\pdfoutput=1\relax\pdfpagewidth=8.26in\pdfpageheight=11.69in\pdfcompresslevel=9 \documentclass[twoside]{article} \usepackage{amssymb, amsmath} \pagestyle{myheadings} \markboth{\hfil A unique continuation property \hfil EJDE--2001/46} {EJDE--2001/46\hfil A. Anane, O. Chakrone, Z. El Allali, \& I. Hadi \hfil} \begin{document} \title{\vspace{-1in}\parbox{\linewidth}{\footnotesize\noindent {\sc Electronic Journal of Differential Equations}, Vol. {\bf 2001}(2001), No. 46, pp. 1--20. \newline ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu \newline ftp ejde.math.swt.edu (login: ftp)} \vspace{\bigskipamount} \\ % A unique continuation property for linear elliptic systems and nonresonance problems % \thanks{ {\em Mathematics Subject Classifications:} 35J05, 35J45, 35J65. \hfil\break\indent {\em Key words:} Unique continuation, eigensurfaces, nonresonance problem. \hfil\break\indent \copyright 2001 Southwest Texas State University. \hfil\break\indent Submitted January 28, 2000. Published June 20, 2001.} } \date{} % \author{ A. Anane, O. Chakrone, Z. El Allali, \& I. Hadi } \maketitle \begin{abstract} The aim of this paper is to study the existence of solutions for a quasilinear elliptic system where the nonlinear term is a Caratheodory function on a bounded domain of $\mathbb{R}^N$, by proving the well known unique continuation property for elliptic system in all dimensions: 1, 2, 3, \dots and the strict monotonocity of eigensurfaces. These properties let us to consider the above problem as a nonresonance problem. \end{abstract} \newtheorem{thm}{Theorem} \newtheorem{lem}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{defn}{Definition} \newtheorem{rem}{Remark} \section{Introduction} We study the existence of solutions for the quasilinear elliptic system \begin{equation} \label{A} \begin{gathered} -\Delta u_i =\sum_{j=1}^na_{ij}u_j+f_i(x,u_1,\ldots,u_n,\nabla u_1,\ldots,\nabla u_n) \quad\text{in }\Omega,\\ u_i = 0 \quad\text{on }\partial\Omega, \; i=1,\ldots,n, \end{gathered} \end{equation} where $\Omega\subset\mathbb{R}^N$ ($N\geq 1$) is a bounded domain, and the coefficients $a_{ij}$ ($1\leq i,j \leq n$) are constants satisfying $a_{ij}=a_{ji}$, for all $i,j$. The nonlinearity $f_i:\Omega\times \mathbb{R}^N\times\mathbb{R}^{2N}\to \mathbb{R} (1\leq i\leq n)$ is a Carath\'eodory function. The case where $n=2$ and $f_i$ $(1\leq i\leq n)$ is independent of $\nabla u_i$ $(1\leq i\leq n$) has been studied by several authors, in particular by Costa and Magalh\~aes in \cite{C-M}. This paper is organized as follows. First, we study the unique continuation property in dimension $N\geq 3$ (section 2), for systems of differential inequalities of the form $$ |\Delta u_i(x)|\leq K\sum_{j=1}^n|u_j(x)|+m(x)|u_i(x)| \quad\text{a.e. }x\in \Omega, \; 1\leq i\leq n, $$ where $m\in F^{\alpha,p}$, $0<\alpha<1$ and $p>1$. Here $F^{\alpha,p}$ denotes the set of functions of class Fefferman-Phong. In our proof of Theorem 2, we make use of a number results and techniques developed in \cite{ST,C-SA,L}. Secondly, we study the unique continuation property in dimension $N=2$ (section 3), for linear elliptic systems of the form $$ -\Delta u_i = \sum_{j=1}^n a_{ij} u_j + m(x) u_i \quad\text{in }\Omega\,\; i=1,\ldots,n\,, $$ where $m$ satisfies the $L_{\log} L$ integrability condition. There is extensive literature on unique continuation; we refer the reader to \cite{L,D-G,J-K, K, G-L}. The purpose of section 4 is to show that strict monotonicity of eigenvalues for the linear elliptic system $$ \begin{gathered} -\Delta u_i = \sum_{j=1}^n a_{ij} u_j + \mu m(x) u_i \quad\text{in }\Omega,\\ u_i = 0 \quad\text{on }\partial\Omega ,\; i=1,\ldots,n \end{gathered}$$ holds if some unique continuation property is satisfied by the corresponding eigenfunctions. Here $a_{ij}=a_{ji}$ for all $i\neq j$, $\mu \in \mathbb{R}$ and $m\in {\cal{M}} =\{m\in L^{\infty}(\Omega);\mathop{\rm meas} (x\in \Omega / m(x)>0)\neq 0\}$. This result will be used for the applications in section 6. In section 5, we study the first order spectrum for linear elliptic systems and strict monotonicity of eigensurfaces. This spectrum is defined as the set of couples $(\beta,\alpha)\in \mathbb{R}^N\times\mathbb{R}$ such that \begin{equation} \label{B} \begin{gathered} -\Delta u_i = \sum_{j=1}^na_{ij}u_j+\alpha m(x)u_i+\beta\cdot\nabla u_i \quad\text{in }\Omega,\\ u_i = 0 \quad\text{on }\partial\Omega,\; i=1,\ldots,n \end{gathered} \end{equation} has a nontrivial solution $U=(u_1,\ldots,u_n) \in (H^1_0(\Omega))^n$. We denote this spectrum by $\sigma_1(-\overrightarrow\Delta-A,m)$ where $A=(a_{ij})_{1\leq i,j\leq