\documentclass[twoside]{article} \usepackage{amssymb, amsmath} \pagestyle{myheadings} \markboth{\hfil Existence of solution for quasilinear \dots \hfil EJDE--2001/71} {EJDE--2001/71\hfil Y. Akdim, E. Azroul, \& A. Benkirane \hfil} \begin{document} \title{\vspace{-1in}\parbox{\linewidth}{\footnotesize\noindent {\sc Electronic Journal of Differential Equations}, Vol. {\bf 2001}(2001), No. 71, pp. 1--19. \newline ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu \newline ftp ejde.math.swt.edu (login: ftp)} \vspace{\bigskipamount} \\ % Existence of solutions for quasilinear degenerate elliptic equations % \thanks{ {\em Mathematics Subject Classifications:} 35J15, 35J20, 35J70. \hfil\break\indent {\em Key words:} Weighted Sobolev spaces, Hardy inequality, \hfil\break\indent Quasilinear degenerate elliptic operators. \hfil\break\indent \copyright 2001 Southwest Texas State University. \hfil\break\indent Submitted October 16, 2001. Published November 26, 2001.} } \date{} % \author{ Y. Akdim, E. Azroul, \& A. Benkirane } \maketitle \begin{abstract} In this paper, we study the existence of solutions for quasilinear degenerate elliptic equations of the form $A(u)+g(x,u,\nabla u)=h$, where $A$ is a Leray-Lions operator from $W_0^{1,p}(\Omega,w)$ to its dual. On the nonlinear term $g(x,s,\xi)$, we assume growth conditions on $\xi$, not on $s$, and a sign condition on $s$. \end{abstract} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \renewcommand{\theequation}{\thesection.\arabic{equation}} \catcode`@=11 \@addtoreset{equation}{section} \catcode`@=12 \section{Introduction} Let $\Omega$ be a bounded open subset of $\mathbb{R}^N$, $p$ be a real number with $10$ independent of $u$. Moreover, the imbedding $ X\hookrightarrow L^q(\Omega, \sigma)$ is compact. \end{enumerate} Let $A$ be the nonlinear operator from $X$ into the dual $X^*$ defined as \begin{equation} Au=-\mathop{\rm div}(a(x,u,\nabla u)),\label{e1.4} \end{equation} where $a(x,s,\xi)=\{ a_i(x,s,\xi)\}$, $1\leq i\leq N$: $\Omega\times\mathbb{R}\times\mathbb{R}^N\to \mathbb{R}^N$ is a Carath\'eodory vector-valued function. \begin{enumerate} \item[(A2)] We assume that $$ |a_i(x,s,\xi)|\leq c_1 w_i^{1/p}(x)[k(x)+\sigma^{1/p'}|s| ^{\frac{q}{p'}}+\sum_{j=1}^Nw_j^{1/p'}(x)|\xi_j|^{p-1}], $$ for a.e. $x\in \Omega$, all $(s,\xi)\in \mathbb{R}\times\mathbb{R}^N$, all $i=1,\dots,N$, some function $k(x) \in L^{p'}(\Omega)$ $(\frac{1}{p}+\frac{1}{p'}=1)$ and some constant $c_1>0$. Here $\sigma$ and $q$ are as in (A1). \item[(A3)] For a.e. $x\in \Omega$, all $(s,\xi)\in \mathbb{R}\times \mathbb{R}^N$ and some constant $c_0>0$, we assume that $$ a(x,s,\xi).\xi\geq c_0\sum_{i=1}^N w_i(x)|\xi_i|^p\,. $$ \end{enumerate} Recently, Drabek, Kufner and Mustonen \cite{drkumu} proved that under the hypotheses (A0--A3) and certain monotonicity conditions, the Dirichlet problem associated with the equation $ Au=h$, $h\in X^*$ has at least one solution $u$ in $W_0^{1,p}(\Omega, w)$. See also \cite{akazbe}, where $A$ is of the form $-\mathop{\rm div}(a(x,u,\nabla u))+a_0(x,u,\nabla u)$. The purpose in this paper, is to prove the same result for the general nonlinear elliptic equation $$ Au+g(x,u,\nabla u)=h, h\in X^* %\leqno{(1.6)} $$ where $g$ is a nonlinear lower-order term having natural growth (of order $p$) with respect to $|\nabla u|$. Regarding $|u|$, we do not assume any growth restrictions. However, we assume the ``sign condition" $$ g(x,s,\xi).s\geq 0\,. %\leqno{(1.7)} $$ More precisely, we prove in theorem 3.1 an existence result for the problem \begin{equation} \begin{gathered} Au+g(x,u,\nabla u)=h\quad \mbox{ in }{\cal D}'(\Omega),\\ u\in W_0^{1,p}(\Omega,w),\quad g(x,u,\nabla u)\in L^1(\Omega), \quad g(x,u,\nabla u)u\in L^1(\Omega). \end{gathered} \label{calP} \end{equation} It turns out that for a solution $u$ of this system, the term $g(x,u,\nabla u)$ is in $L^1(\Omega)$. However, for a general $v\in W_0^{1,p}(\Omega,w)$, $g(x,v,\nabla v)$ can be very singular (see for example $\cite{bebomu}$ where $w\equiv 1$). Let us point out that more work in this direction can be found in \cite{drni} where the authors have studied the existence of bounded solutions for the degenerate elliptic equation $$Au-c_0|u|^{p-2}u=h(x,u,\nabla u),$$ with some more general degeneracy, under some additional assumptions on $h$ and $a(x,s,\xi)$. When $w\equiv 1$ (the non weighted case) existence results for the problem (\ref{calP}) have been shown in \cite{bebomu}. The present paper is organized as follows: In section 2, we give some preliminaries and we prove some technical lemmas concerning convergence in weighted Sobolev spaces. In section 3, we state our general result which will be proved in section 4. Section 5 is devoted to an example which illustrates our abstract hypotheses. Note that, in the proof of our main result, many ideas have been adapted from Bensoussan et al. \cite{bebomu}. \section{Preliminaries} \paragraph{Weighted Sobolev spaces.