6]{DPR}} Let $f \in L^{p,\lambda} ({\mathbb R}^n_+)$, $p\in(1,+\infty)$, $\lambda\in(0,n)$, $a \in VMO \cap L^\infty ({\mathbb R}^n_+)$. Then, for any $x \in {\mathbb R}^n_+$ the commutator $$ \tilde C (a,f)(x) = \int\limits_{{\mathbb R}^n_+} \frac{|a(x) - a(y)|}{|\tilde x - y|^n} f(y) dy $$ is bounded from $L^{p,\lambda}({\mathbb R}^n_+)$ into itself. There exists a constant $C$ independent of $a(x)$ and $f(x)$ such that $$ \| \tilde C (a,f) \|_{L^{p,\lambda}({\mathbb R}^n_+)} \leq C \|a\|_* \| f \|_{L^{p,\lambda}({\mathbb R}^n_+)}. $$ \end{prp} \section{Boundary Morrey Regularity} \setcounter{equation}{0} \setcounter{thm}{0} As in the previous section, we suppose that the boundary $\partial \Omega$ is locally flatten near an arbitrary point $x_0\in \partial \Omega$ such that $\Omega\subset \{x_n>0\}$. The following result implies boundary regularizing property of the couple $({\mathcal L},{\mathcal B})$ in Morrey spaces: \begin{lem}\label{lem4.1} Let $\eqref{2.2}$ and $\eqref{2.3}$ be satisfied and $p\in(1,+\infty)$, $10$ and let $u\in W^{2,q}(B^+_r)$ be a solution to the equation ${\mathcal L}u=f\in L^{p,\lambda}(B^+_r)$ such that ${\mathcal B}u=\varphi$ on $B_r\cap \{x_n=0\}$ with $\varphi\in W^{(p,\lambda)}(B_r\cap \{x_n=0\})$. Then there exists $R\in (0,r)$ small enough such that $D_{ij}u\in L^{p,\lambda}(B^+_R)$. Moreover, there is a constant $C=C(n,\kappa,p,\lambda,\ell,\sigma,\partial \Omega)$ such that \begin{equation}\label{4.1} \| D_{ij}u \|_{L^{p,\lambda}(B^+_R)} \leq C \left( \|u\|_{L^{p,\lambda}(B_R^+)}+ \|f\|_{L^{p,\lambda}(B_R^+)}+ \|\varphi\|_{W^{(p,\lambda)}(B_R\cap \{x_n=0\})}\right). \end{equation} \end{lem} \paragraph{Proof.} We will utilize the explicit representation formula of the second derivatives $D^2u$ derived in \cite[Lemma~4.2]{DP1}. However, as that formula concerns oblique derivative problem for constant coefficients elliptic operator and homogeneous boundary condition with constant coefficients boundary operator, first of all we shall reduce the original problem to a homogeneous one. Without loss of generality we may suppose that the ball $B_r$ is centered at the origin. Let $x_0=(x'_0,x_{0n})$, $x'_0=(x_{01},\ldots, x_{0\,n-1})$. Obviously, we have $$ \begin{gathered} a^{ij}(x_0)D_{ij}u(x)=\big[a^{ij}(x_0)-a^{ij}(x)\big]D_{ij}u(x)+f(x) \quad \text{a.e. in}\ B_r^+,\\ \ell_i(x'_0)D_iu(x')+\sigma(x'_0)u(x')=\big[\ell_i(x'_0)-\ell_i(x') \big]D_iu(x')\\ \quad\quad \quad\quad +\big[\sigma(x'_0)-\sigma(x')\big]u(x') +\varphi(x')\quad x'\in B_r\cap \{x_n=0\}. \end{gathered} $$ Consider now the right-hand side of the boundary condition above and denote it by $\tilde\varphi$. That is, \begin{equation}\label{4.2} \tilde\varphi(x',u)=\big[\ell_i(x'_0)-\ell_i(x') \big]D_iu(x') +\big[\sigma(x'_0)-\sigma(x')\big]u(x') +\varphi(x'). \end{equation} Define $\phi(x)=\phi(x,u)$ by \eqref{3.1} with $\tilde\varphi$ given by \eqref{4.2}. Since $\tilde\varphi (x',u)$ depends {\it affinely\/} on $u$, it is clear that also the dependence