n}$ and $m\in {\cal{M}}$. This spectrum is made by an infinite sequence of eigensurfaces $\Lambda_1, \Lambda_2, \ldots$ (cf. section 5 and \cite{A-C-E} in the case $n=2$). Finally, in section 6 we apply our results to obtain the existence of solutions to (\ref{A}) under the condition of nonresonance with respect to $\sigma_1(-\overrightarrow\Delta-A,1)$. We use the notation $$U=\left(\begin{array}{c} u_1\\ \vdots \\ u_n \end{array}\right), \quad -\overrightarrow\Delta U=\left( \begin{array}{c} -\Delta u_1\\ \vdots \\ -\Delta u_n \end{array}\right), \quad \nabla U=\left( \begin{array}{c} \nabla u_1\\ \vdots \\ \nabla u_n \end{array}\right), \quad F=\left( \begin{array}{c} f_1\\ \vdots \\ f_n \end{array} \right). $$ We denote by $\sigma(-\Delta)=\{\lambda_1,\lambda_2,\ldots,\lambda_j,\ldots\}$ the spectrum of $-\Delta$ on $H^1_0(\Omega)$. For $\beta\in \mathbb{R}^N$, we denote $$(\beta \xi)=\left( \begin{array}{c} \beta.\xi_1\\ \vdots \\ \beta.\xi_n \end{array} \right) ,\quad |s|^2=\sum\limits_{i=1}^n|s_i|^2, \quad |\xi|^2=\sum\limits_{i=1}^n|\xi_i|^2.$$ In the space $(H^1_0(\Omega))^n$ we use the induced inner product $$\langle U, \Phi\rangle=\sum\limits_{i=1}^n\langle u_i,\varphi_i\rangle\quad \forall U=(u_1,\ldots,u_n), \Phi=(\varphi_1,\ldots,\varphi_n)\in (H^1_0(\Omega))^n$$ and corresponding norm $$\|U\|^2_{1,2,\beta}=\int_{\Omega}e^{\beta.x}|\nabla U|^2 dx=\sum\limits_{i=1}^n\|u_i\|^2_{1,2,\beta},$$ which is equivalent to the original norm. \section{The unique continuation property for linear elliptic systems in dimensions $N\geq 3$} We will say that a family of functions has the unique continuation property, if no function, besides possibly the zero function, vanishes on a set of positive measure. In this section, we proceed to establish the unique continuation property when $m \in F^{\alpha,p}$, $0<\alpha<1$ and $p>1$ in dimension $N\geq 3$. The proof of the main result is based on the Carleman's inequality with weight. \begin{thm}[Carleman's inequality with weight] Let $m\in F^{\alpha,p}$, $0<\alpha\leq \frac{2}{N-1}$ and $p>1$. Then there exists a constant $c=c(N,p)$ such that \begin{equation} \label{C} \left(\int_{\mathbb{R}^N}|e^{\tau x_N}f|^sm\right)^{1/s} \leq c\|m\|^{2/s}_{F^{\alpha,p}} \left(\int_{\mathbb{R}^N}|e^{\tau x_N}\Delta f|^rm^{1-r}\right)^{1/r}, \end{equation} for all $\tau\in \mathbb{R}\backslash\{0\}$, and all $f\in S(\mathbb{R}^N)$ where $\frac{1}{r}-\frac {1}{s}=\frac{2}{N+1}$ and $\frac{1}{r}+\frac{1}{s}=1$. \end{thm} For the proof of this theorem see \cite{L}. \begin{thm} Let $X$ be an open subset in $\mathbb{R}^N$ and $U=(u_1,\ldots,u_n) \in (H^{2,r}_{{\rm loc}}(X))^n$ ($r=\frac{2(N+1)}{N+3}$) be a solution of the following differential inequalities: \begin{equation} \label{D} |\Delta u_i(x)|\leq K\sum_{j=1}^n|u_j(x)|+m(x)|u_i(x)| \quad\text{a.e. }x\in X\; 1\leq i\leq n, \end{equation} where $K$ is a constant and $m$ is a locally positive function in $F^{\alpha,p}$, with $\alpha=\frac{2}{N-1}$ and $p>1$, i.e. $$\lim_{r\to 0}\|\chi_{\{x:|x-y|0$ small enough such that $U(x)=0$ when $|(x+1)|>1$ and $|x|<\varepsilon$. Set $f_i(x)=\eta(|x|)u_i(x)$ for each $i=1,\ldots,n$ where $\eta\in C^{\infty}_0([-\varepsilon,\varepsilon])$, $\eta(|x|)=1$ if $|x|<\varepsilon/2$. For fixed $\rho$ such that $0<\rho<\frac{\varepsilon}{2}$, let $B_{\rho}$ the ball of radius $\rho$ centered at zero. By the Carleman inequality, theorem 1 yields \begin{equation} \label{E} \Big(\int_{B_{\rho}}|e^{\tau x_N}f_i|^sm\Big)^{1/s}\leq c \|\chi_{B_{\rho}}m\|^{2/s}_{F^{\alpha,p}}\Big(\int_{\mathbb{R}^N}|e^{\tau x_N}\Delta f_i|^rm^{1-r}\Big) ^{1/r}, \quad\forall \tau >0 \end{equation} for $i=1,\ldots,n$. Inequality (\ref{E}) implies \begin{eqnarray} \label{F} \Big(\int_{B_{\rho}}|e^{\tau x_N}f_i|^s m\Big)^{1/s} & \leq & c\|\chi_{B_{\rho}}m\|^{2/s}_{F^{\alpha,p}} \Big\{\Big(\int_{\mathbb{R}^N\backslash B_{\rho}}|e^{\tau x_N}\Delta f_i|^rm^{1-r}\Big) ^{1/r} \nonumber \\ &&+\Big(\int_{B_{\rho}}|e^{\tau x_n}\Delta f_i|^rm^{1-r}\Big) ^{1/r}\Big\}. \end{eqnarray} >From (\ref{D}), we have \begin{eqnarray} \Big(\int_{B_{\rho}}|e^{\tau x_N} \Delta f_i|^rm^{1-r}\Big)^{1/r} &\leq& c\sum_{j=1}^n\Big(\int_{B_{\rho}}|e^{\tau x_N}f_j|^r m^{1-r}\Big) ^{1/r} \nonumber \\ &&+\Big(\int_{B_{\rho}}|e^{\tau x_N}f_i|^rm\Big)^{1/r} \label{G} \end{eqnarray} for each $i=1,\ldots,n$. Using the H{\"o}lder's inequality, we obtain \begin{eqnarray} \label{H} \Big(\int_{B_{\rho}}|e^{\tau x_N}f_i|^r m\Big)^{1/r} & = & \Big(\int_{B_{\rho}}|e^{\tau x_N}f_i|^rm^{r/s}m^{1-r/s}\Big)^{1/r}\nonumber\\ & \leq & \Big(\int_{B_{\rho}}|e^{\tau x_N}f_i|^s m\Big)^{1/s} \Big(\int_{B_{\rho}}m\Big)^{\frac{1}{r}-\frac{1}{s}}. \end{eqnarray} As $m \in F^{\alpha,p}_{{\rm loc}}(X)$, it follows that \begin{equation} \label{I} \int_{B_{\rho}}m \leq c\rho ^{N-\alpha}\|\chi_{B_{\rho}}m\|_{F^{\alpha,p}}. \end{equation} Indeed, if $m \in F^{\alpha,p}_{{\rm loc}}(X)$ then \begin{eqnarray} \int_{B_{\rho}}m & \leq & \Big(\int_{B_{\rho}}m^p\Big)^{1/p}|B_{\rho}|^{1-\frac{1}{p}}\nonumber\\ & \leq & |B_{\rho}|^{1-\alpha /N}\Big(|B_{\rho}|^{\alpha /N} \Big(\frac{1}{|B_{\rho}|}\int_{B_{\rho}}m^p\Big)^{1/p}\Big)\nonumber\\ & \leq & c\rho ^{N-\alpha }\|\chi_{B_{\rho}}m\|_{F^{\alpha,p}}.