} Let $\Omega$ be a bounded open subset of $\mathbb{R}^N$ ($N\geq 1$), let $10$ independent of $u$. Moreover, the imbedding \begin{equation} X\hookrightarrow L^q(\Omega, \sigma), \label{e2.8} \end{equation} determined by the inequality (\ref{e2.7}) is compact. Now we state and prove the following technical lemmas which are needed later. \begin{lemma}\label{lem3.7} Let $g\in L^r(\Omega,\gamma)$ and let $ g_n\in L^r(\Omega,\gamma)$, with $\|g_n\|_{r,\gamma} \leq c$, $10\\ 0, &\mbox{if }u\leq 0 \end{array} \right. $$ $$ \frac{\partial(u^-)}{\partial x_i}=\left\{ \begin{array}{ll} 0, &\mbox{if } u\geq 0\\ -\frac{\partial u}{\partial x_i},&\mbox{if } u<0. \end{array} \right. $$ \end{lemma} \begin{lemma}\label{lem3.5} Assume that (H1) holds. Let $(u_n)$ be a sequence of $ W_0^{1,p}(\Omega,w)$ such that $u_n\rightharpoonup u$ weakly in $ W_0^{1,p}(\Omega,w)$. Then, $u_n^+\rightharpoonup u^+$ weakly in $W_0^{1,p}(\Omega,w)$ and $u_n^-\rightharpoonup u^-$ weakly in $W_0^{1,p}(\Omega,w)$. \end{lemma} \paragraph{Proof.} Since $u_n\rightharpoonup u$ in $W_0^{1,p}(\Omega,w)$ and by (2.8) we have for a subsequence $u_n\to u$ in $L^q(\Omega,\sigma)$ and a.e. in $\Omega$. On the other hand, \begin{align*} \||u_n|\|_X^p =& \sum_{i=1}^N\int_\Omega |\frac{\partial u_n}{\partial x_i}|^p w_i \geq \sum_{i=1}^N\int_{\{u_n\geq 0\}} | \frac{\partial u_n}{\partial x_i}|^p w_i \\ =& \sum_{i=1}^N\int_\Omega | \frac{\partial u_n^+}{\partial x_i}|^p w_i=\||u_n^+|\|_X^p\,. \end{align*} Then $(u_n^+)$ is bounded in $W_0^{1,p}(\Omega,w)$ hence by (\ref{e2.8}), $u_n^+\rightharpoonup u^+$ in $W_0^{1,p}(\Omega,w)$. Similarly, we prove that $u_n^-\rightharpoonup u^-$ in $W_0^{1,p}(\Omega,w)$. \section{Main result} Let $A$ be the nonlinear operator from $W_0^{1,p}(\Omega, w)$ into the dual $W^{-1,p'}(\Omega, w^*)$ defined as $$Au=-\mathop{\rm div}(a(x,u,\nabla u))\,,$$ where $a:\Omega\times\mathbb{R}\times\mathbb{R}^N\to \mathbb{R}^N$ is a Carath\'eodory vector-function satisfying the following assumptions: \begin{enumerate} \item[(H2)] For $i=1,\dots,N$, \begin{gather} |a_i(x,s,\xi)|\leq \beta w_i^{1/p}(x)[k(x)+\sigma^{1/p'} |s|^{\frac{q}{p'}}+\sum_{j=1}^Nw_j^{1/p'}(x)|\xi_j|^{p-1}]\,, \label{e3.1} \\ [a(x,s, \xi)-a(x,s,\eta)](\xi-\eta)>0\quad \mbox{for all } \xi\neq \eta\in \mathbb{R}^N\,, \label{e3.2} \\ a(x,s, \xi).\xi\geq\alpha \sum_{i=1}^Nw_i|\xi_i|^{p}, \label{e3.3} \end{gather} where $k(x)$ is a positive function in $L^{p'}(\Omega)$ and $\alpha, \beta$ are positive constants. \item[(H3)] $g(x,s,\xi)$ is a Carath\'eodory function satisfying \begin{gather} g(x,s,\xi)s\geq 0 \,, \label{e3.4}\\ |g(x,s,\xi)|\leq b(|s|)(\sum_{i=1}^Nw_i|\xi_i|^{p}+c(x)), \label{e3.5} \end{gather} where $b:\mathbb{R}^+\to \mathbb{R}^+$ is a continuous increasing function and $c(x)$ is positive function which in $L^1(\Omega)$. \end{enumerate} % For the nonlinear Dirichlet boundary-value problem (\ref{calP}), we state our main result as follows. \begin{theorem} Under assumptions (H1)-(H3) and $h\in W^{-1,p'}(\Omega,w^*)$, there exists a solution of (\ref{calP}). \end{theorem} \paragraph{Remarks.