of $\phi$ on $u$ will be affine one. Later, remembering the properties of $\phi$ established in Lemma~\ref{lem3.1} (see \eqref{3.2}), it is obvious that $$ \frac{\partial \phi}{\partial \ell(x'_0)}(x)+ \sigma(x'_0)\phi(x)=\tilde\varphi(x',u)\quad \text{for}\ x_n=0. $$ That is why, the function $u(x)-\phi(x)$ satisfies $$ \begin{gathered} a^{ij}(x_0)D_{ij}(u(x)-\phi(x))=\big[a^{ij}(x_0)-a^{ij}(x)\big]D_{ij}u(x)\\ \quad\quad \quad\quad \quad\quad +f(x) -a^{ij}(x_0)D_{ij}\phi(x) \quad \text{a.e. in}\ B_r^+,\\[4pt] \frac{\partial (u-\phi)}{\partial \ell(x'_0)}+ \sigma(x'_0)(u(x')-\phi(x'))=0 \quad x'\in B_r\cap \{x_n=0\}. \end{gathered} $$ Therefore, \cite[Lemma~3.1]{DP1} implies $$ u(x)=\phi(x)+\!\int\limits_{B^+_r}\! G(x_0,x,y)\left\{ \left(a^{ij}(x_0)\!-\!a^{ij}(y)\right)D_{ij} u(y) \!+\!f(y)\!-\!a^{ij}(x_0)D_{ij}\phi(y) \right\} dy, $$ where $$ G(x_0,x,y)= \Gamma(x_0,x-y)-\Gamma(x_0,T(x,x_0)-y)+\theta(x_0,T(x,x_0)-y); $$ $\Gamma(x_0,\xi)$ is the normalized fundamental solution of the operator $a^{ij}(x_0)D_{ij}:$ $$ \Gamma(x_0,\xi)= \frac{1}{n(2-n)\omega_n\sqrt{\text{det\,}\{a^{ij}(x_0)\}}} \left(A^{ij}(x_0)\xi_i\xi_j\right)^{(2-n)/2} $$ with $\omega_n$ and $A^{ij}(x_0)$ being the measure of the unit ball in ${\mathbb R}^n$ and the inverse matrix of $\{a^{ij}(x_0)\}$, respectively; $$ T(x,y)=x-\frac{2x_n}{a^{nn}(y)}\boldsymbol{a}^n(y),\quad T(x)=T(x,x),\quad \boldsymbol{a}^n(y)=(a^{1n}(y),\ldots,a^{nn}(y)); $$ \begin{align*} \theta(x_0,\xi)=&\ \frac{2}{n\omega_n\sqrt{\text{det\,}\{a^{ij}(x_0)\}}} \frac{\ell_n(x'_0)}{a^{nn}(x_0)}\\ &\ \times \int\limits_0^\infty \frac{e^{\sigma(x'_0)s}(\xi+s T(\ell(x'_0) ))_n}{ \left(A^{ij}(x_0) (\xi+s T(\ell(x'_0) ))_i(\xi+s T(\ell(x'_0) ))_j\right)^{n/2}} ds \end{align*} with $(\xi+s T(\ell(x'_0) ))_i$ being the $i$-th component of the vector $\xi+s T(\ell(x'_0))\in{\mathbb R}^n$. Now, similar arguments as these used in the proof of \cite[Lemma~4.2]{DP1} lead to \begin{align}\label{4.3} \nonumber D_{ij}u(x)=&\ D_{ij}\phi(x)\\ \nonumber &\ + \text{P.V.}\!\! \int\limits_{B^+_r}\! \Gamma_{ij}(x,x\!-\!y) \left\{\!\left(a^{ij}(x)\!-\!a^{ij}(y)\right)D_{ij} u(y) \!+\! f(y)\!-\!{\mathcal L}(x)\phi(y)\!\right\} dy\\ &\ + c_{ij}(x)\left(f(x)-{\mathcal L}(x)\phi(x)\right) + I_{ij}(x,x) + J_{ij}(x,x) \end{align} for almost all $x\in B^+_r$, where ${\mathcal L}(x)\phi(y)=a^{ij}(x)D_{ij}\phi(y)$ and $\Gamma_i(x,\xi) = D_{\xi_i} \Gamma(x,\xi)$, $\Gamma_{ij}(x,\xi) = D_{\xi_i\xi_j} \Gamma(x,\xi)$, $\theta_{i}(x,\xi) = D_{\xi_i} \theta(x,\xi)$, $\theta_{ij}(x,\xi) = D_{\xi_i\xi_j} \theta(x,\xi)$, $$ c_{ij}(x) = \int\limits_{|\xi|=1} \Gamma_i (x,\xi) \xi_j d \sigma_\xi; $$ $$ I_{ij} (x,z) = \int\limits_{B_r^+} \Gamma_{ij} (z,T(x,z)-y) \left\{ \left(a^{hk} (z) - a^{hk} (y) \right) D_{hk}u(y) + f(y) -{\mathcal L}(x)\phi(y) \right\} dy $$ for $i,j1$ and each $\lambda\in(0,n)$. In particular, this holds true for $p>n$. Thus, bearing in mind the Aleksandrov--Bakelman--Pucci maximum principle (\cite[Theorem~2.6.2]{TLN}) it follows