\nonumber \end{eqnarray} It follows from (\ref{H}) and (\ref{I}) that \begin{eqnarray} \label{J} \Big(\int_{B_{\rho}}|e^{\tau x_N}f_i|^rm\Big)^{1/r} & \leq & c\rho^{(N-\alpha)(\frac{1}{r}-\frac{1}{s})}\|\chi_{ B_{\rho}}m\|_{F^{\alpha,p}}^{\frac{1}{r}-\frac{1}{s}} \Big(\int_{B_{\rho}}|e^{\tau x_N}f_i|^sm\Big)^{1/s},\nonumber\\ & \leq & c\rho^{\frac{2(N-\alpha)}{N+1}}\|\chi_{B_{\rho}}m\|_{F^{\alpha,p}}^{\frac{1}{r}-\frac{1}{s}} \Big(\int_{B_{\rho}}|e^{\tau x_N}f_i|^sm\Big)^{1/s}, \end{eqnarray} for each $i=1,\ldots,n$.\\ We may assume without loss generality that $m\geq 1$, then $$\Big(\int_{B_{\rho}}|e^{\tau x_N}f_i|^rm^{1-r}\Big)^{1/r} \leq \Big(\int_{B_{\rho}}|e^{\tau x_N}f_i|^rm\Big)^{1/r} \quad \forall 1\leq i\leq n.$$ >From (\ref{J}), we deduce \begin{equation} \label{K} \Big(\int_{B_{\rho}}|e^{\tau x_N}f_i|^rm^{1-r}\Big)^{1/r} \leq c\rho^{\frac{2(N-\alpha)}{N+1}}\|\chi_{B_{\rho}}m\|_{F^{\alpha,p}}^{\frac{1}{r}-\frac{1}{s}} \Big(\int_{B_{\rho}}|e^{\tau x_N}f_i|^sm\Big)^{1/s}. \end{equation} Therefore from (\ref{J}) and (\ref{K}), we have \begin{eqnarray} \label{L} \Big(\int_{B_{\rho}}|e^{\tau x_N}f_i|^sm\Big)^{1/s} & \leq & c\|\chi_{B_{\rho}}m\|^{2/s}_{F^{\alpha,p}} \Big(\int_{\mathbb{R}^N\backslash B_{\rho}}|e^{\tau x_N}\Delta f_i|^r m^{1-r}\Big)^{1/r}\nonumber\\ & & + c\rho^{\frac{2(N-\alpha)}{(N+1)}}\|\chi_{B_{\rho}}m\|_{F^{\alpha,p}} \sum_{j=1}^n\Big(\int_{B_{\rho}}|e^{\tau x_N}f_j|^sm\Big)^{1/s}\nonumber\\ & & + c\rho^{\frac{2(N-\alpha)}{(N+1)}}\|\chi_{B_{\rho}}m\|_{F^{\alpha,p}} \Big(\int_{B_{\rho}}|e^{\tau x_N}f_i|^sm\Big)^{1/s}, \end{eqnarray} for each $i=1,\ldots,n$. Replacing $\alpha$ by $\frac{2}{N-1}$ in (\ref{L}), we obtain \begin{eqnarray} \Big(\int_{B_{\rho}}|e^{\tau x_N}f_i|^sm\Big)^{1/s} & \leq & c\|\chi_{B_{\rho}}m\|^{2/s}_{F^{\alpha,p}} \Big(\int_{\mathbb{R}^N\backslash B_{\rho}}|e^{\tau x_N}\Delta f_i|^r m^{1-r}\Big)^{1/r}\nonumber\\ & & +c\rho^{\frac{2(N-2)}{(N-1)}}\|\chi_{B_{\rho}}m\|_{F^{\alpha,p}} \sum_{j=1}^n\Big(\int_{B_{\rho}}|e^{\tau x_N}f_j|^sm\Big)^{1/s}\nonumber\\ & & +c\rho^{\frac{2(N-2)}{(N-1)}}\|\chi_{B_{\rho}}m\|_{F^{\alpha,p}} \Big(\int_{B_{\rho}}|e^{\tau x_N}f_i|^sm\Big)^{1/s},\nonumber \end{eqnarray} for each $=1,\ldots,n$. Let us choose $\rho$ small enough, such that $$\|\chi_{B_{\rho}}m\|_{F^{\alpha,p}} \leq \frac{1}{2nc}.$$ So for $i=1,\ldots,n$, \begin{eqnarray*} \Big(\int_{B_{\rho}}|e^{\tau x_N}f_i|^sm\Big)^{1/s} & \leq & c \Big(\int_{\mathbb{R}^N\backslash B_{\rho}}|e^{\tau x_N}\Delta f_i|^r m^{1-r}\Big)^{1/r} \\ &&+\frac{1}{2n}\sum_{j=1}^n\Big(\int_{B_{\rho}}|e^{\tau x_N}f_j|^sm\Big)^{1/s}\\ &&+\frac{1}{2n}\Big(\int_{B_{\rho}}|e^{\tau x_N}f_i|^sm\Big)^{1/s}, \end{eqnarray*} Since $f_i(x)=0$ for all $1\leq i \leq n$ when $|(x+1)|>1$ or $|x|>\varepsilon$, we deduce that $$\frac{n-1}{2n}\sum_{i=1}^n\Big(\int_{B_{\rho}}|e^{\tau x_N}f_i|^s m\Big)^{1/s} \leq c e^{-\rho \tau}\sum_{i=1}^n\Big( \int_{\mathbb{R}^N\backslash B_{\rho}}|\Delta f_i|^rm^{1-r}\Big)^{1/r}.$$ So \begin{equation} \label{M} \frac{n-1}{2n}\sum_{i=1}^n \Big(\int_{B_{\rho}}|e^{\tau(\rho+x_N)}f_i|^sm\Big)^{1/s} \leq c\sum_{i=1}^n\Big(\int_{\mathbb{R}^N}|\Delta f_i|^r m^{1-r}\Big)^{1/r}. \end{equation} Taking $\tau \to +\infty$ in (\ref{M}), we conclude that $U=0$ in $B_{\rho}$. \quad$\Box$ \paragraph{Proof of Theorem 2} We assume that $U\not\equiv 0$ on X. Let $\Omega$ be a maximal open set on which $U$ vanishes and $\Omega\neq X$, then there exists a sphere $S$ which its interior is contained in $\Omega$, such that there exists $x\in \partial\Omega \cap S$. As $U$ vanishes in one side of $S$, it follows that $x\in \Omega$, which is absurd.