\documentclass[reqno]{amsart} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2001(2001), No. 54, pp. 1--18.\newline ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu \newline ftp ejde.math.swt.edu (login: ftp)} \thanks{\copyright 2001 Southwest Texas State University.} \vspace{1cm}} \begin{document} \title[\hfilneg EJDE--2001/54\hfil Asymptotic behaviour for Schr\"{o}dinger equations] {Asymptotic behaviour for Schr\"{o}dinger equations with a quadratic nonlinearity in one-space dimension} \author[Nakao Hayashi \& Pavel I. Naumkin\hfil EJDE--2001/54\hfilneg] {Nakao Hayashi \& Pavel I. Naumkin} \address{Nakao Hayashi \hfill\break Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan} \email{nhayashi@math.wani.osaka-u.ac.jp} \address{Pavel I. Naumkin \hfill\break Instituto de F\'{\i }sica y Matem\'{a}ticas\\ Universidad Michoacana, AP 2-82\\ Morelia, CP 58040, Michoac\'{a}n, Mexico} \email{pavelni@zeus.ccu.umich.mx} \date{} \thanks{Submitted May 22, 2001. Published July 25, 2001.} \subjclass[2000]{35Q55, 74G10, 74G25} \keywords{Schr\"{o}dinger equation, large time behaviour, quadratic nonlinearity } \begin{abstract} We consider the Cauchy problem for the Schr\"{o}dinger equation with a quadratic nonlinearity in one space dimension $$ iu_{t}+\frac{1}{2}u_{xx}=t^{-\alpha}| u_x| ^2,\quad u(0,x) = u_0(x), $$ where $\alpha \in (0,1)$. From the heuristic point of view, solutions to this problem should have a quasilinear character when $\alpha \in (1/2,1)$. We show in this paper that the solutions do not have a quasilinear character for all $\alpha \in (0,1)$ due to the special structure of the nonlinear term. We also prove that for $\alpha \in [1/2,1)$ if the initial data $u_0\in H^{3,0}\cap H^{2,2}$ are small, then the solution has a slow time decay such as $t^{-\alpha /2}$. For $\alpha \in (0,1/2)$, if we assume that the initial data $u_0$ are analytic and small, then the same time decay occurs. \end{abstract} \maketitle \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}{Remark}[section] \numberwithin{equation}{section} \section{Introduction} In this paper we consider the Schr\"{o}dinger equation, with a quadratic derivative term, \begin{equation} \begin{gathered} \mathcal{L}u=t^{-\alpha }| u_x| ^2, \quad t, x\in \mathbb{R}\\ u(0,x)=u_0(x) ,\quad x\in \mathbb{R}, \end{gathered} \label{1.1} \end{equation} where $\mathcal{L}=i\partial_{t}+\frac{1}{2}\partial_x^2$, and $\alpha \in (0,1)$. The Cauchy problem for Schr\"{o}dinger equations with a cubic derivative term was studied in \cite{hny1}. There the authors considered \begin{equation} \begin{gathered} \mathcal{L}u=t^{1-\delta }F( u,u_x) ,\quad t,x\in \mathbb{R} \\ u(0,x)=\epsilon u_0(x) ,\quad x\in \mathbb{R}, \end{gathered} \label{1.1a} \end{equation} where $0<\delta <1$, $\epsilon $ is a sufficiently small constant, and the nonlinear interaction term $F$ consists of cubic nonlinearities. $$ F( u,u_x) =\lambda_1| u| ^2u+i\lambda _2| u| ^2u_x+i\lambda_3u^2\bar{u}_x+\lambda_4| u_x| ^2u +\lambda_5\bar{u}u_x^2+i\lambda_6| u_x| ^2u_x, $$ where the coefficients $\lambda_1,\lambda_6\in \mathbb{R}$, $\lambda _2,\lambda_3,\lambda_4,\lambda_5\in \mathbb{C}$, $\lambda _2-\lambda_3\in \mathbb{R}$, $\lambda_4-\lambda_5\in \mathbb{R}$. In \cite{hny1}, the authors found a time decay estimate for the solutions of this problem, \begin{equation} \| u(t)\|_{\infty }\leq C| t| ^{-1/2}. \label{1.1b} \end{equation} The same result is also true for the case $\delta >1$. From the heuristic point of view problem (\ref{1.1}) corresponds to problem (\ref{1.1a}), when $\delta =\alpha +\frac{1}{2}$. Therefore it is natural to make a conjecture that the solutions of (\ref{1.1}) also have the decay property (\ref{1.1b}). However, as we will show in the present paper, due to the special oscillating structure of the nonlinear term, for $\alpha \in (0,1) $ the asymptotic behavior of solutions to (\ref{1.1}) do not obey the estimate (\ref{1.1b}). Our result stated below depends on the structure of nonlinearity which appears in the identity $$( \mathcal{FU}(-t)|u_x|^2) (t,\xi ) =(2\pi )^{1/2}\int e^{-it\xi \eta }(\overline{\mathcal{FU}% (-t)u_x( t,\eta ) })({\mathcal{FU}}(-t)u_x)( t,\xi +\eta ) d\eta . \label{1.1c} $$ In the cases of $u_x^2$ and $\bar{u}_x^2$ we have \begin{eqnarray*} \lefteqn{( \mathcal{FU}(-t)u_x^2) (t,\xi ) } \\ &=&(2\pi )^{1/2}e^{\frac{i}{4}t\xi ^2}\int e^{-ity^2}(\mathcal{FU% }(-t)u_x)( t,\frac{\xi }{2}-y) (\mathcal{FU}(-t)u_x)( t,\frac{\xi }{2}+y) dy \end{eqnarray*} and \begin{eqnarray*} \lefteqn{( \mathcal{FU}(-t)\bar{u}^2) (t,\xi ) }\\ &=&(2\pi )^{1/2}e^{\frac{3i}{4}t\xi ^2}\int e^{ity^2}(\overline{% \mathcal{FU}(-t)u_x})( t,\frac{\xi }{2}-y) (\overline{\mathcal{% FU}(-t)u_x})( t,\frac{\xi }{2}+y) dy, \end{eqnarray*} where $\mathcal{U}( t) $ is the linear Schr\"{o}dinger evolution group \begin{equation*} \mathcal{U}( t) \phi =\frac{1}{\sqrt{2\pi it}}\int e^{\frac{i}{2t}% ( x-y) ^2}\phi ( y) dy=\mathcal{F}^{-1}e^{-\frac{it}{% 2}\xi ^2}\mathcal{F}\phi , \end{equation*} $\mathcal{F}\phi \equiv \hat{\phi}=\frac{1}{\sqrt{2\pi }}\int e^{-ix\xi }\phi (x) dx$ denotes the Fourier transform of the function $% \phi $. The oscillating function $e^{\pm ity^2}$ yields an additional time decay term through integration by parts. However, the oscillating function $e^{\pm it\xi y}$ does not give an additional time decay uniformly with respect to $\xi $. This is the main reason why we do not have estimate (\ref {1.1b}) for solutions of (\ref{1.1}). In \cite{hn4} we proved (\ref{1.1b}) for solutions of the Cauchy problem \begin{equation*} \mathcal{L}u=\lambda ( \overline{u}_x) ^2+\mu u_x^2,\quad \text{with }\lambda ,\mu \in \mathbb{C}. \end{equation*} However, the nonlinearity $| u_x| ^2$ was out of our scope. In the present paper we intend to fill up this gap studying the case of quadratic nonlinearity $t^{-\alpha }| u_x| ^2$. The methods developed for the nonlinear Schr\"{o}dinger equations with quadratic nonlinearities $u_x^2$, $| u_x| ^2$ and $\overline{u}% _x^2$ can be applied also to the study of the large time asymptotic behavior for other quadratic nonlinear equations, such as Benjamin-Ono and Korteweg-de Vries equations (in paper \cite{hn12}, mBO equation was reduced to the cubic nonlinear Schr\"{o}dinger equation). In paper \cite{c}, Cohn used the method of normal forms of Shatah \cite{s} to study the nonlinear Schr\"{o}dinger equations with quadratic nonlinearity $\overline{u}_x^2$ and showed that the solution exists on $[0,T)$ with $T$ bounded from below by $C\varepsilon ^{-6}$, where $\varepsilon $ is the size of the data in some Sobolev norm. In paper \cite{o} the nonlinearity $u_x^2$ was studied by the Hopf-Cole transformation. The $L^2$-estimate of solutions involving the operator $\mathcal{J}=x+it\partial_x$ plays a crucial role in the large time asymptotic behavior of solutions. However the nonlinearity $\mathcal{N}( u) $ under consideration does not posses a self-conjugate structure $e^{i\omega }\mathcal{N}( u) =\mathcal{N}% ( e^{i\omega }u) $ for all $\omega \in \mathbb{R}$, therefore we can not use the operator $\mathcal{J}=x+it\partial_x$ directly in (\ref {1.1}). To overcome these obstacles we use the method developed in \cite{hn5} and apply systematically the operator $\mathcal{I}% =x\partial_x+2t\partial_{t}$. We now state our strategy for the proof. If we put $v=u_x$. Then the problem is written as \begin{equation*} \mathcal{L}v=t^{-\alpha }\partial_x| v| ^2,\quad t,x\in \mathbb{R}. \end{equation*} By the identity \begin{equation*} \partial_x\mathcal{J}| v| ^2=\partial_x( \overline{v}% \mathcal{J}v+it\overline{v}_xv) =\overline{v}\mathcal{J}\partial _xv+2\overline{v}_x\mathcal{J}v-v\overline{\mathcal{J}\partial_xv} \end{equation*} we have \begin{equation*} \mathcal{LJ}v=t^{-\alpha }\mathcal{J}\partial_x| v| ^2=t^{-\alpha }( -| v| ^2+\overline{v}\mathcal{J}% \partial_xv+2\overline{v}_x\mathcal{J}v-v\overline{\mathcal{J}\partial _xv}) . \end{equation*} Therefore, the operator $\mathcal{J}$ acts on this problem also. Thus global existence in time of small solutions to the problem can be proved for $\alpha \in (1/2,1) $ and the derivative $u_x$ should have the same asymptotic behaviour as the solutions to the corresponding linear problem (along with time-decay estimate (\ref{1.1b})). Combining this fact and the identity (\ref{1.1c}) we prove the time decay of solutions. Roughly speaking, we show there exists a constant $c$ and a positive constant $\gamma $ such that \begin{equation*} | u( t,\sqrt{t}) -ct^{-\alpha/2}| \leq Ct^{-(\alpha/2)-\gamma }. \end{equation*} In the case of $\alpha \in (0,1/2) $ we use the fact that \begin{equation*} \partial_x| u| ^2=\frac{1}{it}( \overline{u}\mathcal{J}% u-u\overline{\mathcal{J}u}) \end{equation*} which implies that usual derivative yields an additional time decay, in particular, the fractional derivative $| \partial_x| ^{\beta }$ gives us an additional time decay like $t^{-\beta }$ (see Lemma \ref{L2.4} below). However we have the derivative loss on the nonlinear term which requires us to use some analytic function space. To state our results we need some notation. We denote the inverse Fourier transformation by $\mathcal{F}^{-1}\phi $ $=\check{\phi}$ $=\frac{1}{\sqrt{% 2\pi }}\int e^{ix\xi }\phi ( \xi ) d\xi $. We essentially use the estimates of the operators $\mathcal{J}=x+it\partial_x=\mathcal{U}( t) x\mathcal{U}( -t) =itM( t) \partial_x% \overline{M}( t) $ and $\mathcal{I}=x\partial_x+2t\partial _{t}$, $M=e^{(ix^2)/(2t)}$. Note that the relation $\mathcal{J}% \partial_x=\mathcal{I}+2it\mathcal{L}$ is valid, where $\mathcal{L}% =i\partial_{t}+\frac{1}{2}\partial_x^2$ and $\mathcal{U}( t) =M( t) \mathcal{D}( t) \mathcal{F}M( t) $, $\mathcal{D}( t) $ is the dilation operator defined by $(\mathcal{D}( t) \psi )(x) =(1/\sqrt{it})\psi ( x/t) $. Then since $\mathcal{D}^{-1}( t) =i\mathcal{D% }( 1/t) $ we have $\mathcal{U}( -t) =\overline{M}% \mathcal{F}^{-1}\mathcal{D}^{-1}( t) \overline{M}=i\overline{M}% \mathcal{F}^{-1}\mathcal{D}( 1/t) \overline{M}$. We denote the usual Lebesgue space $L^p=\{ \phi \in \mathbf{S% }^{\prime };\| \phi \|_{p}<\infty \} $, where the norm $\| \phi \|_{p}=( \int_\mathbb{R}| \phi (x) | ^{p}dx) ^{1/p}$ if $1\le p<\infty $ and $\| \phi \|_{\infty }=$ ess.$\sup \left\{ | \phi (x) |;x\in \mathbb{R}\right\} $ if $p=\infty $. For simplicity we write $\| \cdot \| =\| \cdot \|_2$. Weighted Sobolev space is \begin{equation*} H_{p}^{m,k}=\big\{ \phi \in \mathbf{S}^{\prime }:\| \phi \|_{m,k,p}\equiv \big\| \langle x\rangle ^{k}\langle i\partial_x\rangle ^{m}\phi \big\|_{p}<\infty \big\} , \end{equation*} $m,k\in \mathbb{R}$, $1\le p\le \infty $, $\langle x\rangle =% \sqrt{1+x^2}$. The fractional derivative $|\partial_x|^{\alpha }$, $% \alpha \in (0,1)$ is equal to \begin{equation*} |\partial_x|^{\alpha }\phi =\mathcal{F}^{-1}|\xi |^{\alpha }\mathcal{F}% \phi =C\int_\mathbb{R}(\phi (x+z)-\phi (x) )\frac{dz}{% |z|^{1+\alpha }}. \end{equation*} We denote also for simplicity $H^{m,k}=H_2^{m,k}$ and the norm $\| \phi \|_{m,k}=\| \phi \|_{m,k,2}$. Different positive constants are denoted by the same letter $C$. Denote $\Phi (x) =\int e^{-\frac{i}{2}( \xi -x) ^2}| \xi | ^{\alpha -1}d\xi $. Now we state the main results of this paper. \begin{theorem} \label{Th1.1} Let $\alpha \in [ 1/2,1) $. We assume that the initial data $u_0\in H^{3,0}\cap $ $H^{2,2}$ and the norm $\| u_0\|_{3,0}+\| u_0\|_{2,2}$ is sufficiently small. Then there exists a unique global solution $u$ of the Cauchy problem (\ref{1.1}) such that $u\in C( \mathbb{R};H^{3,0}) $. Moreover there exist unique constant $B$ and functions $P,Q$ such that $| \xi | ^{1-\alpha }P( \xi ) \in \mathbf{L}^{\infty }( \mathbb{R}) $, $| \xi | ^{1-\alpha }Q( \xi ) \in \mathbf{L}^{\infty }( \mathbb{R}) $ and the following asymptotic statement is valid \begin{equation} u( t,x) =Be^{\frac{ix^2}{2t}}t^{-\frac{\alpha }{2}}\Phi ( \frac{x}{\sqrt{t}}) +O( t^{-\frac{\alpha }{2}-\gamma }( \langle \frac{x}{\sqrt{t}}\rangle ^{\alpha -1}+\langle \frac{% x}{\sqrt{t}}\rangle ^{-\alpha }) ) \label{1.2} \end{equation} for all $t\geq 1$, uniformly in $| x| \leq t^{1-\rho }$, and \begin{equation} u( t,x) =t^{-\alpha }P( \frac{x}{t}) +e^{\frac{ix^2}{% 2t}}\frac{1}{\sqrt{t}}Q( \frac{x}{t}) +O( t^{-\alpha -\gamma }+t^{-\frac{1}{2}-\gamma }\langle \frac{x}{t}\rangle ^{-\alpha }) \label{1.3} \end{equation} for all $t\geq 1$, uniformly in $| x| \geq t^{1-\rho }$, where $% \rho ,\gamma >0$ are small. \end{theorem} In the case $\alpha \in (0,1/2) $ we have to assume that the initial data are analytic. Denote \begin{equation*} \mathbf{A}_0=\big\{ \phi \in L^2:\| \phi \|_{% \mathbf{A}_0}\equiv \sum_{n=0}^{\infty }\frac{1}{n!}\| | \partial_x| ^{\frac{1}{2}-\alpha }( x\partial_x) ^{n}\phi \|_{1,0}<\infty \big\} . \end{equation*} \begin{theorem} \label{T1.2} Let $\alpha \in (0,1/2) $. We assume that the initial data $u_0\in \mathbf{A}$ and the norm $\| u_0\|_{% \mathbf{A}_0}$ is sufficiently small. Then there exists a unique global solution $u$ of the Cauchy problem (\ref{1.1}) such that $u\in \mathbf{C}% ( \mathbb{R};H^{1,0}) $. Moreover there exist unique constant $B$ and functions $P,Q$ such that asymptotics (\ref{1.2}) and (\ref {1.3}) are valid. \end{theorem} \begin{remark} \rm In the region $| x| =t^{1-\rho }$ asymptotics (\ref{1.2}) coincides with (\ref{1.3}). \end{remark} In Section 2 we prove some preliminary estimates. In Section 3 we prove Theorem \ref{Th1.1}. Section 4 is devoted to the proof of Theorem \ref{T1.2}. \section{Preliminaries} First we prove some time decay estimates. \begin{lemma} \label{L2.1} We have the estimate \begin{equation*} \| u_x\|_{\infty }\leq Ct^{-1/2}\| \mathcal{FU}% ( -t) u_x\|_{\infty }+Ct^{-\frac{1+\beta -\gamma }{2}% }( \| u_x\| +\| | \partial_x| ^{\frac{1% }{2}-\beta }\mathcal{J}\partial_xu\| ) , \end{equation*} for all $t>0$, where $\beta \in ( 0,\frac{1}{2}] $, $\gamma \in ( 0,\beta ) $. \end{lemma} \begin{proof} Denote $w=\mathcal{U}( -t) u_x$. Then since $\mathcal{U}( t) =M\mathcal{DF}M$, where $M=e^{\frac{ix^2}{2t}}$, $\mathcal{D}\phi =\frac{1}{\sqrt{it}}\phi ( \frac{x}{t}) $ is the dilation operator, $\mathcal{J}=x+it\partial_x=\mathcal{U}( t) x% \mathcal{U}( -t) $, we get \begin{equation*} u_x=\mathcal{U}( t) w=M\mathcal{DF}w+M\mathcal{DF}( M-1) w \end{equation*} and by virtue of the H\"{o}lder inequality and Sobolev embedding theorem $% \| \phi \|_{p}\leq C\| | \partial_x| ^{\frac{1% }{2}-\frac{1}{p}}\phi \| $ if $2\leq p<\infty $, we have \begin{eqnarray*} \lefteqn{\| M\mathcal{DF}( M-1) w\|_{\infty }} \\ &\leq &Ct^{-1/2}\| \mathcal{F}( M-1) w\| _{\infty }\leq Ct^{-1/2}\| ( M-1) w\|_1\leq Ct^{-\frac{1+\beta -\gamma }{2}}\| | x| ^{\beta -\gamma }w\|_1 \\ &\leq &Ct^{-\frac{1+\beta -\gamma }{2}}( \| w\| +\| xw\|_{\frac{1}{\beta }}) \leq Ct^{-\frac{1+\beta -\gamma }{2}% }( \| w\| +\| | \partial_x| ^{\frac{1}{2}% -\beta }xw\| ) \\ &\leq &Ct^{-\frac{1+\beta -\gamma }{2}}( \| u_x\| +\| | \partial_x| ^{\frac{1}{2}-\beta }x\mathcal{U}( -t) u_x\| ) \\ &\leq &Ct^{-\frac{1+\beta -\gamma }{2}}( \| u_x\| +\| | \partial_x| ^{\frac{1}{2}-\beta }\mathcal{J}\partial _xu\| ) , \end{eqnarray*} therefore the result of the lemma follows. Lemma \ref{L2.1} is proved. \end{proof} Denote \begin{equation*} \| \phi \|_{\mathbf{Y}}=\sup_{t>0}t^{\alpha }\langle