} (1) Theorem 3.1, generalizes to weighted case the analogous statement in $\cite{bebomu}$. \noindent(2) The assumption (\ref{e2.6}) appear to be necessary only for proving the boundedness of $g$ in $W_0^{1,p}(\Omega,w)$. Thus, when $g\equiv 0$, we do not need assumption~(\ref{e2.6}). \noindent(3) If we assume that $w_0(x)\equiv 1$ and that there exists $\nu\in ]\frac{N}{P},\infty[\cap [\frac{1}{P-1},\infty[$ such that $w_i^{-\nu}\in L^1(\Omega)$ for all $i=1,\dots,N$, (which is an integrability condition, stronger than (\ref{e2.2})), then $$\||u|\|_X=\Big(\sum_{i=1}^N\int_\Omega |\frac{\partial u(x)} {\partial x_i}|^p w_i(x)\,dx\Big)^{1/p}$$ is a norm defined on $W_0^{1,p}(\Omega,w)$ and equivalent to (\ref{e2.3}). Also we have that $$W_0^{1,p}(\Omega,w)\hookrightarrow L^q(\Omega) $$ for $1\leq q0$ and $u_n(x)\to u(x)$, $D_n(x)\to 0$. We set $\xi_n= \nabla u_n(x)$, $\xi= \nabla u(x)$. Then \begin{equation} \begin{aligned} D_n(x)=&[a(x,u_n,\xi_n)-a(x,u_n,\xi)](\xi_n-\xi)\\ \geq& \alpha\sum_{i=1}^N w_i|\xi_n^i|^p+ \alpha\sum_{i=1}^N w_i|\xi^i|^p\\ &-\sum_{i=1}^N\beta w_i^{1/p}[k(x)+\sigma^{1/p'}|u_n|^{\frac{q}{p'}} +\sum_{j=1}^Nw_j^{1/p'}|\xi_n^j|^{p-1}]|\xi^i|\\ &-\sum_{i=1}^{N}\beta w_i^{1/p}[k(x)+\sigma^{1/p'}|u_n|^{\frac{q}{p'}} +\sum_{j=1}^Nw_j^{1/p'}|\xi^j|^{p-1}]|\xi_n^i| \\ \geq& \alpha\sum_{i=1}^N w_i|\xi_n^i|^p-c_x \Big[1+\sum_{j=1}^Nw_j^{1/p'}|\xi_n^j|^{p-1} +\sum_{i=1}^Nw_i^{1/p}|\xi_n^i|\Big] \end{aligned} \label{e3.10} \end{equation} where $c_x$ is a constant which depends on $x$, but does not depend on $n$. Since $u_n(x)\to u(x)$ we have $|u_n(x)|\leq M_x$ where $M_x$ is some positive constant. Then by a standard argument $|\xi_n|$ is bounded uniformly with respect to $n$; indeed (\ref{e3.10}) becomes, $$ D_n(x)\geq \sum_{i=1}^N |\xi_n^i|^p \Big(\alpha w_i-\frac{c_x}{N|\xi_n^i|^p}-\frac{c_xw_i^{1/p'}}{|\xi_n^i|}- \frac{c_xw_i^{1/p}}{|\xi_n^i|^{p-1}}\Big). $$ If $|\xi_n|\to \infty$ (for a subsequence) there exists at least one $i_0$ such that $|\xi_n^{i_0}|\to \infty$, which implies that $D_n(x)\to \infty$ which gives a contradiction. Let now $\xi^*$ be a cluster point of $\xi_n$. We have $|\xi^*|< \infty $ and by the continuity of $a$ with respect to the two last variables we obtain $$(a(x,u(x),\xi^*)-a(x,u(x),\xi))(\xi^*-\xi)=0. $$ In view of (\ref{e3.2}) we have $\xi^*=\xi$. The uniqueness of the cluster point implies $$ \nabla u_n(x)\to \nabla u(x)\quad\mbox{a.e. in }\Omega.%\leqno{(3.11)} $$ Since the sequence $a(x,u_n,\nabla u_n)$ is bounded in $\prod_{i=1}^N L^{p'}(\Omega,w_i^*)$ and \\ $a(x,u_n,\nabla u_n)\to a(x,u,\nabla u)$ a.e. in $\Omega$, Lemma \ref{lem3.7} implies $$ a(x,u_n,\nabla u_n)\rightharpoonup a(x,u,\nabla u) \quad \mbox{in }\prod_{i=1}^N L^{p'}(\Omega,w_i^*)\mbox{ and a.e. in }\Omega. $$ We set $\bar y_n=a(x,u_n,\nabla u_n)\nabla u_n$ and $\bar y=a(x,u,\nabla u)\nabla u$. As in \cite[Lemma 5]{bomupu} we can write $$\bar y_n\to \bar y\quad \mbox{in }L^1(\Omega).%\leqno{(3.12)} $$ By (\ref{e3.3}) we have $$ \alpha\sum_{i=1}^N w_i|\frac{\partial u_n}{\partial x_i}|^p\leq a(x,u_n, \nabla u_n)\nabla u_n\,.%\leqno{(3.13)} $$ Let $z_n=\sum_{i=1}^N w_i|\frac{\partial u_n}{\partial x_i}|^p$, $z=\sum_{i=1}^N w_i|\frac{\partial u}{\partial x_i}|^p$, $y_n=\frac{\bar y_n}{\alpha}$ and $y=\frac{\bar y}{\alpha}$. Then, by Fatou's theorem we obtain $$\int_\Omega 2y\,dx\leq \liminf_{n\to \infty} \int_\Omega y+y_n-|z_n-z|\,dx $$ i.e. $0\leq -\limsup_{n\to \infty} \int_\Omega |z_n-z|\,dx$ then $$0 \leq \liminf_{n\to \infty} \int_\Omega |z_n-z|\,dx\leq \limsup_{n\to \infty} \int_\Omega |z_n-z|\,dx\leq 0,$$ this implies, $$\nabla u_n\to \nabla u \ \mbox{ in }\prod_{i=1}^N L^p(\Omega, w_i),$$ which with (\ref{e2.5}) completes the present proof. \section{Proof of Theorem 3.1} {\bf Step (1)} The approximate problem. Let $$g_\varepsilon (x,s,\xi)=\frac{g(x,s,\xi)}{1+\varepsilon|g(x,s,\xi)|}$$ and consider the equation \begin{equation} \begin{gathered} A(u_\varepsilon)+g_\varepsilon(x,u_\varepsilon,\nabla u_\varepsilon)=h\\ u_\varepsilon\in W_0^{1,p}(\Omega,w) \end{gathered} \label{pe} \end{equation} We define the operator $G_\varepsilon:\ X\to X^*$ by $$\langle G_\varepsilon u,v\rangle =\int_\Omega g_\varepsilon(x,u,\nabla u)v\,dx.$$ Thanks to H\"older's inequality, for all $v\in X$ and $\varphi \in X$, \begin{equation} \begin{aligned} |\int_\Omega g_\varepsilon(x,v,\nabla v)\varphi\,dx| \leq &\Big(\int_\Omega |g_\varepsilon(x,v,\nabla v)|^{q'} \sigma^{-\frac{q'}{q}}\,dx\Big)^{1/q'} \Big(\int_\Omega |\varphi|^{q}\sigma\,dx\Big)^{1/q}\\ \leq& \frac{1}{\varepsilon} \Big(\int_\Omega \sigma^{1-q'} \,dx\Big)^{1/q'}\|\varphi\|_{q,\sigma} \leq c_\varepsilon\||\varphi|\| \end{aligned} \label{e4.1} \end{equation} For the above inequality, we have used (\ref{e2.6}) and (\ref{e2.8}). \begin{lemma}\label{lem3.9} The operator $A+G_\varepsilon\ :X\to X^*$ is bounded, coercive, hemicontinous ,and satisfies property (M). \end{lemma} In view of Lemma \ref{lem3.9}, Problem (\ref{pe}) has a solution by a classical result \cite[Theorem 2.1 and Remark 2.1]{li}. Since $g_\varepsilon$ verifies the sign condition and using (\ref{e3.3}), we obtain $$\alpha\sum_{i=1}^N \int_\Omega w_i| \frac{\partial u_\varepsilon}{\partial x_i}|^p \leq \langle h,u_\varepsilon \rangle $$ i.e. $\alpha\||u_\varepsilon|\|^p\leq c\|h\|_{X^*}\||u_\varepsilon|\|$. Then \begin{equation} \||u_\varepsilon|\|\leq \beta_0, \label{e4.2} \end{equation} where $\beta_0$ is some positive constant. Hence, we can extract a subsequence still denoted by $u_\varepsilon$ such that, $$ u_\varepsilon\rightharpoonup u \mbox{ in } W_0^{1,p}(\Omega,w) \mbox{ and a.e. in }\Omega. %\leqno{(4.3)} $$ {\bf Step (2)} Convergence of the positive part of $u_\varepsilon$. We shall prove that $$u_\varepsilon^+\to u^+\mbox{ in }W_0^{1,p}(\Omega,w) \quad\mbox{strongly.} %\leqno{(4.4)} $$ Let $k>0$. Define $u_k^+=u^+\wedge k=\min\{u^+,k\}$. We shall fix $k$, and use the notation $$z_\varepsilon=u_\varepsilon^+-u_k^+.%\leqno{(4.5)} $$ {\bf Assertion:} \begin{equation} \limsup_{\varepsilon\to 0}\int_\Omega [a(x,u_\varepsilon, \nabla u_\varepsilon^+)-a(x,u_\varepsilon,\nabla u_k^+)] \nabla(u_\varepsilon^+-u_k^+)^+\,dx\leq R_k \label{e4.6} \end{equation} where $R_k\to 0$ as $k\to +\infty$. Indeed, by Lemmas \ref{lem3.2} and \ref{lem3.3}, we have $z_\varepsilon \in W_0^{1,p}(\Omega,w)$ and $z_\varepsilon^+\in W_0^{1,p}(\Omega,w)$. Multiplying (\ref{pe}) by $z_\varepsilon^+$ we obtain $$\langle Au_\varepsilon, z_\varepsilon^+\rangle +\int_\Omega g_\varepsilon(x,u_\varepsilon,\nabla u_\varepsilon) z_\varepsilon^+\,dx=\langle h,z_\varepsilon^+\rangle .%\leqno{(4.7)} $$ If $z_\varepsilon^+>0$, we have $u_\varepsilon>0$ and from (\ref{e3.4}) $g_\varepsilon(x,u_\varepsilon,\nabla u_\varepsilon)\geq 0$, then $\langle Au_\varepsilon, z_\varepsilon^+\rangle \leq \langle h,z_\varepsilon^+\rangle$ i.e. $$ \int_\Omega a(x,u_\varepsilon,\nabla u_\varepsilon)\nabla z_\varepsilon^+\,dx \leq \langle h,z_\varepsilon^+\rangle . $$ Since $u_\varepsilon=u_\varepsilon^+$ in $\{x\in \Omega : z_\varepsilon^+>0\}$ then $$ \int_\Omega a(x,u_\varepsilon,\nabla u_\varepsilon^+)\nabla z_\varepsilon^+\,dx \leq \langle h,z_\varepsilon^+\rangle .$$ Which implies \begin{multline} \int_\Omega [a(x,u_\varepsilon,\nabla u_\varepsilon^+)-a(x,u_\varepsilon, \nabla u_k^+)]\nabla(u_\varepsilon^+-u_k^+)^+\,dx \\ \leq -\int_\Omega a(x,u_\varepsilon,\nabla u_k^+)] \nabla(u_\varepsilon^+-u_k^+)^++\langle h,z_\varepsilon^+\rangle . \label{e4.8} \end{multline} As $\varepsilon\to 0$, we have $z_\varepsilon^+\to (u^+-u_k^+)^+$ a.e. in $\Omega$. However $z_\varepsilon^+$ is bounded in $W_0^{1,p}(\Omega,w)$; hence $$z_\varepsilon^+\rightharpoonup (u^+-u_k^+)^+\quad \mbox{in }W_0^{1,p}(\Omega,w).$$ Since $a(x,u_\varepsilon,\nabla u_k^+)\to a(x,u,\nabla u_k^+)$ in $\prod_{i=1}^{N}L^{p'}(\Omega,w_i^*)$, by passing to the limit in $\varepsilon$ in (\ref{e4.8}), we obtain (\ref{e4.6}) with $$ R_k= -\int_\Omega a(x,u,\nabla u_k^+)]\nabla(u^+-u_k^+)^++ \langle h,(u^+-u_k^+)^+\rangle .%\leqno{(4.9)} $$ Because $(u^+-u_k^+)^+\to 0$ in $W_0^{1,p}(\Omega,w)$ as $k\to \infty$, we have $R_k\to 0$ as $ k\to \infty$.\\ {\bf Assertion:} \begin{equation} -\liminf_{\varepsilon\to 0}\int_\Omega [a(x,u_\varepsilon, \nabla u_\varepsilon^+)-a(x,u_\varepsilon,\nabla u_k^+)]\nabla(u_\varepsilon^+ -u_k^+)^-\,dx\leq 0. \label{e4.10} \end{equation} Indeed, we shall use the test function $v_\varepsilon= \varphi_\lambda(z_\varepsilon^-)$ with $\varphi_\lambda(s)=se^{\lambda s^2}$ in (\ref{pe}). We have $0\leq z_\varepsilon^-\leq k $, i.e. $z_\varepsilon^- \in L^\infty(\Omega)$ and since $z_\varepsilon^- \in W_0^{1,p}(\Omega,w)$, hence by Lemma $\ref{lem3.1}$, we have $v_\varepsilon \in W_0^{1,p}(\Omega,w)$. Multiplying (\ref{pe}) by $v_\varepsilon$ we obtain $$\int_\Omega a(x,u_\varepsilon,\nabla u_\varepsilon)\nabla z_\varepsilon^- \varphi_\lambda'(z_\varepsilon^-)\,dx +\int_\Omega g_\varepsilon(x,u_\varepsilon,\nabla u_\varepsilon) \varphi_\lambda(z_\varepsilon^-)\,dx=\langle h,\varphi_\lambda(z_\varepsilon^-) \rangle .%\leqno{(4.11)} $$ Define $$ E_\varepsilon=\{x\in \Omega : u_\varepsilon^+(x)\leq u_k^+(x)\} \quad\mbox{and}\quad F_\varepsilon=\{x\in \Omega: 0\leq u_\varepsilon(x) \leq u_k^+(x)\}.