\quad$\Box$ \section{The unique continuation property for linear elliptic systems in dimension $N = 2$} In this section we prove the unique continuation property where $m\in L_{\log}L$ in lower dimension by using the zero of infinite order theory. \begin{defn}\rm Let $\Omega$ be an open subset in $\mathbb{R}^N$. A function $U=(u_1,\ldots,u_n) \in (L^2_{{\rm loc}}(\Omega))^n$ has a zero of infinite order at $x_0\in \Omega$, if for each $l\in \mathbb{N}$ $$\lim_{R\to 0}R^{-l}\int_{|x-x_0|0. \end{equation} Thus, by lemma 2, we have for any $\varepsilon >0$, there exists $c_{\varepsilon}=c_{\varepsilon}(\Omega,m)$ such that \begin{equation} \label{S} \int_{\Omega}m|\varphi U|^2\leq \varepsilon \int_{\Omega}|\nabla(\varphi U)|^2+ c_{\varepsilon}\int_{\Omega}|\varphi U|^2. \end{equation} It follows from (\ref{Q}), (\ref{R}) and (\ref{S}) that \begin{eqnarray} \int_{B_{2r}}\varphi^2|\nabla U|^2 & \leq & \rho(A)\int_{B_{2r}}|\varphi U|^2+\varepsilon\int_{B_{2r}} |\nabla U|^2\varphi^2+\frac{1}{\varepsilon}\int_{B_{2r}}|\nabla\varphi|^2U^2\nonumber\\ & & +\varepsilon\int_{B_{2r}}|\nabla(\varphi U)|^2+c_{\varepsilon}\int_{B_{2r}}|\varphi U|^2,\nonumber \end{eqnarray} and therefore $$(1-(\varepsilon^2+2\varepsilon))\int_{B_{2r}}\varphi^2|\nabla U|^2\leq (\varepsilon+1+\frac{1} {\varepsilon})\int_{B_{2r}}|(\nabla\varphi\ U)|^2+(\rho(A)+c_{\varepsilon})\int_{B_{2r}} |\varphi U|^2.$$ Using the fact that $|\nabla \varphi|\leq \frac{2}{r}$, $|\varphi|\leq\frac{c}{r}$ and $\varphi =1$ in $B_r$, we have immediately (\ref{P}). \quad$\Box$ \begin{rem} \rm If $U$ has a zero of infinite order at $x_0\in \Omega$, then $\nabla U$ has also a zero of infinite order at $x_0$. \end{rem} \begin{lem}[\cite{L-U}] Let $u\in W^{1,1}(B_r)$, where $B_r$ is the ball of radius $r$ in $\mathbb{R}^N$ and let $E=\{x\in B_r: u(x)=0\}$. Then there exists a constant $\beta$ depending only on $N$ such that $$\int_{D}|u| \leq \beta \frac{r^N}{|E|}|D|^{1/N}\int_{B_r}|\nabla u|$$ for all $B_r$, $u$ as above and all measurable sets $D\subset B_r$. \end{lem} \paragraph{Proof of Theorem 3.} Let $U=(u_1,\ldots,u_n)\in(H^1_{{\rm loc}}(\Omega))^n$ be a solution of (\ref{N}) which vanishes on a set $E$ of positive measure. We know that almost every point of $E$ is a point of density of $E$. Let $x_0$ be such a point, i.e. \begin{equation} \label{T} \frac{|E^c\cap B_r|}{|B_r|}\to 0\quad\text{and}\quad \frac{|E\cap B_r|}{|B_r|}\to 1\quad\text{as }r\to 0, \end{equation} where $B_r$ is the ball of radius $r$ centered at $x_0$. So, for a given $\varepsilon>0$ there exists $r_0=r_0(\varepsilon)>0$ such that for $r\leq r_0$ $$\frac{|E^c\cap B_r|}{|B_r|}<\varepsilon\quad\text{and}\quad \frac{|E\cap B_r|}{|B_r|}>1-\varepsilon,$$ where $E^c$ denotes the complement of $E$ in $\Omega$. Taking $r_0$ smaller if necessary, we may assume that $\overline{B}_{2r_0}\subset \Omega$. By lemma 4 we have \begin{eqnarray} \int_{B_r}|u_i|^2=\int_{B_r\cap E^c}|u_i|^2& \leq &\beta \frac{r^2}{|E\cap B_r|}|E^c\cap B_r|^{1/2} \int_{B_r}|\nabla (u_i)^2|\nonumber\\ & \leq & 2\beta \frac{r^2}{|E\cap B_r|}|E^c\cap B_r|^{1/2} \int_{B_r}|u_i||\nabla u_i|\nonumber \end{eqnarray} for each $i=1,\ldots,n$. The H\"{o}lder and Youngs's inequalities lead to \begin{eqnarray} \label{U} \int_{B_r}|u_i|^2 & \leq & 2\beta \frac{r^2}{|E\cap B_r|}|E^c\cap B_r|^{1/2} \Big(\int_{B_r}|u_i|^2\Big)^{1/2}\Big(\int_{B_r}|\nabla u_i|^2 \Big)^{1/2}\nonumber\\ & \leq & \beta \frac{r^2}{|E\cap B_r|}|E^c\cap B_r|^{1/2} \Big(\frac{1}{r}\int_{B_r}u_i^2+r\int_{B_r}|\nabla u_i|^2\Big), \end{eqnarray} for each $i=1,\ldots,n$. We take the sum for $i=1$ to $n$, we obtain $$\int_{B_r}|U|^2 \leq \beta \frac{r^2}{|E\cap B_r|}|E^c\cap B_r|^{1/2} \Big(\frac{1}{r}\int_{B_r}|U|^2+r\int_{B_r}|\nabla U|^2\Big). $$ It follows from (\ref{P}) and (\ref{T}) that \begin{eqnarray} \label{V} \int_{B_r}|U|^2 & \leq & \beta \frac{r^2|B_r|}{|B_r|^{1/2}|E\cap B_r|}\frac{|E^c\cap B_r|^{1/2}}{|B_r|^{1/2}} \Big(\frac{1}{r}\int_{B_{2r}}|U|^2+\frac{c}{r}\int_{B_{2r}}|U|^2\Big)\nonumber\\ & \leq & \beta \frac{c r}{|B_r|^{1/2}}\frac{\varepsilon^{1/2}}{1-\varepsilon}\int_{B_{2r}}|U|^2 \nonumber\\ & \leq & c\frac{\varepsilon^{1/2}}{1-\varepsilon}\int_{B_{2r}}|U|^2, \quad\text{for } r\leq r_0. \end{eqnarray} Set $f(r)=\int_{B_r}|U|^2$. Let us fix $n\in \mathbb{N}$, we have $\varepsilon >0$ such that $\frac{c\varepsilon^{1/2}}{1-\varepsilon}=2^{-n}$. Observe that now $r_0$ depend on $n$. >From (\ref{V}), we deduce that \begin{equation} \label{W} f(r)\leq 2^{-n}f(2r),\quad\text{for } r\leq r_0. \end{equation} Iterating (\ref{W}), we get \begin{equation} \label{X} f(\rho)\leq 2^{-kn} f(2^k\rho)\quad\text{if }2^{k-1}\rho\leq r_0. \end{equation} Thus, given $0From (\ref{X}), we conclude that $$f(r)\leq 2^{-kn}f(2^kr)\leq 2^{-kn}f(2r_0),$$ and since $2^{-k}\leq \frac{r}{r_0}$, we get $$f(r)\leq \left(\frac{r}{r_0}\right)^n f(2r_0).