t\rangle ^{1-2\gamma }\| \partial_{t}\phi \|_{0,1,\infty }+\sup_{t>0}t^{-\gamma }\| | \xi | ^{\frac{1}{2}-\beta }\partial_{\xi }\phi \| +\sup_{t>0}\| \phi \|_{0,1,\infty }, \end{equation*} where $\beta \in ( 0,\frac{1}{2}] $, $\gamma >0$ is small. In the next lemma we obtain the asymptotic representation as $\xi \rightarrow 0$ for the integral \begin{equation*} I=\int_0^{t}\tau ^{-\alpha }d\tau \int e^{-i\tau \xi \eta }\phi_1( \tau ,\xi +\eta ) \phi_2( \tau ,\eta ) d\eta \end{equation*} which corresponds to the identity (\ref{1.1c}). \begin{lemma} \label{L2.2} If $\phi_{l}\in \mathbf{Y,}$ $l=1,2$, then we have \begin{eqnarray*} I &=&\Gamma ( 1-\alpha ) | \xi | ^{\alpha -1}( \sin ( \frac{\pi \alpha }{2}) \int \phi_1( t,\eta ) \phi_2( t,\eta ) | \xi | ^{\alpha -1}d\eta \\ && +i\mathop{\rm sign}\xi \cos ( \frac{\pi \alpha }{2}) \int \phi _1( t,\eta ) \phi_2( t,\eta ) | \eta | ^{\alpha -1}\mathop{\rm sign}\eta \,d\eta ) \\ &&+O( t^{-\gamma }| \xi | ^{\alpha -1}\| \phi _1\|_{\mathbf{Y}}\| \phi_2\|_{\mathbf{Y}}) . \end{eqnarray*} for all $| \xi | \leq t^{-\mu }$, $t\geq 1$, where $\mu =\frac{% 3\gamma }{\alpha ^2}$, $\gamma >0$ is small. \end{lemma} \begin{proof} We write $I=\sum_{l=1}^{4}I_{l}$, where \begin{gather*} I_1=\int_0^{t^{\nu }/| \xi | }\tau ^{-\alpha }d\tau \int e^{-i\tau \xi \eta }\phi_1( t,\eta ) \phi_2( t,\eta) d\eta , \\ I_2=\int_{t^{\nu }/| \xi | }^{t}\tau ^{-\alpha }d\tau \int e^{-i\tau \xi \eta }\phi_1( \tau ,\xi +\eta ) \phi_2(\tau ,\eta ) d\eta , \\ I_3=\int_0^{t^{\nu }/| \xi | }\tau ^{-\alpha }d\tau \int e^{-i\tau \xi \eta }( \phi_1( \tau ,\eta ) \phi _2( \tau ,\eta ) -\phi_1( t,\eta ) \phi_2( t,\eta ) ) d\eta \\ I_4=\int_0^{t^{\nu }/| \xi | }\tau ^{-\alpha }d\tau \int e^{-i\tau \xi \eta }( \phi_1( \tau ,\xi +\eta ) -\phi _1( \tau ,\eta ) ) \phi_2( \tau ,\eta )d\eta , \end{gather*} where $\nu =2\gamma/\alpha$. If $\tau | \xi | \geq 1$, we integrate by parts with respect to $\eta $ to obtain \begin{eqnarray*} \lefteqn{| \int e^{-i\tau \xi \eta }\phi_1( t,x+\eta ) \phi _2( t,\eta ) d\eta | }\\ &\leq &\langle \tau \xi \rangle ^{-1}| \int e^{-i\tau \xi \eta }\partial_{\eta }( \phi_1( t,x+\eta ) \phi _2( t,\eta ) ) d\eta | \\ &\leq &C\langle \tau \xi \rangle ^{-1}t^{\gamma }\sum_{l=1}^2\| \phi_{3-l}\|_{\infty }\sup_{t>0}t^{-\gamma }\| | \xi | ^{\frac{1}{2}-\gamma }\partial_{\xi }\phi _{l}\| \leq C\langle \tau \xi \rangle ^{-1}t^{\gamma }\| \phi_1\|_{\mathbf{Y}}\| \phi_2\|_{\mathbf{Y% }}, \end{eqnarray*} hence changing $\tau | \xi | =z$ we obtain \begin{eqnarray*} \lefteqn{| \int_{t^{\nu }/| \xi | }^{\infty }\tau ^{-\alpha }d\tau \int e^{-i\tau \xi \eta }\phi_1( t,x+\eta ) \phi_2( t,\eta ) d\eta | }\\ &\leq &Ct^{\gamma }\| \phi_1\|_{\mathbf{Y}}\| \phi _2\|_{\mathbf{Y}}\int_{t^{\nu }/| \xi | }^{\infty }\langle \tau \xi \rangle ^{-1}\tau ^{-\alpha }d\tau \leq Ct^{\gamma }| \xi | ^{\alpha -1}\| \phi_1\|_{% \mathbf{Y}}\| \phi_2\|_{\mathbf{Y}}\int_{t^{\nu }}^{\infty }z^{-\alpha -1}dz \\ &\leq &C| \xi | ^{\alpha -1}t^{\gamma -\alpha \nu }\| \phi _1\|_{\mathbf{Y}}\| \phi_2\|_{\mathbf{Y}}\leq Ct^{-\gamma }| \xi | ^{\alpha -1}\| \phi_1\|_{% \mathbf{Y}}\| \phi_2\|_{\mathbf{Y}}. \end{eqnarray*} Since \begin{eqnarray*} \int_0^{\infty }\tau ^{-\alpha }e^{i\tau \xi \eta }d\tau &=&\int_0^{\infty }\tau ^{-\alpha }\cos ( \tau \xi \eta ) d\tau +i\int_0^{\infty }\tau ^{-\alpha }\sin ( \tau \xi \eta ) d\tau \\ &=&\Gamma ( 1-\alpha ) \sin ( \frac{\pi \alpha }{2}) | \xi \eta | ^{\alpha -1} \\ &&+i\Gamma ( 1-\alpha ) \cos ( \frac{\pi \alpha }{2}) | \xi \eta | ^{\alpha -1}\mathop{\rm sign}( \xi \eta ) \end{eqnarray*} (see \cite{be}), we find \begin{eqnarray*} I_1 &=&\int_0^{\infty }\tau ^{-\alpha }d\tau \int e^{-i\tau \xi \eta }\phi_1( t,\eta ) \phi_2( t,\eta ) d\eta \\ &&-\int_{t^{\nu }/| \xi | }^{\infty }\tau ^{-\alpha }d\tau \int e^{-i\tau \xi \eta }\phi_1( t,\eta ) \phi_2( t,\eta ) d\eta \\ &=&\Gamma ( 1-\alpha ) \sin ( \frac{\pi \alpha }{2}) | \xi | ^{\alpha -1}\int \phi_1( t,\eta ) \phi _2( t,\eta ) | \eta | ^{\alpha -1}d\eta \\ &&+i\Gamma ( 1-\alpha ) \cos ( \frac{\pi \alpha }{2}) | \xi | ^{\alpha -1}\int \mathop{\rm sign}( \xi \eta ) \phi _1( t,\eta ) \phi_2( t,\eta ) | \eta | ^{\alpha -1}d\eta \\ &&+O( t^{-\gamma }| \xi | ^{\alpha -1}\| \phi _1\|_{\mathbf{Y}}\| \phi_2\|_{\mathbf{Y}}) . \end{eqnarray*} In the same manner we obtain \begin{eqnarray*} \lefteqn{| \int_{t^{\nu }/| \xi | }^{t}\tau ^{-\alpha }d\tau \int e^{-i\tau \xi \eta }\phi_1( \tau ,x+\eta ) \phi_2( \tau ,\eta ) d\eta | }\\ &\leq &Ct^{\gamma }\| \phi_1\|_{\mathbf{Y}}\| \phi _2\|_{\mathbf{Y}}\int_{t^{\nu }/| \xi | }^{t}\langle \tau \xi \rangle ^{-1}\tau ^{-\alpha }d\tau \leq Ct^{-\gamma }| \xi | ^{\alpha -1}\| \phi_1\|_{% \mathbf{Y}}\| \phi_2\|_{\mathbf{Y}}, \end{eqnarray*} hence \begin{equation*} | I_2| \leq Ct^{-\gamma }| \xi | ^{\alpha -1}\| \phi_1\|_{\mathbf{Y}}\| \phi_2\|_{\mathbf{Y}}. \end{equation*} To estimate $I_3$ we note that \begin{equation*} \| \phi_{l}( t,\xi ) -\phi_{l}( \tau ,\xi ) \|_{0,1,\infty }=\| \int_{\tau }^{t}\partial_{\tau }\phi _{l}( \tau ,\xi ) d\tau \|_{0,1,\infty }=O( \tau ^{2\gamma -\alpha }\| \phi_{l}\|_{\mathbf{Y}}) \end{equation*} which implies \begin{eqnarray*} | I_3| &=&| \int_0^{t^{\nu }/| \xi | }\tau ^{-\alpha }d\tau \int e^{-i\tau \xi \eta }( \phi_1( \tau ,\eta ) \phi_2( \tau ,\eta ) -\phi_1( t,\eta ) \phi_2( t,\eta ) ) d\eta | \\ &\leq &C\| \phi_1\|_{\mathbf{Y}}\| \phi_2\|_{% \mathbf{Y}}| \int_0^{t^{\nu }/| \xi | }\tau ^{2\gamma -2\alpha }d\tau | \leq Ct^{-\gamma }| \xi | ^{\alpha -1}\| \phi_1\|_{\mathbf{Y}}\| \phi_2\|_{% \mathbf{Y}} \end{eqnarray*} since $\mu \alpha \geq \gamma +\nu $ and $| \xi | \leq t^{-\mu }$% . Now using the estimate \begin{eqnarray*} \| \langle \eta \rangle ^{-1}( \phi ( t,\xi +\eta ) -\phi ( t,\eta ) ) \|_1 &=&\| \langle \eta \rangle ^{-1}\int_0^{\xi }\partial_{y}\phi ( t,y+\eta ) dy\|_1 \\ &\leq &C| \xi | \| | \xi | ^{\frac{1}{2}-\beta }\partial_{\xi }\phi \| \leq Ct^{\gamma }| \xi | \| \phi \|_{\mathbf{Y}} \end{eqnarray*} for all $| \xi | \leq 1$, we get \begin{equation*} | I_4| \leq C\| \phi_1\|_{\mathbf{Y}}\| \phi_2\|_{\mathbf{Y}}| \xi | \int_0^{t^{\nu }/| \xi | }\tau ^{\gamma -\alpha }d\tau \leq Ct^{-\gamma }| \xi | ^{\alpha -1}\| \phi_1\|_{\mathbf{Y}}\| \phi _2\|_{\mathbf{Y}} \end{equation*} since $\mu ( 1-\gamma ) \geq \gamma +\nu $ and $| \xi | \leq t^{-\mu }$. Lemma \ref{L2.2} is proved. \end{proof} In the next lemma we consider the asymptotic behaviour of the integral \begin{equation*} I( t,x) =\int e^{-\frac{it}{2}( \xi -\frac{x}{t}) ^2}f( t,\xi ) d\xi \end{equation*} as $t\rightarrow \infty $ uniformly with respect to $x\in \mathbb{R}$. Define $\Phi (x) =\int e^{-\frac{i}{2}( \xi -x) ^2}| \xi | ^{\alpha -1}d\xi $. Note that \begin{equation*} \Phi (x) =O( \langle x\rangle ^{-\alpha }+\langle x\rangle ^{\alpha -1}) \end{equation*} as $| x| \rightarrow \infty $. Let $\gamma$ be a small positive number and \begin{gather*} \beta =\min ( 1/2,\alpha ) -\gamma ,\quad \mu =3\gamma/\alpha ^2, \\ \rho =\frac{5\gamma }{\alpha ^2( 1-\alpha ) }, \quad \theta =\frac{6\gamma }{\alpha ^2( 1-\alpha ) ^2},\quad \delta =\theta +\gamma . \end{gather*} \begin{lemma} \label{L2.3} Let $\partial_{\xi }f( t,\xi ) =O( | \xi | ^{\alpha -2}) $ and $f( t,\xi ) =t^{1-\alpha }\Psi ( t\xi ) +O( t^{1-\alpha -\delta }) $ for all $| \xi | \leq t^{\theta -1}$, $\partial_{\xi }f( t,\xi ) =( \alpha -1) B| \xi | ^{\alpha -1}\xi ^{-1}+O( t^{-\gamma }| \xi | ^{\alpha -2}) $ for all $t^{\theta -1}\leq | \xi | \leq t^{-\mu }$ and $\| | \xi | ^{% \frac{1}{2}-\beta }\xi \partial_{\xi }f( t,\xi ) \| \leq Ct^{\gamma }$, then we have the asymptotic formula \begin{equation*} I( t,x) =Bt^{-\frac{\alpha }{2}}\Phi ( xt^{-\frac{1}{2}% }) +O( t^{-\frac{\alpha }{2}-\gamma }( \langle xt^{-% \frac{1}{2}}\rangle ^{-\alpha }+\langle xt^{-\frac{1}{2}% }\rangle ^{\alpha -1}) ) \end{equation*} for all $t\geq 1$ uniformly in $| x| \leq t^{1-\rho }$ and \begin{equation*} I( t,x) =\sqrt{2\pi }t^{-\alpha }e^{-\frac{ix^2}{2t}}\check{\Psi% }( \frac{x}{t}) +\frac{\sqrt{\pi }}{\sqrt{it}}f( t,\frac{x}{t% }) +O( t^{-\alpha -\gamma }+t^{-\frac{1}{2}-\gamma }\langle xt^{-1}\rangle ^{-\alpha }) \end{equation*} for all $t\geq 1$ uniformly in $| x| \geq t^{1-\rho }$. \end{lemma} \begin{proof} For $x>0$, we have \begin{eqnarray*} f( t,\xi ) &=&f( t,1) +\int_{t^{-\mu }}^{\xi }\partial _{\eta }f( t,\eta ) d\eta +\int_1^{t^{-\mu }}\partial_{\eta }f( t,\eta ) d\eta \\ &=&f( t,1) +( \alpha -1) B\int_{t^{-\mu }}^{\xi }| \eta | ^{\alpha -2}d\eta +O( t^{-\gamma }\int_{t^{-\mu }}^{\xi }| \eta | ^{\alpha -2}d\eta ) \\ &&+O( \| | \xi | ^{\frac{1}{2}-\beta }\xi \partial _{\xi }f( t,\xi ) \| ( \int_1^{t^{-\mu }}| \xi | ^{2\beta -3}d\xi ) ^{1/2}) \\ &=&B| \xi | ^{\alpha -1}+O( 1+t^{-\gamma }| \xi | ^{\alpha -1}+t^{\mu ( 1-\beta ) +\gamma }) \\ &=&B| \xi | ^{\alpha -1}+O( t^{-\gamma }| \xi | ^{\alpha -1}) \end{eqnarray*} for all $t^{\mu -1}\leq | \xi | \leq 2t^{-\rho }$ since $\mu ( 1-\beta ) +2\gamma \leq \rho ( 1-\alpha ) $. We make a change of variable of integration $\xi =zt^{-1/2}$, then we have \begin{equation*} I( t,x) =t^{-1/2}\int e^{-\frac{i}{2}( z-b) ^2}f( t,zt^{-1/2}) dz, \end{equation*} where $b=a\sqrt{t}=x/\sqrt{t}$. First consider the case $| x| \leq t^{1-\rho }$, i.e. $b\leq t^{% \frac{1}{2}-\rho }$. We represent \begin{equation*} I=Bt^{-\frac{\alpha }{2}}\Phi ( b) +R_1+R_2, \end{equation*} where the remainder terms are \begin{equation*} R_{j}=t^{-1/2}\int e^{-\frac{i}{2}( z-b) ^2}( f( t,zt^{-1/2}) -Bt^{\frac{1-\alpha }{2}}| z| ^{\alpha -1}) \varphi_{j}( z) dz, \end{equation*} the function $\varphi_1( z) \in \mathbf{C}^{1}( \mathbb{R} ) :\varphi_1( z) =1$ if $z2b/3$, $\varphi_2( z) =1-\varphi_1( z) $. In the remainder term $R_1$ we integrate by parts via the identity \begin{equation} e^{-\frac{i}{2}( z-b) ^2}=\frac{1}{1-iz( z-b) }\frac{% d}{dz}( ze^{-\frac{i}{2}( z-b) ^2}) \label{2.1} \end{equation} to get \begin{eqnarray} | R_1| &\leq &Ct^{-\frac{\alpha }{2}-\gamma }\int | z| ^{\alpha -1}\langle zb\rangle ^{-1}( | \varphi _1| +| z\varphi_1^{\prime }| ) dz \notag \\ &&+Ct^{-\frac{\alpha }{2}}\int_{| z| \leq t^{\mu -\frac{1}{2}% }}| z| ^{\alpha -1}\langle zb\rangle ^{-1}dz \notag \\ &\leq &Ct^{-\frac{\alpha }{2}-\gamma }\langle b\rangle ^{-\alpha }\leq Ct^{-\frac{\alpha }{2}-\gamma }\langle a\sqrt{t}\rangle ^{-\alpha }. \label{2.2} \end{eqnarray} In the remainder term $R_2$ we use the identity \begin{equation} e^{-\frac{i}{2}( z-b) ^2}=\frac{1}{1-i( z-b) ^2}% \frac{d}{dz}( ( z-b) e^{-\frac{i}{2}( z-b) ^2}) \label{2.3} \end{equation} to find \begin{eqnarray} | R_2| &\leq &Ct^{-\frac{\alpha }{2}-\gamma }\int | z| ^{\alpha -1}\langle z-b\rangle ^{-2}( | \varphi_2| +| z\varphi_2^{\prime }| ) dz \notag \\ &&+Ct^{-\frac{\alpha }{2}}\int_{| z| \leq t^{\mu -\frac{1}{2}% }}| z| ^{\alpha -1}\langle z-b\rangle ^{-2}dz \notag \\ &&+Ct^{-1/2}\int_{| z| >2t^{\frac{1}{2}-\rho }}\langle z-b\rangle ^{-2}| zt^{-1/2}| | f^{\prime }( t,zt^{-1/2}) | dz \notag \\ &=&O( t^{-\frac{\alpha }{2}-\gamma }\langle b\rangle ^{\alpha -1}) =O( t^{-\frac{\alpha }{2}-\gamma }\langle a% \sqrt{t}\rangle ^{\alpha -1}) , \label{2.4} \end{eqnarray} since \begin{eqnarray*} \lefteqn{\int_{| z| >2t^{\frac{1}{2}-\rho }}\langle z-b\rangle ^{-2}| zt^{-1/2}| | f^{\prime }( t,zt^{-1/2}) | dz }\\ &\leq &C\| | \xi | ^{\frac{1}{2}-\beta }\xi f^{\prime }( t,\xi ) \| ( \int_{| z| >2t^{\frac{1}{2}% -\rho }}| zt^{-1/2}| ^{2\beta -1}\langle z-b\rangle ^{-4}dz) ^{1/2} \\ &\leq &Ct^{\frac{1-2\beta }{4}}\langle b\rangle ^{-1}\| | \xi | ^{\frac{1}{2}-\beta }\xi f^{\prime }( t,\xi ) \| ( \int_{| z| >2t^{\frac{1}{2}-\rho }}z^{2\beta -3}dz) ^{1/2} \\ &\leq &Ct^{-\frac{1}{4}+\rho ( 1-\beta ) }\langle b\rangle ^{-1}\| | \xi | ^{\frac{1}{2}-\beta }\xi f^{\prime }( t,\xi ) \| \leq Ct^{-\gamma }\langle b\rangle ^{-1}. \end{eqnarray*} We consider now the case $| x| >t^{1-\rho }$, i.e. $b>t^{\frac{1}{% 2}-\rho }$. Then we represent $I$ in the form \begin{equation*} I=t^{-1/2}\int_{| z| \leq t^{\theta -\frac{1}{2}}}e^{-% \frac{i}{2}( z-b) ^2}f( t,zt^{-1/2}) dz+% \sqrt{\frac{\pi }{it}}f( t,a) +R_3+R_4, \end{equation*} where the remainder terms are \begin{gather*} R_3=t^{-1/2}\int_{| z| >t^{\theta -\frac{1}{2}}}e^{-% \frac{i}{2}( z-b) ^2}f( t,zt^{-1/2}) \varphi_1( z) dz \\ R_4=t^{-1/2}\int e^{-\frac{i}{2}( z-b) ^2}( f( t,zt^{-1/2}) -f( t,a) ) \varphi _2( z) dz. \end{gather*} Consider the integral \begin{eqnarray*} \lefteqn{t^{-1/2}\int_{| z| \leq t^{\theta -\frac{1}{2}}}e^{-% \frac{i}{2}( z-b) ^2}f( t,zt^{-1/2}) dz=\int_{| \xi | \leq t^{\theta -1}}e^{-\frac{i}{2}t( \xi -a) ^2}f( t,\xi ) d\xi }\\ &=&t^{1-\alpha }\int_{| \xi | \leq t^{\theta -1}}e^{-\frac{i}{2}% t( \xi -a) ^2}\Psi ( t\xi ) d\xi +O( t^{-\alpha -\gamma }) \\ &=&t^{-\alpha }e^{-\frac{ix^2}{2t}}\int_{| y| \leq t^{\theta }}e^{iya}\Psi ( y) dy+O( t^{-\alpha -\gamma }) \\ &=&\sqrt{2\pi }t^{-\alpha }e^{-\frac{ix^2}{2t}}\widehat{\Psi }( a) +O( t^{-\alpha -\gamma }) . \hspace{5cm} \end{eqnarray*} In the remainder term $R_3$ above we integrate by parts via identity (\ref{2.1}) to get \begin{eqnarray} | R_3| &\leq &Ct^{-\frac{\alpha }{2}}\int_{| z| \geq t^{\theta -\frac{1}{2}}}| z| ^{\alpha -1}\langle zb\rangle ^{-1}( | \varphi_1| +| z\varphi _1^{\prime }| ) dz \notag \\ &&+Ct^{-1/2}\int_{| z| >2t^{\frac{1}{2}-\rho }}\langle zb\rangle ^{-1}| zt^{-1/2}| | f^{\prime }( t,zt^{-1/2}) | dz \label{2.5} \\ &\leq &Ct^{-\alpha +\rho -\theta ( 1-\alpha ) }+Ct^{-\alpha -\gamma }\leq Ct^{-\alpha -\gamma } \nonumber \end{eqnarray} since $\theta ( 1-\alpha ) -\rho \geq \gamma $. In the remainder term $R_4$ we integrate by parts via (\ref{2.3}) to find \begin{eqnarray} | R_4| &\leq &Ct^{-1/2}\int_{b/3}^{\infty }| f( t,zt^{-1/2}) -f( t,a) | \langle z-b\rangle ^{-4}dz \notag \\ &&+t^{-1}\int_{b/3}^{\infty }| f^{\prime }( t,zt^{-\frac{1}{2}% }) | \langle z-b\rangle ^{-1}dz \label{2.6} \\ &\leq &C| a| ^{-1}t^{\gamma -\frac{1+\beta }{2}}\leq C\langle a\rangle ^{-1}t^{-\frac{1}{2}-\gamma }, \nonumber \end{eqnarray} since \begin{eqnarray*} | f( t,zt^{-1/2}) -f( t,a) | &=&| \int_{zt^{-1/2}}^{a}\partial_{\xi }f( t,\xi ) d\xi | \leq \int_{zt^{-1/2}}^{a}| \xi | ^{\beta -% \frac{3}{2}}| \xi | ^{\frac{3}{2}-\beta }| \partial_{\xi }f( t,\xi ) | d\xi \\ &\leq &C\| | \xi | ^{\frac{1}{2}-\beta }\xi \partial_{\xi }f( t,\xi ) \| ( \int_{zt^{-1/2}}^{a}| \xi | ^{2\beta -3}d\xi ) ^{1/2} \\ &\leq &C| a| ^{-1}t^{\gamma -\frac{\beta }{2}}| z-b| ^{\beta }. \end{eqnarray*} Collecting estimates (\ref{2.2}), (\ref{2.4})-(\ref{2.6}) we get the asymptotic statement needed and Lemma \ref{L2.3} is proved. \end{proof} In the next lemma we obtain time-decay estimate via additional derivative for the nonlinear term. We will use this estimate in the proof of Theorem \ref{T1.2}. \begin{lemma} \label{L2.4} We have the estimate \begin{eqnarray*} \lefteqn{\| | \partial_x| ^{\frac{1}{2}-\beta }( u_x% \overline{v_x}) \|_{1,0} }\\ & \leq &Ct^{\beta -1}\| | \partial_x| ^{\frac{1}{2}-\beta }u\|_{1,0}\| | \partial_x| ^{\frac{1}{2}-\beta }v\|_{1,0} \\ & &+Ct^{-1}( t^{\beta }\| \mathcal{FU}( -t) u_x\|_{\infty }+\| | \partial_x| ^{\frac{1}{2}% -\beta }u\|_{1,0}) \| | \partial_x| ^{\frac{1% }{2}-\beta }\mathcal{J}\partial_xv\|_{1,0} \\ && +Ct^{-1}( t^{\beta }\| \mathcal{FU}( -t) v_x\|_{\infty }+\| | \partial_x| ^{\frac{1}{2}% -\beta }v\|_{1,0}) \| | \partial_x| ^{\frac{1% }{2}-\beta }\mathcal{J}\partial_xu\|_{1,0} \end{eqnarray*} for