$$ Since $\varphi_\lambda(z_\varepsilon^-)=0$ in $E_\varepsilon^c$, $$ \int_\Omega g_\varepsilon(x,u_\varepsilon,\nabla u_\varepsilon) \varphi_\lambda(z_\varepsilon^-)\,dx=\int_{E_\varepsilon} g_\varepsilon(x,u_\varepsilon,\nabla u_\varepsilon) \varphi_\lambda(z_\varepsilon^-)\,dx. %\leqno{(4.12)} $$ When $u_\varepsilon\leq 0$, we have $g_\varepsilon(x,u_\varepsilon, \nabla u_\varepsilon)\leq 0$ and since $\varphi_\lambda(z_\varepsilon^-)\geq 0$, we obtain \begin{align*} \int_{E_\varepsilon}& g_\varepsilon(x,u_\varepsilon,\nabla u_\varepsilon) \varphi_\lambda(z_\varepsilon^-)\,dx \\ \leq & \int_{F_\varepsilon} g_\varepsilon(x,u_\varepsilon,\nabla u_\varepsilon)\varphi_\lambda (z_\varepsilon^-)\,dx\\ \leq &\int_{F_\varepsilon} b(|u_\varepsilon|)[\sum_{i=1}^Nw_i| \frac{\partial u_\varepsilon}{\partial x_i}|^p+c(x)] \varphi_\lambda(z_\varepsilon^-)\,dx\\ \leq & b(k)\int_{F_\varepsilon} [\sum_{i=1}^Nw_i|\frac{\partial u_\varepsilon}{\partial x_i}|^p+c(x)]\varphi_\lambda(z_\varepsilon^-)\,dx\\ \leq &\frac{b(k)}{\alpha}\int_{F_\varepsilon}a(x,u_\varepsilon, \nabla u_\varepsilon)\nabla u_\varepsilon \varphi_\lambda(z_\varepsilon^-)\,dx+b(k)\int_{F_\varepsilon}c(x) \varphi_\lambda(z_\varepsilon^-). \end{align*} %\leqno{(4.13)} As in $\cite[Theorem 1.1]{bebomu}$, we can show that \begin{align*} -\frac{1}{2}&\int_\Omega [a(x,u_\varepsilon,\nabla u_\varepsilon^+) -a(x,u_\varepsilon,\nabla u_k^+)]\nabla (u_\varepsilon^+-u_k^+)^-\\ \leq& \int_\Omega [a(x,u_\varepsilon,\nabla u_\varepsilon)-a(x,u_\varepsilon, \nabla u_\varepsilon^+)]\nabla u_k^+\varphi_\lambda'(u_k^+)\,dx +\langle -h,\varphi_\lambda(z_\varepsilon^-)\rangle \\ &+\int_\Omega a(x,u_\varepsilon,\nabla u_k^+)\nabla z_\varepsilon^- \varphi_\lambda'(z_\varepsilon^-)\,dx +\frac{b(k)}{\alpha}\int_\Omega a(x,u_\varepsilon,\nabla u_\varepsilon^+) \nabla u_k^+\varphi_\lambda(z_\varepsilon^-)\,dx\\ &+ \frac{b(k)}{\alpha}\int_\Omega a(x,u_\varepsilon,\nabla u_k^+)\nabla (u_\varepsilon^+-u_k^+)\varphi_\lambda(z_\varepsilon^-)\,dx+b(k) \int_\Omega c(x)\varphi_\lambda(z_\varepsilon^-)\,dx, \end{align*} %\leqno{(4.14)} for $\lambda=\frac{b(k)^2}{4\alpha^2}$. For short notation, we rewrite the above inequality as $$ I_{\varepsilon k}\leq I_{\varepsilon k}^1+I_{\varepsilon k}^2 +I_{\varepsilon k}^3+I_{\varepsilon k}^4+I_{\varepsilon k}^5. %\label{e4.15} $$ Now, we extract a subsequence that satisfies the following two conditions: \begin{equation} a(x,u_\varepsilon,\nabla u_\varepsilon)\rightharpoonup\gamma_1 \quad\mbox{and}\quad a(x,u_\varepsilon,\nabla u_\varepsilon^+)\rightharpoonup\gamma_2 \quad \mbox{in } \prod_{i=1}^{N}L^{p'}(\Omega,w_i^*)\,. \label{e4.16} \end{equation} \begin{lemma}\label{lem3.8} For $k$ fixed, as $\varepsilon\to 0$, the following statements hold: \begin{enumerate} \item[(a)] $I_{\varepsilon k}^1\to I_k^1 =\int_\Omega[\gamma_1-\gamma_2]\nabla u_k^+\varphi_\lambda'(u_k^+)\,dx +\langle -h,\varphi_\lambda((u^+-u_k^+)^-)\rangle $ \item[(b)] $I_{\varepsilon k}^2\to I_k^2=\int_\Omega a(x,u,\nabla u_k^+) \nabla ((u^+-u_k^+)^-)\varphi_\lambda'((u^+-u_k^+)^-)$ \item[(c)] $I_{\varepsilon k}^3\to I_k^3=\frac{b(k)}{\alpha}\int_\Omega \gamma_2\nabla u_k^+\varphi_\lambda((u^+-u_k^+)^-)\,dx$ \item[(d)] $I_{\varepsilon k}^4\to I_k^4=\frac{b(k)}{\alpha} \int_\Omega a(x,u,\nabla u_k^+)\nabla (u^+-u_k^+)\varphi_\lambda ((u^+-u_k^+)^-)\,dx$ \item[(e)] $I_{\varepsilon k}^5\to I_k^5=b(k)\int_\Omega c(x)\varphi_\lambda ((u^+-u_k^+)^-)\,dx$ \end{enumerate} \end{lemma} In view of Lemma \ref{lem3.8}, $(u^+-u_k^+)^-=0$ and $\varphi_\lambda(0)=0$, we have $$\limsup_{\varepsilon \to 0}I_{\varepsilon k}\leq I_{k}^1+ I_{k}^2+I_{k}^3+I_{k}^4+I_{k}^5=\int_\Omega[\gamma_1(x)-\gamma_2(x)] \nabla u_k^+\varphi_\lambda'(u_k^+)\,dx.$$ Moreover, if $u_\varepsilon <0$ we have $(u_\varepsilon)_k^+=0$, hence, $$(a(x,u_\varepsilon,\nabla u_\varepsilon)-a(x,u_\varepsilon, \nabla u_\varepsilon^+))(u_\varepsilon)^+_k= 0\quad\mbox{a.e.