$$ This shows that $f(r)=0(r^n) \quad\text{as } r\to 0$. Consequently $x_0$ is a zero of infinite order for $U$. \quad$\Box$ \begin{thm} Let $\Omega$ be an open subset in $\mathbb{R}^2$. Assume that $U=(u_1,\ldots,u_n)\in (H^2_{{\rm loc}}(\Omega))^n$ has a zero of infinite order at $x_0\in \Omega$ and satisfies \begin{equation} \label{Y} |\Delta u_i(x)|\leq K\sum_{j=1}^n|u_j(x)|+m(x)|u_i(x)| \quad\text{a.e. }x\in \Omega,\; 1\leq i\leq n, \end{equation} where $m$ is a positive function belong to a class of $L_{\log}L_{{\rm loc}}(\Omega)$. Then $U$ is identically null in $\Omega$. \end{thm} \paragraph{Proof.} The technique used here is due to S. Chanillo and E. Sawyer (see \cite{C-SA}), we may assume that $m\geq 1$. Since $m+1$ also satisfy the hypotheses of theorem 4 when $m\in L_{\log}L_{{\rm loc}}(\mathbb{R}^{N})$, we have \begin{equation} \label{Z} \int_{\mathbb{R}^2}|I_1f|^2m \leq c\| m\|\int_{\mathbb{R}^2}f^2\quad \forall f\in C^{\infty}_0(\mathbb{R}^2), \end{equation} (cf. \cite{F,STE}), where $I_{\alpha} f$ denotes the Riesz potential of order $0<\alpha r}\frac{|\psi_k|^2|\Delta(\eta u_i)|^2}{|x|^{2l}}m^{-1}dx)\nonumber\\ &=&c\|\chi_{B_r}m\|^2(I^i_k+II_k^i+III_k^i+IV^i_k), \end{eqnarray} for each $i=1,\ldots,n$. Choosing $c\|\chi_{B_r}m\|^2<\frac{1}{2n}$ (this is possible since the measure $L_{\log}L$ is absolutely continuous) it follows that \begin{eqnarray*} III^i_k & \leq & \frac{1}{2n}\int_{|x|\rho(A), \end{equation} where $\rho(A)$ is the largest eigenvalue of the matrix $A$ and $\lambda_1$ the smallest eigenvalue of $-\Delta$ . As it is well Known \cite{A1,H,C-S,A-C-E}, that the eigenvalues in (\ref{GB}) form a sequence of positive eigenvalues, which can be written as $$\mu_1(m)<\mu_2(m)\leq \ldots\,. $$ Here we use the symbol $\precneqq$ to indicate inequality a.e. with strict inequality on a set of positive measure. \begin{prop} Let $m_1$ and $m_2$ be two weights of $M$ with $m_1\precneqq m_2$ and let $j\in \mathbb{N}$. If the eigenfunctions associated to $\mu_j(m_1)$ enjoy the unique continuation property, then $\mu_j(m_1)>\mu_j(m_2)$. \end{prop} \paragraph{Proof.} We proceed by the similar arguments which has been developed by D.G. de Figueiredo and J.P. Gossez \cite{D-G}. $\mu_j(m_1)$ is given by the variational characterization \begin{equation} \label{IB} \frac{1}{\mu_j(m_1)}=\sup_{F_j}\inf\{\int_{\Omega}m_1|U|^2dx; U\in F_j \quad\text{and } {\cal{L}}(U,U)=1\}, \end{equation} where ${\cal {L}}(U,U)=\int_{\Omega}|\nabla U|^2-\int_{\Omega}AU.Udx$ and $F_j$ varies over all $j$-dimensional subspace of $(H_0^1(\Omega))^n$ (cf. \cite{A1,H,C-S}). Since the extrema in (\ref{IB}) are achieved \cite{DF}, there exists $F_j\subset (H^1_0(\Omega))^n$ of dimension $j$ such that \begin{equation} \label{JB} \frac{1}{\mu_j(m_1)}=\inf\{\int_{\Omega}m_1|U|^2dx; U\in F_j\quad\text{and}\quad {\cal{L}}(U,U)=1\}. \end{equation} Pick $U\in F_j$ with ${\cal {L}}(U,U)=1$. Either $U$ achieves tits infimum in (\ref{JB}) or not. In the first case, $U$ is an eigenfunction associated to $\mu_j(m_1)$ (cf. \cite{DF}), and so, by the unique continuation property $$\frac{1}{\mu_j(m_1)}=\int_{\Omega}m_1|U|^2< \int_{\Omega}m_2|U|^2.$$ In the second case $$\frac{1}{\mu_j(m_1)}<\int_{\Omega}m_1|U|^2\leq \int_{\Omega}m_2|U|^2.$$ Thus, in any case $$\frac{1}{\mu_j(m_1)}<\int_{\Omega}m_2|U|^2.$$ It follows, by a simple compactness argument that $$\frac{1}{\mu_j(m_1)} < \inf\{\int_{\Omega}m_2|U|^2; U\in F_j \text{ and } {\cal {L}}(U,U)=1\}.$$ This yields the desired inequality $$\frac{1}{\mu_j(m_1)}<\frac{1}{\mu_j(m_2)}.$$ \section{Spectrum for linear elliptic systems} \subsection*{First order spectrum} \begin{thm} \begin{enumerate} \item[{\bf a)}] $\Lambda_n(.,A,m):\mathbb{R}^N \to \mathbb{R} $ is the positive function characterized in a variational form by $$\frac{1}{\Lambda_n(\beta,A,m)}=\sup _{F_n\in{\cal F}_n((H^1_0(\Omega))^n)} \min \big\{ \int_{\Omega}e^{\beta.x}m(x)|U|^2dx,\, U\in F_n\cap S_{\beta}(A)\big\} $$ $\text{for all } \beta \in \mathbb{R}^N$, with $$S_{\beta}(A)=\left\{ U\in (H^1_0(\Omega))^n: \|U\|^2_{1,2,\beta}-\int_{\Omega} e^{\beta.x}AU.U dx=1 \right\}, $$ and ${\cal F}_n((H^1_0(\Omega))^n)$ is the set of $n$-dimensional subspaces of $(H^1_0(\Omega))^n$. \item[{\bf b)}] For all $U\in (H^1_0(\Omega))^n$, $$\Lambda_1(\beta,A,m)\int_{\Omega}e^{\beta.x}m(x)|U|^2dx\leq\|U\|^2_{1,2,\beta}-\int_{\Omega}e^{\beta .x} AU.U\; dx \,.