\input amstex \documentstyle{amsppt} \loadmsbm \magnification=\magstephalf \hcorrection{1cm} \nologo \TagsOnRight \NoBlackBoxes \headline={\ifnum\pageno=1 \hfill\else% {\tenrm\ifodd\pageno\rightheadline \else \leftheadline\fi}\fi} \def\rightheadline{EJDE--2001/02\hfil $p$-harmonic systems \hfil\folio} \def\leftheadline{\folio\hfil Bianca Stroffolini \hfil EJDE--2001/02} \def\pretitle{\vbox{\eightrm\noindent\baselineskip 9pt % Electronic Journal of Differential Equations, Vol. {\eightbf 2001}(2001), No. 02, pp. 1--7.\hfil\break ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu \hfill\break ftp ejde.math.swt.edu (login: ftp)\bigskip} } \topmatter \title A stability result for $p$-harmonic systems with discontinuous coefficients \endtitle \thanks {\it Mathematics Subject Classifications:} 35J60, 47B47.\hfil\break\indent {\it Key words:} Bounded mean oscillation, Linear and Nonlinear Commutators, \hfil\break\indent Hodge Decomposition. \hfil\break\indent \copyright 2001 Southwest Texas State University. \hfil\break\indent Submitted November 27, 2000. Published January 2, 2001. \endthanks \author Bianca Stroffolini \endauthor \address Bianca Stroffolini \hfill\break Dipartimento di Matematica e Applicazioni \lq\lq R. Caccioppoli", \hfill\break via Cintia, 80126 Napoli, Italy \endaddress \email stroffol\@matna2.dma.unina.it \endemail \def\diver{\operatorname{div}} \abstract The present paper is concerned with $p$-harmonic systems $$ \diver (\langle A(x) Du(x), Du(x) \rangle ^{{p-2}\over 2} A(x) Du(x))=\diver ( \sqrt{A(x)} F(x)),$$ where $A(x)$ is a positive definite matrix whose entries have bounded mean oscillation (BMO), $p$ is a real number greater than 1 and $F\in L^{r\over {p-1}}$ is a given matrix field. We find a-priori estimates for a very weak solution of class $W^{1,r}$, provided $r$ is close to $2$, depending on the BMO norm of $\sqrt{A}$, and $p$ close to $r$. This result is achieved using the corresponding existence and uniqueness result for linear systems with BMO coefficients \cite{St}, combined with nonlinear commutators. \endabstract \endtopmatter \document \head 0. Introduction\endhead Consider the $p$-harmonic system $$\diver (|Du(x)|^{{p-2}} Du(x))=0 \eqno (0.1)$$ in a regular domain $\Omega\subset {\Bbb R}^n$. A vector field $u$ in the Sobolev space $W^{1,r}_{\text{loc}}(\Omega,{\Bbb R}^n)$, $r>\max \{1,p-1\}$, {\sl is a very weak $p$-harmonic vector} \cite{IS1},\cite{L} if it satisfies $$\int_{\Omega}|Du|^{p-2}\langle Du, D\phi\rangle dx=0 \quad \forall \phi \in C^{\infty}_o (\Omega, {\Bbb R}^n)\,. $$ This definition was first introduced by Iwaniec and Sbordone in [IS1], they were able to prove, using commutator results, that there exists a range of exponents, close to $p$, $10$ such that if $|p-r|<\delta$ and u is a {\sl very weak $p$-harmonic vector}, then $$\|\sqrt{A} Du\|_{r}^{r}\leq C\|F\|_{r \over {p-1}}^{r \over {p-1}} \eqno(0.4)$$ \endproclaim Further developments are presented considering some new spaces, the so-called {\sl grand $L^q$ spaces}, in the spirit of \cite{GIS}. \head{1. Definitions and preliminary results }\endhead \definition{Definition 1} Let $\Omega$ be a cube or the entire space ${\Bbb R}^n$. The John-Nirenberg space $BMO(\Omega)$ \cite{JN} consists of all functions $b$ which are integrable on every cube $Q\subset \Omega$ and satisfy: $$\|b\|_{\ast}=\sup \Big \{ \frac1{|Q|}\int_Q |b-b_Q|\, dx : Q\subset \Omega\Big\} <\infty$$ where $b_Q={1\over |Q|} \int_Q b(y) dy$.