} $$ which implies $(\gamma_1(x)-\gamma_2(x))u_k^+=0$, and so $\limsup_{\varepsilon \to 0}I_{\varepsilon k}\leq 0$; thus, (\ref{e4.10}) follows. \noindent{\bf Assertion:} \begin{equation} u_\varepsilon^+\to u^+\quad \mbox{in }W_0^{1,p}(\Omega,w)\quad \mbox{strongly}. \label{e4.17} \end{equation} As in \cite[theorem 1.1]{bebomu}, from (\ref{e4.6})and (\ref{e4.10}), we have \begin{multline*} \limsup_{\varepsilon\to 0}\int_\Omega [a(x,u_\varepsilon,\nabla u_\varepsilon^+) -a(x,u_\varepsilon,\nabla u^+)]\nabla(u_\varepsilon^+-u^+)\\ \leq R_k+\int_\Omega [\gamma_2(x)-a(x,u,\nabla u_k^+)]\nabla(u_k^+-u^+). \end{multline*} Letting $k\to \infty$ and using lemma \ref{lem3.6} we obtain (\ref{e4.17}). \noindent{\bf Step (3)} Convergence of the negative part of $u_\varepsilon$. As in the preceding step, we shall prove that \begin{equation} u_\varepsilon^-\to u^-\ \mbox{ in }W_0^{1,p}(\Omega,w)\quad \mbox{strongly}. \label{e4.18} \end{equation} {\bf Assertion:} \begin{equation} \limsup_{\varepsilon\to 0}\int_\Omega -[a(x,u_\varepsilon, -\nabla u_\varepsilon^-)-a(x,u_\varepsilon,-\nabla u_k^-)] \nabla(u_\varepsilon^--u_k^-)^+\,dx\leq \tilde R_k, \label{e4.19} \end{equation} where $\tilde R_k\to 0$ as $k\to +\infty$. Indeed, when we define $u_k^-=u^-\wedge k$, $y_\varepsilon=u_\varepsilon^--u_k^-$, and multiply (\ref{pe}) by $y_\varepsilon^+$, we obtain $$ \int_\Omega a(x,u_\varepsilon,\nabla u_\varepsilon)\nabla y_\varepsilon^+\,dx +\int_\Omega g_\varepsilon(x,u_\varepsilon,\nabla u_\varepsilon) y_\varepsilon^+\,dx=\langle h,y_\varepsilon^+\rangle .$$ Since $y_\varepsilon^+>0$ implies $u_\varepsilon<0$, from $(3.4)$ we have $g_\varepsilon(x,u_\varepsilon,\nabla u_\varepsilon)\leq 0$. Hence $g_\varepsilon(x,u_\varepsilon,\nabla u_\varepsilon)y_\varepsilon^+\leq 0$ a.e. in $\Omega$. Then $$ \int_\Omega a(x,u_\varepsilon,\nabla u_\varepsilon)\nabla y_\varepsilon^+ \,dx \geq \langle h,y_\varepsilon^+\rangle . $$ Since $u_\varepsilon=-u_\varepsilon^-$ on the set $\{x\in \Omega: y_\varepsilon^+>0\}$, we can write $$\int_\Omega a(x,u_\varepsilon,-\nabla u_\varepsilon^-)\nabla y_\varepsilon^+\,dx\geq \langle h,y_\varepsilon^+\rangle ,$$ which implies \begin{multline*} -\int_\Omega [a(x,u_\varepsilon,-\nabla u_\varepsilon^-)-a(x,u_\varepsilon, -\nabla u_k^-)]\nabla(u_\varepsilon^--u_k^-)^+\,dx\\ \leq \int_\Omega a(x,u_\varepsilon,-\nabla u_k^-) \nabla(u_\varepsilon^--u_k^-)^+-\langle h,y_\varepsilon^+\rangle . \end{multline*} As $\varepsilon\to 0$ we have $y_\varepsilon^+\to (u^--u_k^-)^+$ a.e. in $\Omega$. Since $y_\varepsilon^+$ is bounded in $W_0^{1,p}(\Omega,w)$, $y_\varepsilon^+\rightharpoonup (u^--u_k^-)^+$ in $W_0^{1,p}(\Omega,w)$ (for $k$ fixed). Passing to the limit in $\varepsilon$ we obtain (\ref{e4.19}) with $$\tilde R_k= \int_\Omega a(x,u,-\nabla u_k^-)\nabla(u^--u_k^-)^+- \langle h,(u^--u_k^-)^+\rangle .$$ Because $(u^--u_k^-)^+\to 0$ in $W_0^{1,p}(\Omega,w)$ as $k\to \infty$ we obtain that $\tilde R_k\to 0$ as $ k\to \infty$. \noindent{\bf Assertion:} \begin{equation} \limsup_{\varepsilon\to 0}\int_\Omega [a(x,u_\varepsilon, -\nabla u_\varepsilon^-)-a(x,u_\varepsilon,-\nabla u_k^-)] \nabla(u_\varepsilon^--u_k^-)^-\,dx\leq 0\,. \label{e4.20} \end{equation} This can be done as in (\ref{e4.10}) by considering a test function $v_\varepsilon=\varphi_\lambda(y_\varepsilon^-)$. Finally combining (\ref{e4.19}) and (\ref{e4.20}), we deduce as in (\ref{e4.17}) the assertion (\ref{e4.18}). \noindent{\bf Step (4)} Convergence of $u_\varepsilon$. From (\ref{e4.17}) and (\ref{e4.18}), we deduce that for a subsequence, \begin{gather} u_\varepsilon\to u \quad\mbox{in }W_0^{1,p}(\Omega,w) \quad\mbox{ and a.e. in }\Omega \label{e4.21} \\ \nabla u_\varepsilon\to \nabla u\quad\mbox{a.e. in }\Omega, \label{e4.22} \end{gather} which implies \begin{equation} \begin{gathered} g_\varepsilon(x,u_\varepsilon,\nabla u_\varepsilon)\to g(x,u,\nabla u) \quad\mbox{ a.e. in }\Omega\\ g_\varepsilon(x,u_\varepsilon,\nabla u_\varepsilon)u_\varepsilon\to g(x,u,\nabla u)u\quad\mbox{a.e. in }\Omega. \end{gathered}\label{e4.23} \end{equation} On the other hand, multiplying (\ref{pe}) by $u_\varepsilon$ and using (\ref{e3.3}), (\ref{e3.4}), (\ref{e4.1}), (\ref{e4.2}) we obtain \begin{equation} 0\leq \int_\Omega g_\varepsilon(x,u_\varepsilon, \nabla u_\varepsilon)u_\varepsilon\,dx\leq \tilde\beta, \label{e4.24} \end{equation} where $\tilde\beta$ is some positive constant. For any measurable subset $E$ of $\Omega$ and any $m>0$, we have $$\int_E |g_\varepsilon(x,u_\varepsilon,\nabla u_\varepsilon)|\,dx =\int_{E\cap X_m^\varepsilon}|g_\varepsilon(x,u_\varepsilon, \nabla u_\varepsilon)|\,dx+\int_{E\cap Y_m^\varepsilon} |g_\varepsilon(x,u_\varepsilon,\nabla u_\varepsilon)|\,dx$$ where \begin{equation} X_m^\varepsilon=\{x\in \Omega: |u_\varepsilon(x)|\leq m\},\quad