$$ \item[{\bf c)}] For all $\beta \in \mathbb{R}^N$, $\lim_{n\to +\infty}\Lambda_n(\beta,A,m)=+\infty$. \end{enumerate} \end{thm} For the proof of this theorem see \cite{A-C-E}. \subsection*{Strict monotonicity of eigensurfaces for linear elliptic systems} By theorem 5 it seems that the following result may be proved by arguments similar to those in proposition 1 (see section 4). \begin{prop} Let $m_1, m_2 \in M$, if $m_1\precneqq m_2$ then $\Lambda_j(\beta,A,m_1)>\Lambda_j(\beta,A,m_2)$ for all $j\in \mathbb{N}^*$. \end{prop} \section{Nonresonance between consecutives eigensurfaces} In this section, we study the existence of solutions for the quasilinear elliptic system \begin{equation} \label{KB} \begin{gathered} -\overrightarrow\Delta U = AU + F(x,U,\nabla U) \quad\text{in } \Omega,\\ U = 0 \quad\text{on }\partial\Omega. \end{gathered} \end{equation} Let us consider the situation where the nonlinearity $F$ is asymptotically between two consecutive eigensurfaces in the following sense: we assume that there exists $\alpha_1<\alpha_2\in \mathbb{R}$, $\beta\in \mathbb{R}^N$ and for all $\delta >0$ there exist $a_{\delta}\in L^2(\Omega)$ such that \begin{eqnarray} \label{LB} \alpha_1|s|^2+(\beta\xi).s-\delta(|\xi|^2+a_{\delta}(x))|s| &\leq& s.F(x,s,\xi)\\ &\leq& \alpha_2|s|^2+(\beta\xi).s+\delta(|\xi|^2+a_{\delta}(x))|s| \nonumber \end{eqnarray} a.e. $\in \Omega$ and for all $(\xi,s)\in \mathbb{R}^{2N}\times\mathbb{R}^2$. A function $U$ in $(H^1_0(\Omega))^n$ is said to be a solution of (\ref{KB}) if $U$ satisfies (\ref{KB}) in the sense of distributions. With this definition, we state the main result of this section. \begin{thm} Let (\ref{LB}) be satisfied with $\Lambda_k(\beta,A,1)< \alpha_1<\alpha_2<\Lambda_{k+1}(\beta,A,1)$ for some $k\geq 1$, then (\ref{KB}) admits a solution. \end{thm} \begin{rem} \rm It is clear that by (\ref{LB}) there exist $b_1>0$ such that for all $\delta>0$ there exists $a_{\delta}\in L^2(\Omega)$ such that \begin{equation} \label{MB} |F(x,s,\xi)-(\beta\xi)|\leq b_1|s|+\delta b_1(|\xi|+a_{\delta}(x)) \end{equation} a.e. $x\in \Omega$ and for all $(\xi,s)\in \mathbb{R}^{2N}\times\mathbb{R}^2.$ \end{rem} \paragraph{Proof of Theorem 6} Let $(T_t)_{t\in[0,1]}$ be a family of operators from $(H_0^1(\Omega))^n$ to $(H^{-1}(\Omega))^n$: $$ T_t(U)=-\overrightarrow\Delta^{\beta}(U)-e^{\beta.x}(t(F(x,U,\nabla U)+(1-t)\alpha U-t(\beta\nabla U)) $$ where $\alpha_1<\alpha<\alpha_2$. Since $F$ verifies (\ref{LB}), the operator $T_t$ is of the type $(S_+)$. Now, we show the a priori estimate: $$ \exists r>0 \text{ such that } \forall t\in [0,1], \forall U\in(\partial B(0,r))^n, \text{ we have } T_t(U)\neq 0. $$ We proceed by contradiction, if the a priori estimate is not true, then $$ \forall n\in\mathbb{N},\; \exists t_n\in [0,1],\; \exists U_n\in(\partial B(0,n))^n\; (\|U_n\|_{1,2}=n), \text{such that } T_{t_n}(U_n)=0, $$ so that \begin{equation} \label{NB} -\overrightarrow\Delta^{\beta}(U_n)=e^{\beta.x}(t_n F(x,U_n,\nabla U_n)+ (1-t_n)\alpha U_n-t_n(\beta\nabla U_n)). \end{equation} Set $V_n=\frac{U_n}{\|U_n\|_{1,2}}$, the sequence $(V_n)$ is bounded in $(H_0^1(\Omega))^n$. Therefore, there exists a subsequence of $(V_n)$ (also noted $(V_n)$) such that: $V_n\rightharpoonup V \text{in } (H_0^1(\Omega))^n$, $V_n\to V \quad\text{in } (L^q(\Omega))^n$ for all $q\in [1,2^*[$, with $2^*=\frac{2N}{N-2}$. Then we proceed in several steps. \paragraph{Step 1:} The sequence of functions defined a.e. $x\in \Omega$ by $$ G_n(x)=\frac{F(x,U_n,\nabla U_n)}{\|U_n\|_{1,2}}-(\beta\nabla V_n) $$ is bounded in $(L^2(\Omega))^n$. To prove this statement we divide (\ref{MB}) by $\|U_n\|_{1,2}$. Then $$ |G_n(x)|\leq b_1|V_n|+\delta b_1(|\nabla V_n|+\frac{a_{\delta}(x)}{n}). $$ and \begin{eqnarray} \|G_n\|&\leq& b_1\|V_n\|_2+\delta b_1(\|V_n\|_{1,2}+\frac{\|a_{\delta}\|_2}{n})\nonumber\\ &\leq& \frac{b_1}{(\lambda_1)^{1/2}}+\delta b_1(1+\frac{\|a_{\delta}\|_2}{n}),\nonumber \end{eqnarray} which proves step 1. Since $(L^2(\Omega))^n$ is a reflexive space, there exists a subsequence of $(G_n)$, also denoted by $(G_n)$, and $\tilde{F}\in (L^2(\Omega))^n$ such that \begin{equation} \label{PB} G_n\rightharpoonup \tilde{F}\quad\text{in } (L^2(\Omega))^n. \end{equation} \paragraph{Step 2.} $\tilde{F}(x)=0$ a.e. in ${\cal {A}} :=\{x\in\Omega : V(x)=0 \text{ a.e.}\}$ To prove this statement, we define $\phi (x)=\mathop{\rm sgn}(\tilde{F}(x))\chi_{\cal {A}}$. By (\ref{MB}), we have $$ |G_n(x)\phi (x)|\leq b_1(|V_n|+\delta (|\nabla V_n|+\frac{a_{\delta}(x)}{n}))\chi_{\cal {A}}(x) $$ and $$ \|G_n\phi\|_2\leq a(\|V_n\chi_A\|_2+\delta (1+\frac{\|a_{\delta}\chi_A\|_2}{n})). $$ Since $V_n\to V$ in $(L^2(\Omega))^n$, we have $V_n\chi_{\cal {A}}\to 0 $ in $(L^2(\Omega))^n$. Passing to the limit, we obtain $$ \limsup\, \|G_n\phi\|_2\leq \delta b_1. $$ As $\delta$ is arbitrary, it follows that $$G_n\phi\to 0 \quad \text{in } (L^2(\Omega))^n.$$ On the other hand, (\ref{PB}) implies $$ \int_{\Omega} G_n.\phi\to \int_{\Omega} \tilde{F}.