that $u(x)=0$ is the {\it unique solution\/} of the homogeneous oblique derivative problem \eqref{2.1} ($f\equiv0$, $\varphi\equiv0$). This proves uniqueness of the solution to \eqref{2.1}. Concerning the strong solvability in the space $W^{2,p,\lambda}(\Omega)$ of the problem \eqref{2.1}, we note that $L^{p,\lambda}(\Omega)\subset L^{p}(\Omega)$. Therefore, in view of \cite[Theorem~1.2]{DP1}, there exists a unique solution $u \in W^{2,p}(\Omega)$ of \eqref{2.1}. Further, Theorem~\ref{thm2.1} asserts $u\in W^{2,p,\lambda} (\Omega)$. To derive the estimate \eqref{2.5} we have for the linear operator $$ ({\mathcal L},{\mathcal B})\colon\ W^{2,p,\lambda} (\Omega) \to L^{p,\lambda}(\Omega)\times W^{(p,\lambda)}(\partial \Omega) $$ that \begin{align*} \| ({\mathcal L},{\mathcal B})u \|_{L^{p,\lambda}(\Omega) \times W^{(p,\lambda)}(\partial \Omega)} =&\ \| {\mathcal L}u \|_{L^{p,\lambda}(\Omega)}+ \| {\mathcal B}u\|_{W^{(p,\lambda)}(\partial \Omega)} \\ \leq &\ C \left( \| u \|_{L^{p,\lambda}(\Omega)} + \| Du \|_{L^{p,\lambda}(\Omega)} + \| D^2u \|_{L^{p,\lambda}(\Omega)} \right) \\ \leq &\ C \| u \|_{W^{2,p,\lambda} (\Omega)}. \end{align*} This shows continuity of $({\mathcal L},{\mathcal B})$. Further, $({\mathcal L},{\mathcal B})$ is injective and surjective mapping as it was shown before. Thus, the Banach theorem on inverse mappings implies continuity of the operator $({\mathcal L},{\mathcal B})^{-1}$, i.e., the bound \eqref{2.5}. \hfill $\diamondsuit$ \subsection*{Acknowledgements.} The results presented here were obtained during the NATO--CNR-Fellowship of the third author at the Department of Mathematics, University of Catania, Italy within the 1998 NATO--CNR Guest Fellowships Programme. \begin{thebibliography}{25} \bibitem{Ad} {R.~Adams,} {\em Sobolev Spaces,} Academic Press, New York, 1975. \bibitem{Acq} {P.~Acquistapace,} {\em On $BMO$ regularity for linear elliptic systems}, {Ann. Mat. Pura Appl.} {\bf 161} (1992), 231--270. \bibitem{Ca1} {S. Campanato,} {\em Caratterizzazione delle tracce di funzioni appartenenti ad una classe di Morrey insieme con le loro derivate prime,} {Ann. Scuola Norm. Superiore di Pisa} {\bf 15} (1961), 263--281. \bibitem{Ca2} {S. Campanato,} {\em Propriet\`a di inclusione per spazi di Morrey,} {Ricerche Mat.} {\bf 12} (1963), 67--86. \bibitem{C} {F. Chiarenza,} {\em $L^p$ regularity for systems of PDE's with coefficients in $VMO,$} {in} ``Nonlinear A\-na\-ly\-sis, Function Spaces and Applications,'' Vol. 5, Prague, 1994, http:$\backslash\backslash$www.emis.de/proceedings/Praha94/3.html. \bibitem{CFL1} {F. Chiarenza, M. Frasca and P. Longo,} {\em Interior $W^{2,p}$ estimates for non-divergence elliptic equations with discontinuous coefficients,} {Ricerche Mat.} {\bf 40} (1991), 149--168. \bibitem{CFL2} {F. Chiarenza, M. Frasca and P. Longo,} {\em $W^{2,p}$-solvability of the Dirichlet problem for nondivergence elliptic equations with VMO coefficients,} {Trans. Amer. Math. Soc.