all $t>0$, where $\beta \in ( 0,1/2]$. \end{lemma} \begin{proof} Application of the Fourier transformation yields \begin{equation*} \mathcal{F}( u_x\overline{v_x}) =\frac{1}{\sqrt{2\pi }}\int \hat{u}( t,\xi +\eta ) \overline{\hat{v}( t,\eta ) }% ( \xi +\eta ) \eta d\eta , \end{equation*} then changing $i\eta \hat{u}( t,\eta ) =e^{-\frac{it}{2}\eta ^2}\phi ( t,\eta ) $ and $i\eta \hat{v}( t,\eta ) =e^{-\frac{it}{2}\eta ^2}\psi ( t,\eta ) $ we obtain \begin{equation} \mathcal{FU}( -t) ( u_x\overline{v_x}) =\frac{1}{% \sqrt{2\pi }}\int e^{-it\xi \eta }\phi ( t,\xi +\eta ) \overline{% \psi ( t,\eta ) }d\eta , \label{2.7} \end{equation} whence integrating by parts with respect to\thinspace $\eta $ we get \begin{eqnarray*} \lefteqn{\| | \partial_x| ^{\frac{1}{2}-\beta }( u_x% \overline{v_x}) \| =C\| | \xi | ^{\frac{1}{2}% -\beta }\mathcal{FU}( -t) ( u_x\overline{v_x}) \| }\\ &=&C\| | \xi | ^{\frac{1}{2}-\beta }\int e^{-it\xi \eta }\phi ( t,\xi +\eta ) \overline{\psi ( t,\eta ) }d\eta \| \\ &\leq &C\| \langle t\xi \rangle ^{-1}| \xi | ^{% \frac{1}{2}-\beta }\| ( \| \int e^{-it\xi \eta }\phi ( t,\xi +\eta ) \overline{\psi ( t,\eta ) }d\eta \| _{\infty }\\ &&+\| \int e^{-it\xi \eta }\phi_{\xi }( t,\xi +\eta ) \overline{\psi ( t,\eta ) }d\eta \|_{\infty } \\ && +\| \int e^{-it\xi \eta }\phi ( t,\xi +\eta ) \overline{\psi_{\eta }( t,\eta ) }d\eta \|_{\infty }) \\ &\leq &Ct^{\beta -1}\| \phi \| \| \psi \| +Ct^{\beta -1}\| \phi \|_{\infty }\| | \xi | ^{\frac{1}{2}% -\beta }\partial_{\xi }\psi \| +Ct^{\beta -1}\| \psi \| _{\infty }\| | \xi | ^{\frac{1}{2}-\beta }\partial_{\xi }\phi \| \\ &\leq &Ct^{\beta -1}\| u_x\| \| v_x\| +Ct^{\beta -1}\| \mathcal{FU}( -t) u_x\|_{\infty }\| | \partial_x| ^{\frac{1}{2}-\beta }\mathcal{J}\partial _xv\| \\ &&+Ct^{\beta -1}\| \mathcal{FU}( -t) v_x\|_{\infty }\| | \partial_x| ^{\frac{1}{2}-\beta }\mathcal{J}% \partial_xu\| \end{eqnarray*} and \begin{eqnarray*} \lefteqn{\| | \partial_x| ^{\frac{3}{2}-\beta }( u_x% \overline{v_x}) \| =C\| | \xi | ^{\frac{3}{2}% -\beta }\mathcal{FU}( -t) ( u_x\overline{v_x}) \| }\\ &=&C\| | \xi | ^{\frac{3}{2}-\beta }\int e^{-it\xi \eta }\phi ( t,\xi +\eta ) \overline{\psi ( t,\eta ) }d\eta \| \\ &\leq &Ct^{-1}( \| | \xi | ^{\frac{1}{2}-\beta }\int e^{-it\xi \eta }\phi_{\xi }( t,\xi +\eta ) \overline{\psi ( t,\eta ) }d\eta \| \\ &&+C\| | \xi | ^{\frac{1}{2}-\beta }\int e^{-it\xi \eta }\phi ( t,\xi +\eta ) \overline{\psi_{\eta }( t,\eta ) }d\eta \| ) \\ &\leq &Ct^{-1}\| \langle \xi \rangle ^{\frac{1}{2}-\beta }\phi \| \| \partial_{\xi }\psi \|_1+Ct^{-1}\| \phi \| \| | \xi | ^{\frac{1}{2}-\beta }\partial_{\xi }\psi \|_1 \\ &&+Ct^{-1}\| \langle \xi \rangle ^{\frac{1}{2}-\beta }\psi \| \| \partial_{\xi }\phi \|_1+Ct^{-1}\| \psi \| \| | \xi | ^{\frac{1}{2}-\beta }\partial_{\xi }\psi \|_1 \\ &\leq &Ct^{-1}\| | \partial_x| ^{\frac{1}{2}-\beta }u\|_{1,0}\| | \partial_x| ^{\frac{1}{2}-\beta }% \mathcal{J}\partial_xv\|_{1,0} \\ &&+Ct^{-1}\| | \partial_x| ^{\frac{1}{2}-\beta }v\| _{1,0}\| | \partial_x| ^{\frac{1}{2}-\beta }\mathcal{J}% \partial_xu\|_{1,0}. \end{eqnarray*} Lemma \ref{L2.4} is proved. \end{proof} \section{Proof of Theorem \ref{Th1.1}} By virtue of the method in \cite{h}, \cite{ho} (see also the proof of a-priori estimates below in Lemma \ref{L3.2}) we easily obtain the local existence of solutions in the functional space \begin{equation*} \mathbf{X}_{T}=\big\{ \phi \in \mathbf{C}( ( -T,T) ; L^2( \mathbb{R}) ) :\sup_{t\in ( -T,T) }\| \phi ( t) \|_{\mathbf{X}}<\infty \big\} , \end{equation*} where the norm in $\mathbf{X}$ is \begin{eqnarray*} \| u\|_{\mathbf{X}} &=&\langle t\rangle ^{-\gamma }\| u\|_{3,0}+\langle t\rangle ^{-\gamma }\| \mathcal{I}u\|_{1,0}+\langle t\rangle ^{-3\gamma }\| \mathcal{I}^2u\| \\ &&+t^{\alpha }\langle t\rangle ^{1-2\gamma }\| \partial_{t}% \mathcal{FU}( -t) u_x( t) \|_{0,1,\infty }, \end{eqnarray*} with $\mathcal{I}=x\partial_x+2t\partial_{t}$. \begin{theorem} \label{T3.1} Let the initial data $u_0\in H^{3,0}\cap H% ^{2,2}$. Then for some time $T>0$ there exists a unique solution $u\in \mathbf{X}_{T}$ of the Cauchy problem (\ref{1.1}). If we assume in addition that the norm of the initial data $\| u_0\|_{3,0}+\| u_0\|_{2,2}=\varepsilon ^2$ is sufficiently small, then there exists a unique solution $u\in \mathbf{X}_{T}$ of (\ref{1.1}) for some time $% T>1$, such that the following estimate $\sup_{t\in [0,T]}\| u\|_{% \mathbf{X}}<\varepsilon $ is valid. \end{theorem} In the next lemma we obtain the estimates of global solutions in the norm $% \mathbf{X}$. \begin{lemma} \label{L3.2} Let $\alpha \in [1/2,1) $. We assume that the initial data $u_0\in H^{3,0}\cap H^{2,2}$ and the norm $\| u_0\|_{3,0}+\| u_0\|_{2,2}=\varepsilon ^2$ is sufficiently small. Then there exists a unique global solution of the Cauchy problem (\ref{1.1}) such that $u\in \mathbf{C}( \mathbb{R};% H^{3,0}) $ and the following estimate is valid \begin{equation} \sup_{t>0}\| u\|_{\mathbf{X}}<\varepsilon . \label{3.1} \end{equation} \end{lemma} \begin{proof} Applying the result of Theorem \ref{T3.1} and using a standard continuation argument we can find a maximal time $T>1$ such that the inequality \begin{equation} \| u\|_{\mathbf{X}}\leq \varepsilon \label{3.2} \end{equation} is true for all $t\in [0,T]$. If we prove (\ref{3.1}) on the whole time interval $[0,T]$, then by the contradiction argument we obtain the desired result of the lemma. In view of the local existence Theorem \ref{T3.1} it is sufficient to consider the estimates of the solution on the time interval $% t\ge 1$ only. As a consequence of (\ref{3.2}) we have \begin{eqnarray*} \| \mathcal{FU}( -t) u_x( t) \| _{0,1,\infty } &\leq &C\varepsilon +\int_0^{t}\| \partial_{\tau }% \mathcal{FU}( -\tau ) u_x( \tau ) \| _{0,1,\infty }d\tau \\ &\leq &C\varepsilon +C\varepsilon \int_0^{t}\langle \tau \rangle ^{\gamma -1}\tau ^{-\alpha }d\tau \leq C\varepsilon . \end{eqnarray*} Note that $\mathcal{J}\partial_x=\mathcal{I}+2it\mathcal{L}$, where $% \mathcal{J}$ $=x+it\partial_x$. Hence \begin{equation*} \| \mathcal{J}\partial_xu\|_{1,0}\leq \| \mathcal{I}% u\|_{1,0}+Ct\| \mathcal{L}u\|_{1,0}\leq \| \mathcal{I% }u\|_{1,0}+Ct^{1/2}\| u_x\|_{\infty }\| u\|_{2,0} \end{equation*} and \begin{equation*} \| \mathcal{J}\partial_x\mathcal{I}u\| \leq \| \mathcal{I}% ^2u\| +Ct\| \mathcal{LI}u\| \leq \| \mathcal{I}% ^2u\| +Ct^{1/2}\| u_x\|_{\infty }( \| u_x\| +\| \mathcal{I}u_x\| ) . \end{equation*} Then by Lemma \ref{L2.1} with $\beta =\frac{1}{2}$, using estimate (\ref{3.3}% ) we find \begin{eqnarray*} \| u_x\|_{1,0,\infty } &\leq &Ct^{-1/2}\| \mathcal{FU}( -t) u_x\|_{0,1,\infty }+Ct^{\frac{\gamma }{% 2}-\frac{3}{4}}( \| u\|_{2,0}+\| \mathcal{J}\partial _xu\|_{1,0}) \\ &\leq &C\varepsilon t^{-1/2}+C\varepsilon t^{3\gamma -\frac{1}{4}% }\| u_x\|_{\infty }, \end{eqnarray*} whence \begin{equation} \| u_x\|_{1,0,\infty }\leq C\varepsilon t^{-1/2}. \label{3.4} \end{equation} Therefore by virtue of (\ref{3.2}) we have also the estimates \begin{equation} t^{-\gamma }\| \mathcal{J}\partial_xu\|_{1,0}+t^{-3\gamma }\| \mathcal{J}\partial_x\mathcal{I}u\| \leq C\varepsilon . \label{3.3} \end{equation} Let us estimate norms $\| u\|_{3,0}$, $\| \mathcal{I}% u\|_{1,0}$ and $\| \mathcal{I}^2u\| \mathbf{.