\phi=\int_{\Omega} |\tilde{F}(x)|\chi_{\cal {A}}(x). $$ So $\int_{\cal {A}} |\tilde{F}(x)|=0$, which completes the proof of step 2. Now, we define the function $$ D(x)=\left\{ \begin{array}{ll} \frac{\tilde{F}(x).V(x)}{|V(x)|^2} & \text{a.e. }x\in\Omega\setminus {\cal {A}},\\ \alpha & \text{a.e. }x\in {\cal {A}}. \end{array} \right. $$ \paragraph{Step 3.} $\alpha_1\leq D(x)\leq \alpha_2 $ a.e. $x\in\Omega$. First, we prove that $\alpha_1\leq\frac{\tilde{F}(x).V(x)}{|V(x)|^2}$ a.e. $x\in \Omega\setminus {\cal{A}}$. then analogously we prove that $\frac{\tilde{F}(x).V(x)}{|V(x)|^2}\leq \alpha_2$ a.e. $x\in \Omega\setminus {\cal{A}}$). Set $B=\{x\in\Omega\setminus {\cal {A}} : \alpha_1|V(x)|^2>\tilde{F}(x).V(x) \text{ a.e.}\}$. It is sufficient to show that $\mathop{\rm meas}B=0$. Indeed, the assumption (\ref{LB}) yields \begin{equation} \label{OB} \alpha_1|U_n|^2-\delta(|\nabla U_n|+a_{\delta}(x))|U_n|\leq U_n.F(x,U_n,\nabla U_n) -(\beta\nabla U_n).U_n, \end{equation} dividing by $\|U_n\|_{1.2}^2$, we obtain $$ \alpha_1|V_n|^2-\delta(|\nabla V_n|+\frac{a_{\delta}(x)}{n})|V_n|\leq V_n.G_n(x). $$ Multiplying (\ref{OB}) by $\chi_B$ and integrating over $\Omega$, we have \begin{eqnarray*} \lefteqn{ \alpha_1\int_{\Omega} |V_n|^2\chi_B }\\ &\leq &\delta\int_{\Omega} (|\nabla V_n|+\frac{a_{\delta}(x)}{n}) |V_n|\chi_B+\int_{\Omega} V_n. G_n(x)\chi_B\nonumber\\ &\leq & \int_{\Omega} V_n.G_n\chi_B+ \delta\Big((\int_{\Omega} |\nabla V_n|^2)^{1/2}(\int_{\Omega} |V_n|^2)^{1/2}+ \frac{\|a_{\delta}\|_2}{n}\|V_n\|_2\Big)\nonumber\\ &\leq & \int_{\Omega} V_n.G_n(x)\chi_B+\delta\Big(\frac{1}{\lambda_1^{1/2}}+ \frac{\|a_{\delta}\|_2}{n\lambda_1^{1/2}}\Big).\nonumber \end{eqnarray*} Passing to the limit (Knowing that $G_n\rightharpoonup \tilde{F}$ and $V_n\to V$ in $(L^2(\Omega))^n$), we get $$ \alpha_1\int_{\Omega} |V(x)|^2\chi_B\leq \int_{\Omega} V(x).\tilde{F}(x)\chi_B+\frac{\delta}{\lambda_1^{1/2}}, $$ for all $\delta>0$. Then $$\int_{\Omega} \left(V(x). \tilde{F}(x)-\alpha_1|V(x)|^2\right)\chi_Bdx\geq 0. $$ Finally, by the definition of $B$, we deduce that $\mathop{\rm meas} B=0$, and the proof of step 3 concludes. It is clear that we can suppose that $t_n\to t$. Set $m(x)=t D(x)+(1-t)\alpha$. \paragraph{Step 4.} {\bf 1)}\quad The function $V$ is a solution of $$ \displaylines{ -\overrightarrow\Delta^{\beta} U =e^{\beta.x}AU+e^{\beta.x}m(x)U \quad\text{in } \Omega ,\cr U=0 \quad\text{on } \partial\Omega. }$$ {\bf 2)}\quad $\alpha_1\leq m(x)\leq \alpha_2$ a.e. $x\in\Omega$. To prove 1), we dividing (\ref{NB}) by $n=\|U_n\|_{1,2}$. Then \begin{equation} \label{QB} -\overrightarrow\Delta^{\beta}V_n= e^{\beta.x}AV_n+e^{\beta.x}(t_nG_n(x)+(1-t_n)\alpha V_n). \end{equation} Since $V_n\rightharpoonup V$ in $(H_0^1(\Omega))^n$, $$ \int_{\Omega} e^{\beta.x}\nabla V_n.\nabla\Phi\to \int_{\Omega} e^{\beta.x}\nabla V.\nabla\Phi\quad \text{for all }\Phi\in (H_0^1(\Omega))^n. $$ On the other hand, multiplying (\ref{QB}) by $\Phi\in (H_0^1(\Omega))^n$, as $n\to +\infty$ we obtain \begin{eqnarray*} \int_{\Omega} e^{\beta.x}\nabla V.\nabla\Phi &=&\int_{\Omega}AV.\Phi + \int_{\Omega} e^{\beta.x}(t\tilde{F}(x)+(1-t)\alpha V(x)).\Phi, \nonumber\\ &=& \int_{\Omega}e^{\beta.x}AV.\Phi+\int_{\Omega}e^{\beta.x} \Big(t\frac{\tilde{F}(x).V(x)}{|V(x)|^2}+(1-t)\alpha\Big)V(x).\Phi\nonumber\\ &=& \int_{\Omega}e^{\beta.x}AV.\Phi+\int_{\Omega}e^{\beta.x} \left(tD(x)+(1-t)\alpha\right)V(x).\Phi\nonumber \end{eqnarray*} From the second step and the definition of $D(x)$ it follows that $$-\overrightarrow\Delta^{\beta}V= e^{\beta.x}AV+e^{\beta.x}m(x)V \quad\text{in } (H^{-1}(\Omega))^n.$$ Then assertion 1) follows. To prove 2), we combine the result of step 3 and the fact that $\alpha_1<\alpha<\alpha_2$. \paragraph{Step 5.} $V\not\equiv 0$. To prove this statement, we multiplying (\ref{QB}) by $V_n$. Then $$ \int_{\Omega} e^{\beta.x}(t_nG_n(x).V_n+(1-t_n)\alpha |V_n|^2) +\int_{\Omega} e^{\beta.x}AV_n.V_n=\int_{\Omega}e^{\beta.x}|\nabla V_n|^2\geq M, $$ where $M=\min\limits_{\overline{\Omega}}\, e^{\beta.x}>0 $. Passing to the limit, we get $$\int_{\Omega}e^{\beta.x}(t\tilde{F}(x)+(1-t)\alpha |V(x)|^2)+ \int_{\Omega}e^{\beta.x}AV.V\geq M>0.$$ This which completes the proof of step 5. Finally, from the step 4 and step 5, we conclude that $(\beta,1)$ is a first order eigenvalue of the problem, with $$\Lambda_k(\beta,A,1)<\alpha_1\leq m(x)\leq \alpha_2<\Lambda_{k+1}(\beta,A,1).$$ By the strict monotonicity with respect to weight (see proposition 2.), we have $$\Lambda_k(\beta,A,m)<1<\Lambda_{k+1}(\beta,A,m),$$ which is absurd, and present proof is complete.