} {\bf 336} (1993), 841--853. \bibitem{DP1} {G. Di Fazio and D.K. Palagachev,} {\em Oblique derivative problem for elliptic equations in non divergence form with VMO coefficients,} {Comment. Math. Univ. Carolinae} {\bf 37} (1996), 537--556. \bibitem{DP2} {G. Di Fazio and D.K. Palagachev,} {\em Oblique derivative problem for quasilinear elliptic equations with VMO coefficients,} {Bull. Austral. Math. Soc.} {\bf 53} (1996), 501--513. \bibitem{DPR0} {G. Di Fazio, D.K. Palagachev and M.A. Ragusa,} {\em On Morrey's regularity of strong solutions to elliptic boundary value problems,} {C.~R. Acad. Bulgare Sci.} {\bf 50} (1997), no.~11-12, 17--20. \bibitem{DPR} {G. Di Fazio, D.K. Palagachev and M.A. Ragusa,} {\em Global Morrey regularity of strong solutions to Dirichlet problem for elliptic equations with discontinuous coefficients,} {J. Funct. Anal.} {\bf 166} (1999), 179--196. \bibitem{DR2} {G. Di Fazio and M.A. Ragusa,} {\em Interior estimates in Morrey spaces for strong solutions to nondivergence form elliptic equations with discontinuous coefficients,} {J. Funct. Anal.} {\bf 112} (1993), 241--256. \bibitem{GT} {D. Gilbarg and N.S. Trudinger,} {\em Elliptic Partial Differential Equations of Second Order,} 2nd ed., Springer--Verlag, Berlin, 1983. \bibitem{JN} {F. John and L. Nirenberg,} {\em On functions of bounded mean oscillation,} {Commun. Pure Appl. Math.} {\bf 14} (1961), 415--426. \bibitem{LU} {O.A. Ladyzhenskaya and N.N. Ural'tseva,} {\em A survey of results on the solubility of boundary-value problems for second-order uniformly elliptic and parabolic quasi-linear equations having unbounded singularities,} {Russian Math. Surveys} {\bf 41} (1986), no.~5, 1--31. \bibitem{MP} {A. Maugeri and D.K. Palagachev,} {\em Boundary value problem with an oblique derivative for uniformly elliptic operators with discontinuous coefficients,} {Forum Math.} {\bf 10} (1998), 393--405. \bibitem{MPV} {A. Maugeri, D.K. Palagachev and C. Vitanza,} {\em Oblique derivative for uniformly elliptic operators with VMO coefficients and applications,} {C. R. Acad. Sci. Paris, S\'er. I} {\bf 327} (1998), 53--58. \bibitem{Miranda} {C. Miranda,} {\em Sulle equazioni ellittiche del secondo ordine di tipo nonvariazionale, a coefficienti discontinui,} {Ann. Mat. Pura Appl.} {\bf 63} (1963), 353--386. \bibitem{Mi} {C. Miranda,} {\em Istituzioni di Analisi Funzionale Lineare,} Vol. I, UMI, 1978. \bibitem{Pa} {D.K. Palagachev,} {\em Quasilinear elliptic equations with VMO coefficients,} {Trans. Amer. Math. Soc.} {\bf 347} (1995), 2481--2493. \bibitem{PP} {P.R. Popivanov and D.K. Palagachev,} {\em The Degenerate Oblique Derivative Problem for Elliptic and Parabolic Equations,} Akademie-Verlag, Berlin, 1997. \bibitem{S} {D. Sarason,} {\em On functions of vanishing mean oscillation,} {Trans. Amer. Math. Soc.} {\bf 207} (1975), 391--405. \bibitem{TLN} {N.S.~Trudinger,} {\em Nonlinear Second Order Elliptic Equations,} Lecture Notes of Math. Inst. of Nankai Univ., Tianjin, China, 1986. \end{thebibliography} \end{document}