\enddefinition \definition{Definition 2} For $10$ , depending on the BMO-norm of $B$, such that for $|r-2|<\varepsilon$ the Dirichlet problem: $$\gathered \diver (BDu)=\diver F \\ F\in L^r (\Omega ,{\Bbb R}^{n\times n}), \quad u\in W^{1,r}_o (\Omega ,{\Bbb R}^n)\endgathered \eqno(1.2)$$ admits a unique solution. In particular the energy functional $$\int_{\Omega} |Du|^{-\varepsilon} \langle B(x) Du,Du\rangle\, dx$$ is finite and the following a-priori estimate holds $$\|Du\|_{r}\leq C \|F\|_{r} \eqno (1.3)$$ \endproclaim \remark{Remark} Note that, taking into account the uniform estimate $(1.3)$ for exponents in a range determined by the BMO-norm of $B$, we have actually existence and uniqueness in the grand Sobolev space $W^{\theta,2)}_{0}(\Omega, {\Bbb R}^n)$. \endremark This Theorem can be rephrased in terms of a new Hodge decomposition. More precisely, \proclaim{Theorem 2' } There exists $\varepsilon>0$ , depending on the BMO-norm of $B$, such that for $|r-2|<\varepsilon$ a matrix field $F\in L^r (\Omega ,{\Bbb R}^{n\times n})$ can be decomposed uniquely as it follows: $$F=B D\phi +L$$ with $\diver L=0$ and $\phi \in W^{1,r}_o (\Omega ,{\Bbb R}^n)$. Therefore, there exists a bounded linear operator $$S:L^r (\Omega ,{\Bbb R}^{n\times n}) \to L^r(\Omega ,{\Bbb R}^{n\times n})$$ given by $S(F)=B D\phi$. \endproclaim It is sufficient to solve the linear system $$\diver (B D \phi )=\diver F$$ We will apply Theorem 1 to the operator $T=I-S$ with $B=\sqrt{A}$. Notice that the square root operator acting on matrices with minimum eigenvalue far from zero, for example greater or equal than $1$, is Lipschitz, therefore the square root of $A$ is still in BMO. The kernel of the operator $T$ consists of matrix fields of the form $\sqrt{A} D\phi$. \head 2. Proof of the Main Theorem \endhead Consider a very weak $p$-harmonic vector $u\in W^{1,r}$, with $r$ determined by Theorem 2 and with finite energy. Decompose $|\sqrt{A} Du|^{r-p}\sqrt{A}Du$ using the new Hodge decomposition: $$|\sqrt{A} Du|^{r-p}\sqrt{A}Du= \sqrt{A} D\phi+L,\quad \diver L=0$$ Let us observe that $T(\sqrt{A} Du)=0$; therefore $L$ is a nonlinear perturbation of the kernel of a bounded linear operator; we can apply Theorem 1 with $\delta=p-r$ to get the following estimate $$\|L\|_{ r\over {1-\delta}}\leq C|\delta |\|\sqrt{A} Du\|_{r}^{1-\delta} \eqno(2.1)$$ Using the above equality we find $$\int_{{\Omega}}|Du|^rdx \leq \int_{\Omega}|\sqrt{A} Du|^r= \int_{{\Omega}}|\sqrt{A} Du|^{p-2}\langle \sqrt{A} Du, L\rangle dx+ \int_{{\Omega}} \langle F, \sqrt{A}D\phi \rangle dx\,.$$ Using H\"{o}lder's inequality on the last two terms of the above expression and $(2.1)$, $$\aligned \int_{{\Omega}}|\sqrt{A}Du|^r dx \leq& \|\sqrt{A}Du\|_{r}^{p-1} \|L\|_{r\over {r-p+1}}+\|F\|_{r\over {p-1}}\|\sqrt{A}D\phi\|_{r\over{r-p+1}} \\ \leq& C|r-p|\|\sqrt{A}Du\|_{r}^{r}+C\|F\|_{r\over {p-1}}\|\sqrt{A}Du\|^{r\over{r-p+1}}_{r} \endaligned$$ Using Young's inequality and choosing $r$ such that $C|r-p|<1$, we get the assertion. We will prove also the uniqueness of the very weak $p$-harmonic vector in a space larger than $W^{1,r}$, refining estimate $(0.4)$. We begin with establishing the following Theorem, that for the $p$-harmonic case was established in \cite{GIS}. \proclaim{Theorem 3} For $r$ given in such a way that $|r-2|<\varepsilon$ , determined by Theorem 2, there exists $\delta$ such that if $|p-r|<\delta$ and $u, v \in W^{1,r}(\Omega,{\Bbb R}^n)$ are very weak $p$-harmonic vectors respectively with data $F,G\in L^{r \over {p-1}}(\Omega,{\Bbb R^{n\times n}})$ with finite energy, the following estimate holds: $$\aligned &\|\sqrt{A}Du-\sqrt{A}Dv\|_{r}^{p-1} \\ &\leq C\varepsilon^{{p-1} \over {|p-2|}} (\|F\|_{r\over{p-1}}+\|G\|_{r\over{p-1}}) +C\cases \|F-G\|_{r\over{p-1}} & (p\geq 2) \\ \|F-G\|_{r\over{p-1}}^{p-1}(\|F\|_{r\over{p-1}}+\|G\|_{r\over{p-1}})^{2-p} & (1\theta$. Next, solve the $p$-harmonic system: $$\diver ( \langle A(x) Du_{k}(x),Du_{k}(x)\rangle ^{{p-2}\over 2} A(x) Du_{k}(x) )=\diver(\sqrt{A(x)} F_{k}(x))$$ for $u_{k}\in W^{1,p}_{0}(\Omega,{\Bbb R}^n)$. We use estimate $(2.5)$ with $\theta'$ in place of $\theta$ to show that $u_{k}$ is a Cauchy sequence in $W^{\theta',p)}_{0}(\Omega,{\Bbb R}^n)$: $$\|\sqrt{A} Du_{k}-\sqrt{A} Du_{j}\|_{\theta',p)}^{p-1} \leq C(n,p,\|A\|_{{\ast}}) \, \|F_{k}-F_{j}\|_{{\theta',q)}}^{\alpha }(\|F_{k}\|_{{\theta',q)}}+\|F_{j}\|_{{\theta',q)}})^{1-\alpha}$$ Passing to the limit in the integral identities: $$\int_{{\Omega}}|\sqrt{A}Du_{k}|^{p-2} \langle \sqrt{A} Du_{k}, \sqrt{A} D\phi \rangle dx=\int_{{\Omega}} \langle F_{k}(x), \sqrt{A} D\phi \rangle dx$$ we then conclude that the limit $u$ is in $W^{\theta,p}_{0}(\Omega, {\Bbb R}^n)$. \Refs \widestnumber\key{GISS} \ref \key{D}\by G. Di Fazio \paper $L^p$ estimates for divergence form elliptic equations with discontinuous coefficients \jour Boll. Un. Mat. Ital. \vol 7 \yr 1996 \pages 409--420 \endref \ref\key{GIS} \by L. Greco, T. Iwaniec and C. Sbordone \paper Inverting the $p$-Harmonic Operator \jour Manuscripta Mathematica \vol 92 \yr 1997 \pages 249--258 \endref \ref\key{GISS} \by L. Greco, T.Iwaniec, C. Sbordone and B. Stroffolini \paper Degree formulas for maps with nonintegrable Jacobian \jour Topological Methods in Nonlinear Analysis \vol 6 \yr 1995 \pages 81--95 \endref \ref\key{GV} \by L. Greco and A. Verde \paper A regularity property of $p$-harmonic functions \jour Annales Academiae Scientiarum Fennicae (to appear) \endref \ref\key{I}\by T.Iwaniec \book Nonlinear Differential Forms \publ Lectures in Jyv\"askyl\"a, \yr August 1998 \endref \ref\key{IS1} \by T. Iwaniec and C. Sbordone \paper Weak minima of variational integrals \jour J.Reine Angew.Math.\vol 454 \yr 1994 \pages 143--161 \endref \ref\key{IS2} \by T. Iwaniec and C. Sbordone \paper Riesz transform and elliptic PDEs with VMO-coefficients \jour Journal d'Analyse Math.\vol 74 \yr 1998 \pages 183--212 \endref \ref\key{KZ} \by J. Kinnunen and S. Zhou \paper A note on very weak $P$-harmonic mappings \jour Electronic Journal of Differential Equations, \vol 25 \yr 1997 \pages 1--4 \endref \ref\key{JN} \by F. John and L. Nirenberg \paper On functions of bounded mean oscillation \jour Comm. Pure Appl. Math.\vol14 \yr1961 \pages 415--426 \endref \ref\key{L} \by J. Lewis \paper On very weak solutions of certain elliptic systems \jour Comm. Part. Diff. Equ.\vol 18 \yr1993 \pages 1515--1537 \endref \ref\key{S} \by E. M. Stein \book Harmonic Analysis \publ Princeton University Press \yr 1993 \endref \ref\key{St} \by B.Stroffolini \paper Elliptic Systems of PDE with BMO coefficients \jour Potential Analysis (to appear) \endref \endRefs\enddocument