\quad$\Box$ \begin{thebibliography}{99} \bibitem{A1} \newblock {W. Allegretto, \em Sturmian theorems for second order systems,} \newblock Proc. A.M.S., 94, (1985), 291-296. \bibitem {A-C-E} \newblock {A. Anane, O. Chakrone and Z. El Allali, \em First order spectrum for elliptic system and nonresonance problem,} \newblock Numerical Algorithms 21 (1999) 9-21. \bibitem {A-C-GM} \newblock {A. Anane, O. Chakrone and J. P. Gossez, \em Spectre d'ordre sup\'erieur et probl\`eme de non-r\'esonance,} \newblock C.R. Acad. Sci. Paris t.325, S\'erie I, (1997), 33-36. \bibitem {A-C-GS} \newblock {A. Anane, O. Chakrone and J. P. Gossez, \em Spectre d'ordre sup\'erieur et probl\`eme aux limites quasi-lin\'eaires,} \newblock to appear. \bibitem {Ar} \newblock {N. Aronsajn, \em A unique continuation theorem for solution of elliptic differential equations or inequalities of second order,} \newblock J. Math. Pure Appl. 36(1957), 235-249. \bibitem {B-M} \newblock {J. Berkovits and V. Mustonen, \em Nonlinear mapping of monotone type (classification and degree theory),} \newblock 1988, Math. Univer. Oulu, Linnamaa, Oulu, Finland. \bibitem {B-K} \newblock {H. Br\'ezis and T. Kato, \em Remarks on the Schr\"{o}dinger operator with singular complex potentials,} \newblock J. Math. Pures et Appl. 58, 137-151 (1979). \bibitem {C-M} \newblock {D. G. Costa and C. A. Magalh$\tilde a$es, \em A variational approach to noncooperative elliptic system ,} \newblock Nonlinear Analysis, T.M.A., Vol.25, No7 (1995), 699-715. \bibitem {C-SA} \newblock {S. Chanillo and E. Sawyer, \em Unique continuation for $\Delta+V$ and the C.Fefferman-Phong class,} \newblock Trans. Amer. Math. Soc., 318 (1) (1990), 275-300. \bibitem {C-S} \newblock {R. S. Cantrell and K. Schmitt, \em On the eigenvalue problem for elliptic systems,} \newblock SIAM J. Math.Anal.17, (1986), 850-862. \bibitem {DF} \newblock {D. G. de Figueiredo, \em Positive solutions of semilinear elliptic equations,} \newblock Lectures Notes in Mathematics 957, 34-87 (1982). \bibitem {D-G} \newblock {D. G. de Figueiredo and J. P. Gossez, \em Strict monotonocity of eigenvalues and unique continuation,} \newblock Comm. P.D.E. 17 (1992), 339-346. \bibitem {F} \newblock {C. Fefferman, \em The uncertainty principle,} \newblock Bull. Amer. Math. Soc. 9 (1983), 129-206. \bibitem {FO} \newblock {G. B. Folland, \em Introduction to partial differential equations, } \newblock Princeton Univ. Press, Princeton, N.J., (1976). \bibitem {G-L} \newblock {N. Garofalo and F. H. Lin, \em Unique continuation for elliptic operators: a geometric-variational approach,} \newblock Comm. Pure Appl. Math. XL, (1987) 347-366. \bibitem {G-T} \newblock {D. Gilbarg and N. S. Trudinger, \em Elliptic partial differential equatinos of second order,} \newblock Springer (1977). \bibitem {H} \newblock {P. Hess, \em On the eigenvalue problem for weakly coupled elliptic systems,} \newblock Arch. Rat. Mech. Anal., 81, (1983), 151-159. \bibitem {J-K} \newblock {D. Jerison and C. E. Kenig, \em Unique continuation and absence of positive eigenvalues for Schr\"{o}dinger operators,} \newblock Ann. of Math. 121 (1985), 463-494. \bibitem {K} \newblock {C. E. Kenig, \em Restriction theorem. Carleman estimates uniform Sobolev inequalities and unique continuation,} \newblock Lectures Notes in Mathematics 1384, (1989) 69-90. \bibitem {K-R} \newblock {M. A. Krasnolsel'skii and Y. B. Rutickii, \em Convex functions and Orlicz spaces,} \newblock Noordhoff, Groningen (1961). \bibitem {L-U} \newblock {O. A. Ladyzenskaya and N. N. Uraltzeva, \em Linear and quasilinear elliptic equations,} \newblock Academic Press, New York (1968). \bibitem {L} \newblock {A. Loulit, \em In\'egalit\'es avec poids et probl\`emes de continuation unique,} \newblock Th\`ese de Doctorat en Sciences, Universit\'e Libre de Bruxelle (1995). \bibitem {S} \newblock {E. Sawyer, \em Unique continuation for Schr\"{o}dinger operators in dimension three or less,} \newblock Ann. Inst. Fourier (Grenoble) 34 (1984), 189-200. \bibitem {ST} \newblock {E. M. Stein, \em Appendix to unique continuation,} \newblock Ann. of Math. 121 (1985), 489-494. \bibitem {STE} \newblock {E. M. Stein, \em Singular integrals and differentiability of functions,} \newblock Princeton Univ. Press, Princeton, N.J., (1970). \end{thebibliography} \noindent\textsc{A. Anane} (e-mail: anane@sciences.univ-oujda.ac.ma)\\ \textsc{O. Chakrone} (e-mail: chakrone@sciences.univ-oujda.ac.ma)\\ \textsc{Z. El Allali} (e-mail: zakaria@sciences.univ-oujda.ac.ma) \\ \textsc{Islam Eddine Hadi} (e-mail: hadi@sciences.univ-oujda.ac.ma)\\[5pt] D\'epartement de Math\'ematiques et Informatique Facult\'e des Sciences,\\ Universit\'e Mohamed 1, Oujda, Maroc \end{document}