}$ Differentiating three times equation (\ref{1.1}) we get for $h_0=( 1+\partial_x^{3}) u$% \begin{equation*} \mathcal{L}h_0=t^{-\alpha }( \overline{u}_x\partial _xh_0+u_x\partial_x\overline{h_0}) +R_0 \end{equation*} where \begin{equation*} \mathcal{L}=i\partial_{t}+\frac{1}{2}\partial_x^2,R_0=t^{-\alpha }( -| u_x| ^2+3u_{xx}\overline{u}_{xxx}+3u_{xxx}% \overline{u}_{xx}) . \end{equation*} Via (\ref{3.2}), (\ref{3.4}) we have the estimate \begin{equation*} \| R_0\| \leq Ct^{-\alpha }\| u_x\|_{1,0,\infty }\| h_0\| \leq C\varepsilon ^2t^{\gamma -1}. \end{equation*} Applying the operator $\mathcal{I}$ to both sides of equation (\ref{1.1}) and using the commutator relations $\mathcal{LI}=( \mathcal{I}+2) \mathcal{L}$ and $[ \mathcal{I},t^{-\alpha }] =-2\alpha t^{-\alpha }$, we find \begin{equation} \mathcal{L}h_{k}=t^{-\alpha }( \overline{u}_x\partial _xh_{k}+u_x\partial_x\overline{h_{k}}) +R_{k}, \label{3.5} \end{equation} where $k=1,2$, $h_1=( 1+\partial_x) \mathcal{I}u$, $h_2=\mathcal{I}^2u$, \begin{equation*} R_1=t^{-\alpha }( \overline{u}_{xx}\mathcal{I}u_x+u_{xx}\overline{% \mathcal{I}u}_x+2( 1-\alpha ) ( 1+\partial_x) | u_x| ^2), \end{equation*} and \begin{equation*} R_2=2t^{-\alpha }( | \mathcal{I}u_x| ^2+( 2-\alpha ) \mathcal{I}| u_x| ^2+2( 1-\alpha ) ^2| u_x| ^2) . \end{equation*} By (\ref{3.2}) and (\ref{3.3}) we have \begin{equation*} \| \mathcal{I}u_x\overline{\mathcal{I}u_x}\| \leq Ct^{-\frac{1% }{2}}\| \mathcal{I}u_x\| ^{\frac{3}{2}}\| \mathcal{JI}% u_x\| ^{1/2}\leq C\varepsilon ^2t^{3\gamma -\frac{1}{2}}, \end{equation*} then by virtue of (\ref{3.2}), (\ref{3.4}) we estimate the remainder terms \begin{equation*} \| R_1\| \leq Ct^{-1/2}\| u_x\| _{1,0,\infty }( \| u\|_{1,0}+\| \mathcal{I}u\| _{1,0}) \leq C\varepsilon ^2t^{\gamma -1} \end{equation*} and \begin{equation*} \| R_2\| \leq Ct^{-1/2}\| u_x\|_{\infty }( \| u\|_{1,0}+\| \mathcal{I}u\|_{1,0}) +Ct^{-1/2}\| \mathcal{I}u_x\overline{\mathcal{I}u_x}% \| \leq C\varepsilon ^2t^{3\gamma -1}. \end{equation*} To cancel the higher-order derivative $t^{-\alpha }\bar{u}_x\partial_xh_{k}$, we multiply (\ref{3.5}) by $E\equiv e^{-t^{-\alpha }\bar{u}}$. The other higher-order derivative $t^{-\alpha }u_x\partial_x\overline{h_{k}}$ will be eliminated via integration by parts. Since $E( \mathcal{L}-t^{-\alpha }\overline{u}_x\partial _x) =( \mathcal{L}-g) E$, where $g=-t^{-\alpha }\overline{% u}_{xx}+\frac{1}{2}t^{-2\alpha }( \overline{u}_x) ^2-t^{-2\alpha }| u_x| ^2$, from equation (\ref{3.5}) we obtain \begin{equation} \mathcal{L}Eh_{k}=t^{-\alpha }u_xE\partial_x\overline{h_{k}}% +ER_{k}+gEh_{k}. \label{3.6} \end{equation} Note that $\| E\|_{1,0,\infty }\leq C$ and $\| g\| _{\infty }\leq C\varepsilon t^{-1}$ by virtue of (\ref{3.2}), (\ref{3.4}). Applying the energy method to (\ref{3.6}) we obtain \begin{equation*} \frac{d}{dt}\| Eh_{k}\| ^2\leq Ct^{-\alpha }| \int u_xE\partial_x( \overline{h_{k}}) ^2dx| +C( \| ER_{k}\| +\| gEh_{k}\| ) \| Eh_{k}\| , \end{equation*} whence integration by parts yields \begin{equation} \frac{d}{dt}\| Eh_{k}\| \leq C\varepsilon t^{-1}\| Eh_{k}\| +C\| R_{k}\| , \label{3.7} \end{equation} where $k=0,1,2$. Integrating (\ref{3.7}) with respect to time $t\in [ 1,T] $ we obtain the estimate \begin{equation} \langle t\rangle ^{-\gamma }\| u\|_{3,0}+\langle t\rangle ^{-\gamma }\| \mathcal{I}u\|_{1,0}+\langle t\rangle ^{-3\gamma }\| \mathcal{I}^2u\| <\frac{% \varepsilon }{2}. \label{3.8} \end{equation} for all $t\in [ 0,T] $. We now estimate $\| \partial_{t}% \mathcal{FU}( -t) u_x( t) \|_{0,1,\infty }$. We apply the Fourier transformation to equation (\ref{1.1}), then changing the dependent variable $\mathcal{F}u_x=e^{-\frac{it}{2}\xi ^2}w$, in view of (\ref{2.7}) we obtain \begin{equation} iw_{t}( t,\xi ) =-\frac{i\xi t^{-\alpha }}{\sqrt{2\pi }}\int e^{-it\xi \eta }w( t,\xi +\eta ) \overline{w( t,\eta ) }d\eta , \label{3.9} \end{equation} where $w( t,\xi ) =\mathcal{FU}( -t) u_x$. When $t\in (0,1)$ we get \begin{equation*} \| \xi \int e^{-it\xi \eta }w( t,\xi +\eta ) \overline{% w( t,\eta ) }d\eta \|_{0,1,\infty }\leq C\| w\| _{0,2}^2\leq C\| u\|_{3,0}^2\leq C\varepsilon ^2 \end{equation*} and if $t\geq 1$, we integrate by parts with respect to $\eta $, \begin{eqnarray*} \lefteqn{\| \xi \int e^{-it\xi \eta }w( t,\xi +\eta ) \overline{% w( t,\eta ) }d\eta \|_{0,1,\infty } }\\ &\leq &C\langle t\rangle ^{-1}\| \int e^{-it\xi \eta }\partial_{\eta }( w( t,\xi +\eta ) \overline{w( t,\eta ) }) d\eta \|_{0,1,\infty } \\ &\leq &C\langle t\rangle ^{-1}\| \partial_{\eta }w\| _{0,1}\| w\|_{0,1} \\ &\leq &C\langle t\rangle ^{-1}\| \mathcal{J}\partial _xu\|_{1,0}\| u\|_{2,0}\leq C\varepsilon ^2\langle t\rangle ^{2\gamma -1}; \end{eqnarray*} therefore, \begin{equation} t^{\alpha }\langle t\rangle ^{1-2\gamma }\| \partial_{t}% \mathcal{FU}( -t) u_x( t) \|_{0,1,\infty }<% \frac{\varepsilon }{2}. \label{3.10} \end{equation} By (\ref{3.8}) and (\ref{3.10}) we see that estimate (\ref{3.1}) is true for all $t\in [ 0,T] $. The contradiction obtained proves (\ref{3.1}) for all $t>0$. \end{proof} To complete the proof of Theorem \ref{Th1.1} we evaluate the large time asymptotic estimate of the solution $u$. Note that by Lemma \ref{L2.1} derivative $u_x$ has a quasi linear asymptotic formula \begin{equation*} u_x=M\mathcal{D}w+O( t^{\gamma -\frac{3}{4}}\| \mathcal{J}% \partial_xu\| ) =M\mathcal{D}w+O( t^{2\gamma -\frac{3}{4}% }) , \end{equation*} where $M=e^{\frac{ix^2}{2t}}$, $\mathcal{D}\phi =\frac{1}{\sqrt{it}}\phi ( \frac{x}{t}) $. For the solution $u( t,x) $ we have \begin{equation*} u( t,x) =\mathcal{F}^{-1}e^{-\frac{it}{2}\xi ^2}v=\frac{M}{% \sqrt{2\pi }}\int e^{-\frac{it}{2}( \xi -\frac{x}{t}) ^2}v( t,\xi ) d\xi , \end{equation*} where $v=\mathcal{FU}( -t) u$. In the same way as in the proof of (\ref{3.10}) we have the estimate \begin{equation*} \| \partial_{t}\mathcal{FU}( -t) \mathcal{I}u_x( t) \|_{0,1,\infty }\leq Ct^{5\gamma -\alpha -1}. \end{equation*} To apply Lemma \ref{2.3} we need to prove the representation \begin{equation*} \partial_{\xi }v( t,\xi ) =( \alpha -1) B| \xi | ^{\alpha -1}\xi ^{-1}+O( t^{-\gamma }| \xi | ^{\alpha -2}) \end{equation*} for all $t^{\theta -1}\leq | \xi | \leq t^{-\mu }$, $\partial _{\xi }v( t,\xi ) =O( | \xi | ^{\alpha -2}) $ and $v( t,\xi ) =t^{1-\alpha }\Psi ( t\xi ) +O( t^{1-\alpha -\delta }) $ for all $| \xi | \leq t^{\theta -1}$, with $\delta \geq \theta +\gamma $. From (\ref{3.3}) we get $\| \xi \partial_{\xi }v\| \leq \| \partial_x\mathcal{J}u\| \leq Ct^{\gamma }$. We have \begin{equation*} \partial_{\xi }v( t,\xi ) =\xi ^{-1}( 2t\partial_{t}-v-% \widehat{\mathcal{I}}v) , \end{equation*} where $\widehat{\mathcal{I}}=\mathcal{FIF}^{-1}=-\partial_{\xi }\xi +2t\partial_{t}$. Similarly to (\ref{3.5}) we get \begin{equation*} \mathcal{LI}u=t^{-\alpha }( \overline{u}_x\mathcal{I}u_x+u_x% \overline{\mathcal{I}u_x}) +2( 1-\alpha ) t^{-\alpha }| u_x| ^2, \end{equation*} hence \begin{eqnarray*} \widehat{\mathcal{I}}v( t,\xi ) &=&\widehat{\mathcal{I}}v( 0,\xi ) +\frac{i}{\sqrt{2\pi }}\int_0^{t}\tau ^{-\alpha }d\tau \int e^{-i\tau \xi \eta }\widehat{\mathcal{I}}w( \tau ,\xi +\eta ) \overline{w( \tau ,\eta ) }d\eta \\ &&+\frac{i}{\sqrt{2\pi }}\int_0^{t}\tau ^{-\alpha }d\tau \int e^{-i\tau \xi \eta }w( \tau ,\xi +\eta ) \overline{\widehat{\mathcal{I}}% w( \tau ,\eta ) }d\eta \\ &&+\frac{2i( 1-\alpha ) }{\sqrt{2\pi }}\int_0^{t}\tau ^{-\alpha }d\tau \int e^{-i\tau \xi \eta }w( \tau ,\xi +\eta ) \overline{% w( \tau ,\eta ) }d\eta . \end{eqnarray*} Since $t\partial_{t}v=O( t^{1-\alpha }\langle t\xi \rangle ^{-1}) =O( t^{-\gamma }| \xi | ^{\alpha -1}) $ for $t^{\theta -1}\leq | \xi | $ and $t\partial_{t}v=O( | \xi | ^{\alpha -1}) $ for $| \xi | \leq t^{\theta -1}$, applying Lemma \ref{L2.2} we get \begin{eqnarray*} v_{\xi }( t,\xi ) &=&-\xi ^{-1}( \widehat{\mathcal{I}}% v+v) +O( t^{-\gamma }| \xi | ^{\alpha -2}) \\ &=&-\frac{i}{\sqrt{2\pi }}\int_0^{t}\tau ^{-\alpha }d\tau \int e^{-i\tau \xi \eta }\widehat{\mathcal{I}}w( \tau ,\xi +\eta ) \overline{% w( \tau ,\eta ) }d\eta \\ &&-\frac{i}{\sqrt{2\pi }}\int_0^{t}\tau ^{-\alpha }d\tau \int e^{-i\tau \xi \eta }w( \tau ,\xi +\eta ) \overline{\widehat{\mathcal{I}}% w( \tau ,\eta ) }d\eta \\ &&+\frac{2i\alpha }{\sqrt{2\pi }}\int_0^{t}\tau ^{-\alpha }d\tau \int e^{-i\tau \xi \eta }w( \tau ,\xi +\eta ) \overline{w( \tau ,\eta ) }d\eta +O( t^{-\gamma }| \xi | ^{\alpha -2}) \\ &=&G( t) | \xi | ^{\alpha -1}\xi ^{-1}+O( t^{-\gamma }| \xi | ^{\alpha -2}) \end{eqnarray*} for all $t^{\theta -1}\leq | \xi | \leq t^{-\mu }$, and $\partial _{\xi }v( t,\xi ) =O( | \xi | ^{\alpha -2}) $ for all $| \xi | \leq t^{\theta -1}$, where \begin{eqnarray*} G( t) &=&\frac{2i}{\sqrt{2\pi }}\Gamma ( 1-\alpha ) \sin ( \frac{\pi \alpha }{2}) \Re \int \widehat{\mathcal{I}}% w( t,\eta ) \overline{w( t,\eta ) }| \eta | ^{\alpha -1}d\eta \\ &&+\frac{2i\alpha }{\sqrt{2\pi }}\Gamma ( 1-\alpha ) \sin ( \frac{\pi \alpha }{2}) \int | w( t,\eta ) | ^2| \eta | ^{\alpha -1}d\eta , \end{eqnarray*} since $| w( t,\eta ) | ^2$sign$\eta $ and $\Re ( \widehat{\mathcal{I}}w( t,\eta ) \overline{w( t,\eta ) }) $sign$\eta $ are odd functions. We have by (\ref{3.10}) \begin{equation*} \| w( t,\eta ) -w( \tau ,\eta ) \| _{0,1,\infty }\leq \| \int_{\tau }^{t}\partial_{s}w( s,\eta ) ds\|_{0,1,\infty }\leq C\int_{\tau }^{t}s^{2\gamma -\alpha -1}ds\leq C\tau ^{2\gamma -\alpha } \end{equation*} for all $1\leq \tau \leq t$. Therefore there exists a limit $% W=\lim_{t\rightarrow \infty }w( t) $ in $H_{\infty }^{0,1}( \mathbb{R}) $ such that \begin{equation*} \| w( t,\eta ) -W\|_{0,1,\infty }\leq C\tau ^{2\gamma -\alpha }. \end{equation*} Similarly to (\ref{3.10}) we get by (\ref{3.3}) \begin{equation} \| \partial_{t}\widehat{\mathcal{I}}w\|_{0,1,\infty }\leq C\varepsilon t^{5\gamma -\alpha -1} \label{3.11} \end{equation} for all $t\geq 1$. Hence there exists a limit $K=\lim_{t\rightarrow \infty }% \widehat{\mathcal{I}}w( t) $ in $H_{\infty }^{0,1}( \mathbb{R}) $ such that \begin{equation*} \| \widehat{\mathcal{I}}w( t,\eta ) -K\|_{0,1,\infty }\leq C\tau ^{5\gamma -\alpha }. \end{equation*} Thus \begin{equation*} \partial_{\xi }v( t,\xi ) =B_1| \xi | ^{\alpha -1}\xi ^{-1}+O( t^{-\gamma }| \xi | ^{\alpha -2}) , \end{equation*} where \begin{eqnarray*} B_1 &=&\frac{2i}{\sqrt{2\pi }}\Gamma ( 1-\alpha ) \sin ( \frac{\pi \alpha }{2}) \Re \int K( \eta ) \overline{W( \eta ) }| \eta | ^{\alpha -1}d\eta \\ &&+\frac{2i\alpha }{\sqrt{2\pi }}\Gamma ( 1-\alpha ) \sin ( \frac{\pi \alpha }{2}) \int | W( \eta ) | ^2| \eta | ^{\alpha -1}d\eta . \end{eqnarray*} Also we have \begin{eqnarray*} v( t,\xi ) &=&\int_0^{t}\tau ^{-\alpha }d\tau \int e^{-i\tau \xi \eta }w( \tau ,\xi +\eta ) w( \tau ,\eta ) d\eta \\ &=&\int_0^{t}\tau ^{-\alpha }d\tau \int e^{-i\tau \xi \eta }| W( \eta ) | ^2d\eta +O( t^{-\gamma }\min ( | \xi | ^{\alpha -1},t^{1-\alpha }) ) \\ &=&t^{1-\alpha }\int_0^{1}| z| ^{-\alpha }dz\int e^{-iz\eta t\xi }| W( \eta ) | ^2d\eta +O( t^{1-\alpha -\delta }) \\ &=&t^{1-\alpha }\Psi ( t\xi ) +O( t^{1-\alpha -\delta }) \end{eqnarray*} for $| \xi | \leq t^{\theta -1}$, where $\delta =\alpha -2\gamma , $ $\Psi (x) =\int_0^{1}| z| ^{-\alpha }dz\int e^{-iz\eta x}| W( \eta ) | ^2d\eta $. Now application of Lemma \ref{L2.3} yields asymptotics (\ref{1.2}) for the solution $u( t,x) $. Using Lemma \ref{L3.2} we get the result of Theorem \ref{Th1.1} with $B=B_1/\sqrt{2\pi }$, $P=\frac{1}{\sqrt{2\pi }}% \check{\Psi}$, $Q=\frac{1}{\sqrt{2\pi }}V$. Theorem \ref{Th1.1} is proved. \section{Proof of Theorem \ref{T1.2}} By the method in \cite{h1} (see also the proof of a-priori estimates below in Lemma \ref{L4.2}), we easily obtain the local existence of solutions in the analytic functional space \begin{equation*} \mathbf{A}_{T}=\big\{ \phi \in \mathbf{C}( [ -T,T] ;\mathbf{% L}^2( \mathbb{R}) ) :\sup_{t\in [ -T,T] }\| \phi ( t) \|_{\mathbf{A}_{t}}<\infty \big\} , \end{equation*} where the norm $\mathbf{A}_{t}$ is defined as \begin{eqnarray*} \| u\|_{\mathbf{A}_{t}} &=&\langle t\rangle ^{-\gamma }\| | \partial_x| ^{\frac{1}{2}-\beta }u\| _{3,0}+t^{\alpha }\langle t\rangle ^{1-\gamma }\| \partial _{t}\mathcal{FU}( -t) u_x( t) \|_{0,1,\infty } \\ &&+\sum_{n=1}^{\infty }\frac{\langle t\rangle ^{-n\gamma }}{n!}% \| | \partial_x| ^{\frac{1}{2}-\beta }\mathcal{I}% ^{n}u\|_{1,0}. \end{eqnarray*} Denote \begin{equation*} \| u\|_{\mathbb{Z}}=\sum_{n=0}^{\infty }\frac{t^{-n\gamma }}{n!}% \| | \partial_x| ^{\frac{1}{2}-\beta }\mathcal{I}% ^{n}u\|_{1,0}. \end{equation*} \begin{theorem} \label{T4.1} Let $\alpha \in (0,1) $. We assume that the initial data $u_0\in \mathbf{A}_0$. Then for some time $T>0$ there exists a unique solution $u\in \mathbf{A}_{T}$ of the Cauchy problem (\ref{1.1}). If we assume in addition that the norm of the initial data $\| u_0\|_{\mathbf{A}_0}=\varepsilon ^2$ is sufficiently small, then there exists a unique solution $u\in \mathbf{A}_{T}$ of (\ref{1.1}) for some time $T>1$, such that the following estimate $\sup_{t\in [0,T]}\| u\|_{\mathbf{A}}<\varepsilon $ is valid. \end{theorem} In the next lemma we obtain the estimates of global solutions in the norm $% \mathbf{A}_{t}$. \begin{lemma} \label{L4.2} Let the initial data $u_0\in \mathbf{A}_0$ are such that the norm $\| u_0\|_{\mathbf{A}_0}=\varepsilon ^2$ is sufficiently small. Then there exists a unique global solution of the Cauchy problem (\ref{1.1}) such that $u\in \mathbf{A}_{\infty }$. Moreover the following estimate is valid \begin{equation} \| u\|_{\mathbf{A}_{t}}<\varepsilon \label{4.1} \end{equation} for all $t>0$. \end{lemma} \begin{proof} As in Lemma \ref{L3.2} we argue by contradiction and find a maximal time $% T>1 $ such that the estimate \begin{equation} \| u\|_{\mathbf{A}_{t}}\leq \varepsilon \label{4.2} \end{equation} is valid for all $t\in [ 0,T] $. Via Theorem \ref{T4.1} it is sufficient to consider $t\geq 1$. As above in Lemma \ref{L3.2} we can estimate the norms $\| u_x\|_{1,0,\infty }$, $\| | \partial_x| ^{\frac{1}{2}-\beta }\mathcal{J}\partial_xu\| _{1,0}$, $\| | \partial_x| ^{\frac{1}{2}-\beta }\mathcal{J% }\partial_x\mathcal{I}u\|_{1,0}$ via the norm $\| u\|_{% \mathbb{Z}}$. Indeed we have the estimate \begin{eqnarray*} \| | \partial_x| ^{\frac{1}{2}-\beta }\mathcal{J}\partial _xu\|_{1,0} &\leq &\| | \partial_x| ^{\frac{1}{2}% -\beta }\mathcal{I}u\|_{1,0}+2t\| | \partial_x| ^{% \frac{1}{2}-\beta }\mathcal{L}u\|_{1,0} \\ &\leq &C\| u\|_{\mathbb{Z}}+C\| u\|_{\mathbb{Z}% }^2\leq C\varepsilon \end{eqnarray*} and \begin{eqnarray*} \| | \partial_x| ^{\frac{1}{2}-\beta }\mathcal{J}\partial _x\mathcal{I}u\|_{1,0} &\leq &\| | \partial_x| ^{% \frac{1}{2}-\beta }\mathcal{I}^2u\|_{1,0}+2t\| | \partial _x| ^{\frac{1}{2}-\beta }\mathcal{LI}u\|_{1,0} \\ &\leq &C\| u\|_{\mathbb{Z}}+C\| u\|_{\mathbb{Z}% }^2\leq C\varepsilon . \end{eqnarray*} We first estimate $\| \partial_{t}\mathcal{FU}( -t) u_x( t) \|_{0,1,\infty }$. We apply the Fourier transformation to equation (\ref{1.1}), then changing the dependent variable $\mathcal{F}u_x=e^{-\frac{it}{2}\xi ^2}w$, in view of (\ref{2.7}) we obtain \begin{equation} iw_{t}( t,\xi ) =\frac{i\xi t^{-\alpha }}{\sqrt{2\pi }}\int e^{-it\xi \eta }w( t,\xi +\eta ) \overline{w( t,\eta ) }d\eta , \label{4.3} \end{equation} where $w( t,\xi ) =\mathcal{FU}( -t) u_x$. For $% t\geq 1$, we integrate by parts with respect to $\eta $% \begin{eqnarray*} \lefteqn{\| \xi \int e^{-it\xi \eta }w( t,\xi +\eta ) \overline{% w( t,\eta ) }d\eta \|_{0,1,\infty } }\\ &\leq &C\langle t\rangle ^{-1}\| \int e^{-it\xi \eta }\partial_{\eta }( w( t,\xi +\eta ) \overline{w( t,\eta ) }) d\eta \|_{0,1,\infty }\leq C\langle t\rangle ^{-1}\| \partial_{\eta }w\|_{0,1}\| w\|_{0,1} \\ &\leq &C\langle t\rangle ^{-1}\| \mathcal{J}\partial _xu\|_{1,0}\| u\|_{2,0}\leq C\varepsilon ^2\langle t\rangle ^{2\gamma -1}; \end{eqnarray*} therefore, \begin{equation} t^{\alpha +1-2\gamma }\| \partial_{t}\mathcal{FU}( -t) u_x( t) \|_{0,1,\infty }<\varepsilon \label{4.4} \end{equation} for all $t\geq 1$. In the same manner \begin{equation} t^{\alpha +1-5\gamma }\| \partial_{t}\mathcal{FU}( -t) \mathcal{I}u_x( t) \|_{0,1,\infty }<\varepsilon . \label{4.5} \end{equation} We estimate the norm $\| u\|_{\mathbb{Z}}=\sum_{n=0}^{\infty }% \frac{t^{-n\gamma }}{n!}\| | \partial_x| ^{\frac{1}{2}% -\beta }\mathcal{I}^{n}u\|_{1,0}$ for all $t\geq 1$. Note that \begin{eqnarray*} \lefteqn{\sum_{n=0}^{\infty }\frac{t^{-\gamma n}}{n!}\| ( \mathcal{I}% +a) ^{n}u\|_{1,0} }\\ &\leq &\sum_{n=0}^{\infty }\frac{t^{-\gamma n}}{n!}\sum_{j=0}^{n}C_{n}^{j}% | a| ^{n-j}\| \mathcal{I}^{j}u\| _{1,0}=\sum_{n=0}^{\infty }\sum_{j=0}^{n-j}\frac{| a| ^{n-j}}{% ( n-j) !}\frac{t^{-\gamma n}}{j!}\| \mathcal{I}^{j}u\| _{1,0} \\ &=&\sum_{j=0}^{\infty }\frac{t^{-\gamma j}}{j!}\| \mathcal{I}% ^{j}u\|_{1,0}\sum_{k=j}^{\infty }\frac{| at| ^{k-j}}{% ( k-j) !}=e^{| a| t^{-\gamma }}\sum_{j=0}^{\infty }% \frac{t^{-\gamma j}}{j!}\| \mathcal{I}^{j}u\|_{1,0}\leq C\| u\|_{\mathbb{Z}} \end{eqnarray*} We have by Lemma \ref{L2.4} denoting $C_{n}^{m}=\frac{n!}{m!( n-m!) }$% \begin{eqnarray*} \| \mathcal{L}u\|_{\mathbb{Z}} &=&\| t^{-\alpha }| u_x| ^2\|_{\mathbb{Z}}=\sum_{n=0}^{\infty }\frac{% t^{-n\gamma }}{n!}\| | \partial_x| ^{\frac{1}{2}-\beta }% \mathcal{I}^{n}t^{-\alpha }| u_x| ^2\|_{1,0} \\ &=&t^{-\alpha }\sum_{n=0}^{\infty }\frac{t^{-n\gamma }}{n!}\| | \partial_x| ^{\frac{1}{2}-\beta }( \mathcal{I}-2\alpha ) ^{n}| u_x| ^2\|_{1,0} \\ &=&t^{-\alpha }\sum_{n=0}^{\infty }\frac{t^{-n\gamma }}{n!}% \sum_{j=0}^{n}C_{n}^{j}\| | \partial_x| ^{\frac{1}{2}% -\beta }( \mathcal{I}-2\alpha ) ^{n-j}u_x( \mathcal{I}% -2\alpha ) ^{j}\overline{u}_x\|_{1,0} \\ &=&\sum_{n=0}^{\infty }\sum_{j=0}^{n}\frac{t^{-\alpha -3n\gamma }}{( n-j) !j!}\| | \partial_x| ^{\frac{1}{2}-\beta }( ( \mathcal{I}-1-2\alpha ) ^{n-j}u)_x( ( \mathcal{I}-1-2\alpha ) ^{j}\overline{u})_x\| _{1,0} \\ &\leq &C\sum_{n=0}^{\infty }\sum_{j=0}^{n}\frac{t^{-\alpha -3n\gamma +\beta -1}}{( n-j) !j!}\| | \partial_x| ^{\frac{1}{2}% -\beta }( \mathcal{I}-1-2\alpha ) ^{n-j}u\|_{1,0} \\ &&( \| | \partial_x| ^{\frac{1}{2}-\beta }( \mathcal{I}-1-2\alpha ) ^{j}u\|_{1,0}+\| | \partial _x| ^{\frac{1}{2}-\beta }( \mathcal{I}-1-2\alpha ) ^{j}% \mathcal{J}\partial_xu\|_{1,0}) \\ &\leq &Ct^{-\alpha +\beta -1}\| u\|_{\mathbb{Z}}( \| u\|_{\mathbb{Z}}+\| \mathcal{I}u\|_{\mathbb{Z}}+t\| \mathcal{L}u\|_{\mathbb{Z}}) , \end{eqnarray*} hence we get \begin{eqnarray*} \| \mathcal{L}u\|_{\mathbb{Z}} &\leq &Ct^{-\alpha +\beta -1}\| u\|_{\mathbb{Z}}^2+Ct^{-\alpha +\beta -1}\| u\|_{\mathbb{Z}}\| \mathcal{I}u\|_{\mathbb{Z}} \\ &\leq &Ct^{-\gamma -1}( \| u\|_{\mathbb{Z}}+\| \mathcal{I}u\|_{\mathbb{Z}}) . \end{eqnarray*} In particular we have \begin{equation*} \| \mathcal{J}\partial_xu\|_{\mathbb{Z}}\leq C\| u\|_{\mathbb{Z}}+C\| \mathcal{I}u\|_{\mathbb{Z}}. \end{equation*} Using the commutation relations $\mathcal{I}^{n}\partial_x=\partial _x( \mathcal{I}+1) ^{n}$, $\mathcal{LI}^{n}=( \mathcal{I}% +2) ^{n}\mathcal{L}$, $\mathcal{I}^{n}t^{-\alpha }=t^{-\alpha }( \mathcal{I}-2\alpha ) ^{n}$ applying operator $\mathcal{I}$ to equation (\ref{1.1}) we get \begin{equation} \mathcal{LI}^{n}u=t^{-\alpha }( \mathcal{I}+2( 1-\alpha ) ) ^{n}| u_x| ^2. \label{4.6} \end{equation} Via (\ref{4.3}) we obtain \begin{eqnarray*} \lefteqn{\sum_{n=0}^{\infty }t^{-\alpha -\gamma n}( n!) ^{-1}\| | \partial_x| ^{\frac{1}{2}-\beta }( \mathcal{I}% +2-2\alpha ) ^{n}| u_x| ^2\|_{1,0} }\\ &\leq &C\sum_{n=0}^{\infty }t^{-\alpha -\gamma n}( n!) ^{-1}\sum_{m=0}^{n}C_{n}^{m}( 2-2\alpha ) ^{n-m} \\ &&\times \sum_{j=0}^{m}C_{m}^{j}\| | \partial_x| ^{\frac{1% }{2}-\beta }( ( \mathcal{I}+1) ^{j}u)_x\overline{% ( ( \mathcal{I}+1) ^{m-j}u)_x}\|_{1,0} \\ &\leq &Ct^{\beta -\alpha -1}\| u\|_{\mathbb{Z}}^2+Ct^{\beta -\alpha -1}\| u\|_{\mathbb{Z}}\| \mathcal{J}\partial _xu\|_{\mathbb{Z}} \\ &\leq &C\varepsilon t^{-\gamma -1}( \| u\|_{\mathbb{Z}% }+\| \mathcal{I}u\|_{\mathbb{Z}})\,. \end{eqnarray*} Using Lemma \ref{L2.4} we obtain \begin{eqnarray*} \lefteqn{\| | \partial_x| ^{\frac{1}{2}-\beta }( ( \mathcal{I}+1) ^{j}u)_x\overline{( ( \mathcal{I}% +1) ^{m-j}u)_x}\|_{1,0} }\\ &\leq &Ct^{\beta -1}\| | \partial_x| ^{\frac{1}{2}-\beta }( \mathcal{I}+1) ^{j}u\|_{1,0}\| | \partial _x| ^{\frac{1}{2}-\beta }( \mathcal{I}+1) ^{m-j}u\| _{1,0} \\ &&+Ct^{\beta -1}\| | \partial_x| ^{\frac{1}{2}-\beta }( \mathcal{I}+1) ^{j}u\|_{1,0}\| | \partial _x| ^{\frac{1}{2}-\beta }( \mathcal{I}+1) ^{m-j}\mathcal{J% }\partial_xu\|_{1,0} \\ &&+Ct^{\beta -1}\| | \partial_x| ^{\frac{1}{2}-\beta }( \mathcal{I}+1) ^{j}\mathcal{J}\partial_xu\| _{1,0}\| | \partial_x| ^{\frac{1}{2}-\beta }( \mathcal{I}+1) ^{m-j}u\|_{1,0}. \end{eqnarray*} Hence by the energy method, in view of (\ref{4.2}) we find \begin{equation} \frac{d}{dt}\| u\|_{\mathbb{Z}}\leq -\gamma t^{-1-\gamma }\| \mathcal{I}u\|_{\mathbb{Z}}+C\varepsilon t^{-\gamma -1}\| u\|_{\mathbb{Z}}+C\varepsilon t^{-\gamma -1}\| \mathcal{I}u\|_{\mathbb{Z}}\leq C\varepsilon t^{\beta -\alpha -1}\| u\|_{\mathbb{Z}}. \label{4.7} \end{equation} Integration of (\ref{4.7}) with respect to time $t\geq 1$ yields $\| u\|_{\mathbb{Z}}<\frac{\varepsilon }{2}$ for all $t\geq 1$. The norm $% \| | \partial_x| ^{\frac{1}{2}-\beta }u\|_{3,0}$ is estimated in the same manner as in the proof of Lemma \ref{L3.2}. Therefore, Lemma \ref{L4.2} is proved. \end{proof} Now we complete the proof of Theorem \ref{T1.2} by applying Lemmas \ref{L2.2} and \ref{L2.3} as in the previous section. \noindent\textbf{Acknowledgments.} The second author was partially supported by a grant from CONACYT. \begin{thebibliography}{99} \bibitem{be} H. Bateman and A. Erd\'{e}lyi, \textit{Tables of integral transforms,} McGraw-Hill Book Company, Inc., N.Y. 1954. \bibitem{c} S. Cohn, \textit{Resonance and long time existence for the quadratic nonlinear Schr\"{o}dinger equation, }Commun. Pure Appl. Math. \textbf{45} (1992), pp. 973-1001. \bibitem{h1} N. Hayashi, \textit{Global existence of small analytic solutions to nonlinear Schr\"{o}dinger equations,} Duke Math. J. \textbf{60} (1990), pp. 717-727. \bibitem{h} N. Hayashi, \textit{The initial value problem for the derivative nonlinear Schr\"{o}dinger equation in the energy space,} J. Nonlinear Anal. T.M.A. \textbf{32} (1993), pp. 823-833. \bibitem{ho} N.Hayashi and T.Ozawa, \textit{Remarks on nonlinear Sch\"{o}dinger equations in one space dimension,} Differential and Integral Equations, \textbf{7} (1994), pp.453-461 \bibitem{hn4} N. Hayashi and P.I. Naumkin, \textit{A quadratic nonlinear Schr\"{o}dinger equation in one space dimension,} Preprint, \textbf{\ }% (2000). \bibitem{hn5} N. Hayashi and P.I. Naumkin, \textit{Large time behavior of solutions for derivative cubic nonlinear Schr\"{o}dinger equations without a self-conjugate property}, Funkcialaj Ekvacioj \textbf{42 }(1999), pp. 311-324. \bibitem{hn12} N. Hayashi and P.I. Naumkin, \textit{On the reduction of the modified Benjamin - Ono equation to the cubic derivative nonlinear Schr\"{o}dinger equation,} Preprint 2000. \bibitem{hny1} N. Hayashi, P.I. Naumkin and Y. Yamazaki, \textit{Large time behavior of small solutions to subcritical derivative nonlinear Schr\"{o}dinger equations}, Proc. Amer. Math. Soc., to appear. \bibitem{o} T.~Ozawa, \textit{Remarks on quadratic nonlinear Schr\"{o}dinger equations.} {\ Funkcialaj Ekvacioj \textbf{38} (1995), pp. 217-232.} \bibitem{s} J. Shatah, \textit{Normal forms and quadratic nonlinear Klein-Gordon equations, }Commun. Pure Appl. Math. \textbf{38} (1985), pp. 685-696. \end{thebibliography} \end{document}