Y_m^\varepsilon=\{x\in \Omega: |u_\varepsilon(x)|> m\} \label{e4.25} \end{equation} From this and (\ref{e3.5}),(\ref{e4.24}),(\ref{e4.25}), we have \begin{align*} \int_E |g_\varepsilon(x,u_\varepsilon,\nabla u_\varepsilon)|\,dx \leq& \int_{E\cap X_m^\varepsilon}|g_\varepsilon(x,u_\varepsilon, \nabla u_\varepsilon)|\,dx +\frac{1}{m}\int_\Omega g_\varepsilon(x,u_\varepsilon, \nabla u_\varepsilon)u_\varepsilon\,dx\\ \leq & b(m)\int_E (\sum_{i=1}^{N}w_i|\frac{\partial u_\varepsilon}{\partial x_i}|^p+c(x))+\tilde\beta\frac{1}{m}. \end{align*} %\label{e4.26} Since the sequence ($\nabla u_\varepsilon$) converges strongly in $\prod_{i=1}^NL^p(\Omega,w_i)$, then above inequality implies the equi-integrability of $g_\varepsilon(x,u_\varepsilon,\nabla u_\varepsilon)$. Thanks to (\ref{e4.23}) and Vitali's theorem, \begin{equation} g_\varepsilon(x,u_\varepsilon,\nabla u_\varepsilon)\to g(x,u,\nabla u) \quad \mbox{strongly in }L^1(\Omega). \label{e4.27} \end{equation} From (\ref{e4.21}) and (\ref{e4.27}) we can pass to the limit in $$\langle Au_\varepsilon,v\rangle +\int_\Omega g_\varepsilon(x,u_\varepsilon, \nabla u_\varepsilon)v=\langle h,v\rangle $$ and we obtain \begin{equation} \langle Au,v\rangle +\int_\Omega g(x,u,\nabla u)v=\langle h,v\rangle \quad \forall v\in W_0^{1,p}(\Omega,w)\cap L^\infty(\Omega). \label{e4.28} \end{equation} Moreover, since $g_\varepsilon(x,u_\varepsilon,\nabla u_\varepsilon) u_\varepsilon\geq 0$ a.e. in $\Omega$, by (\ref{e4.23}), (\ref{e4.24}) and Fatou's lemma, we have $g(x,u,\nabla u)u\in L^1(\Omega)$. %\leqno{(4.29)} It remains to show that, $$\langle Au,u\rangle +\int_\Omega g(x,u,\nabla u)u=\langle h,u\rangle . $$ Put $v=u_k$ in (\ref{e4.28}) where $u_k$ is the truncation of $u$. Then $$\langle Au-h,u_k\rangle \to \langle Au-h,u\rangle $$ and $$g(x,u,\nabla u)u_k\to g(x,u,\nabla u)u\mbox{ in }L^1(\Omega)\,.$$ Using Lebesgue's dominated convergence theorem, since $$|g(x,u,\nabla u)u_k|\leq |g(x,u,\nabla u)||u|\in L^1(\Omega)\, $$ we conclude that $g(x,u,\nabla u)u_k\to g(x,u,\nabla u)u$ a.e. in $\Omega$. \paragraph{Proof of Lemma \ref{lem3.9}} We set $B_\varepsilon=A+G_\varepsilon$. Using (\ref{e3.1}) and H\"older's inequality we can show that $A$ is bounded \cite{drkumu}. Thanks to (\ref{e4.1}) we have $B_\varepsilon$ bounded. The coercivity follows from (\ref{e3.3}) and (\ref{e3.4}). To show that $B_\varepsilon$ is hemicontinous, let $t\to t_0$ and prove that $$\langle B_\varepsilon (u+tv),\tilde w\rangle \to \langle B_\varepsilon (u+t_0v),\tilde w \rangle \mbox{ as } t\to t_0 \quad\mbox{for all } u,v,\tilde w\in X. $$ Since for a.e. $x\in \Omega$, $a_i(x,u+tv,\nabla(u+tv))\to a_i(x,u+t_0v,\nabla(u+t_0v))$ as $t\to t_0$, thanks to the growth condition (\ref{e3.1}), Lemma \ref{lem3.7} implies $$ a_i(x,u+tv,\nabla(u+tv))\rightharpoonup a_i(x,u+t_0v,\nabla(u+t_0v)) \quad\mbox{in }L^{p'}(\Omega,w_i^{1-p'})\quad\mbox{as }t\to t_0\,. $$ Finally for all $\tilde w\in X$, $$\langle A(u+tv), \tilde w\rangle \to \langle A(u+t_0v),\tilde w \rangle \quad\mbox{as }t\to t_0. $$ On the other hand, $g_\varepsilon(x,u+tv,\nabla(u+tv)) \to g_\varepsilon(x,u+t_0v,\nabla(u+t_0v))$ as $t\to t_0$ for a.e. $x \in\Omega$. Also $(g_\varepsilon(x,u+tv+\nabla(u+tv)))_t$ is bounded in $L^{q'}(\Omega,\sigma^{1-q'})$ because $$\int_\Omega |g_\varepsilon (x,u+tv,\nabla(u+tv))|^{q'}\sigma^{1-q'} \leq (\frac{1}{\varepsilon})^{q'}\int_\Omega \sigma^{1-q'} \leq c_\varepsilon,$$ then Lemma \ref{lem3.7} gives $$g_\varepsilon(x,u+tv,\nabla(u+tv)) \rightharpoonup g_\varepsilon(x,u+t_0v,\nabla(u+t_0v)) \ \mbox{ in }L^{q'}(\Omega,\sigma^{1-q'})\ \mbox{ as }t\to t_0. $$ Since $\tilde w\in L^q(\Omega,\sigma)$ for all $\tilde w\in X$, $$\langle G_\varepsilon(u+tv),\tilde w\rangle \to \langle G_\varepsilon(u+t_0v),\tilde w\rangle \quad\mbox{as } t\to t_0. $$ Next we show that $B_\varepsilon $ satisfies property (M); i.e. for a sequence $u_j$ in $X$ satisfying: (i) $u_i\rightharpoonup u$ in $X$, (ii) $B_\varepsilon u_j \rightharpoonup \chi$ in $X^*$, and (iii) $\limsup_{j\to \infty} \langle B_\varepsilon u_j,u_j-u \rangle \leq 0$, we have $\chi=B_\varepsilon u$. Indeed, by H\"older's inequality and (\ref{e2.8}), \begin{align*} \int_\Omega g_\varepsilon (x,u_j,&\nabla u_j)(u_j-u) \\ \leq& \Big(\int_\Omega |g_\varepsilon(x,u_j,\nabla u_j)|^{q'} \sigma^{-q'/q}\,dx\Big)^{1/q'} \Big(\int_\Omega|u_j-u|^q \sigma \,dx\Big)^{1/q}\\ \leq &\frac{1}{\varepsilon}\Big(\int_\Omega \sigma^{\frac{-q'}{q}}\,dx\big) ^{1/q'}\|u_j-u\|_{q,\sigma}\to 0\quad \mbox{as }j\to \infty, \end{align*} i.e., $\langle G_\varepsilon u_j,u_j-u\rangle \to 0$ as $j\to \infty$. Combining the last convergence with (iii), we obtain $$\limsup_{j\to \infty}\langle Au_j,u_j-u\rangle \leq 0. $$ And by the pseudo-monotonicity of $A$ \cite[Prop. 1]{drkumu}, we have $Au_j\rightharpoonup Au$ in $X^*$ and $\lim_{j\to \infty}\langle Au_j,u_j-u\rangle =0$. On the other hand, \begin{align*} 0=&\lim_{j\to \infty}\int_\Omega a(x,u_j,\nabla u_j)\nabla(u_j-u)\,dx\\ =&\lim_{j\to \infty}\int_\Omega (a(x,u_j,\nabla u_j)- a(x,u_j,\nabla u)) \nabla(u_j-u)\,dx\\ &+\int_\Omega a(x,u_j,\nabla u)\nabla(u_j-u)\,dx\,. \end{align*} The last integral in the right hand tends to zero since $a(x,u_j,\nabla u)\to a(x,u,\nabla u)$ in $\prod_{i=1}^{N}L^{p'}(\Omega,w_i^{1-p'})$ as $j\to \infty$; hence, by Lemma \ref{lem3.6} we have $\nabla u_j\to \nabla u$ a.~e. in $\Omega$. Then $$ g_\varepsilon(x,u_j,\nabla u_j)\to g_\varepsilon(x,u,\nabla u) \quad\mbox{a.e. in }\Omega\quad \mbox{as }j\to \infty. $$ And since $$ |g_\varepsilon(x,u_j,\nabla u_j)\sigma^{\frac{1-q'}{q'}}| \leq \frac{1}{\varepsilon}\sigma^{\frac{1-q'}{q'}}\in L^{q'}(\Omega) \quad (\mbox{due to (\ref{e2.6}}), $$ by Lebesgue's dominated convergence theorem, we obtain $$ g_\varepsilon(x,u_j,\nabla u_j)\to g_\varepsilon(x,u,\nabla u)\quad \mbox{in } L^{q'}(\Omega,\sigma^{1-q'})\quad \mbox{as }j\to\infty, $$ which with (\ref{e2.8}) imply $$ \int_\Omega g_\varepsilon(x,u_j,\nabla u_j)v\,dx\to \int_\Omega g_\varepsilon(x,u,\nabla u)v\,dx \quad \mbox{as } j\to \infty, \quad \mbox{for all }v\in X, $$ i.e., $G_\varepsilon u_j\rightharpoonup G_\varepsilon u$ in $X^*$. Finally, $$ B_\varepsilon u_j=Au_j+G_\varepsilon u_j\rightharpoonup Au+G_\varepsilon u=B_\varepsilon u=\chi \mbox{ in }X^*. $$ \paragraph{Proof of Lemma \ref{lem3.8}} Part (a) follows from $\nabla \varphi_\lambda(u_k^+)\in \prod_{i=1}^{N}L^{p}(\Omega,w_i)$ and (\ref{e4.16}). Using Lemma \ref{lem3.7}, $\nabla(\varphi_\lambda(z_\varepsilon^-))\rightharpoonup \nabla(\varphi_\lambda(u^+-u_k^+)^-)$ in $\prod_{i=1}^{N}L^{p}(\Omega,w_i)$; then part (b) follows since $a(x,u_\varepsilon,\nabla u_k^+)\to a(x,u,\nabla u_k^+)$ in $\prod_{i=1}^{N}L^{p'}(\Omega,w_i^*)$. To prove part (c), we have $$\frac{\partial u_k^+}{\partial x_i}\varphi_\lambda(z_\varepsilon^-)w_i^{1/p} \to \frac{\partial u_k^+}{\partial x_i}\varphi_\lambda((u^+-u_k^+)^-)w_i^{1/p} \quad\mbox{a.e. in }\Omega $$ and $$|\frac{\partial u_k^+}{\partial x_i}\varphi_\lambda(z_\varepsilon^-)w_i^{1/p}|^p\leq \tilde\beta |\frac{\partial u_k^+}{\partial x_i}w_i^{1/p}|^p\in L^1(\Omega),$$ where $\tilde \beta$ is a positive constants. Then, by Lebesgue's dominated convergence theorem we have $$\frac{\partial u_k^+}{\partial x_i}\varphi_\lambda(z_\varepsilon^-)\to \frac{\partial u_k^+}{\partial x_i}\varphi_\lambda((u^+-u_k^+)^-)\quad \mbox{ in }L^p(\Omega,w_i),$$ i.e. $\nabla u_k^+\varphi_\lambda(z_\varepsilon^-)\to \nabla u_k^+\varphi_\lambda((u^+-u_k^+)^-)$ in $\prod_{i=1}^NL^p(\Omega,w_i)$. Then by (\ref{e4.16}) we obtain part (c). To prove part (d), we have $$a_i(x,u_\varepsilon,\nabla u_k^+)\varphi_\lambda((u_\varepsilon^+-u_k^+)^-) w_i^{\frac{1-p'}{p'}}\to a_i(x,u,\nabla u_k^+) \varphi_\lambda((u^+-u_k^+)^-)w_i^{\frac{1-p'}{p'}}$$ a.e. in $\Omega$, and $$|a_i(x,u_\varepsilon,\nabla u_k^+)\varphi_\lambda((u_\varepsilon^+ -u_k^+)^-)w_i^{\frac{1-p'}{p'}}|^{p'}\leq M |a_i(x,u_\varepsilon, \nabla u_k^+)|^{p'}w_i^{1-p'}\,.$$ Then the generalized Lebesgue's dominated convergence theorem implies $$a_i(x,u_\varepsilon,\nabla u_k^+)\varphi_\lambda((u_\varepsilon^+-u_k^+)^-) \to a_i(x,u,\nabla u_k^+)\varphi_\lambda((u^+-u_k^+)^-)\quad\mbox{in }L^{p'} (\Omega,w_i^*)\,. $$ Since $\nabla(u_\varepsilon^+-u_k^+)\rightharpoonup\nabla(u^+-u_k^+)$ in $L^{p}(\Omega,w_i)$ we conclude part (d). Part (e) follows from $|c(x)\varphi_\lambda((u^+-u_k^+)^-)|\in L^1(\Omega)$ and Lebesgue's dominated convergence theorem. \section{Example} Some ideas of this example come from \cite{drkumu}. Let $\Omega$ be a bounded domain of $\mathbb{R}^N$ $(N\geq 1)$, satisfying the cone condition. Let us consider the Carath\'eodory functions: \begin{gather*} a_i(x,s,\xi)=w_i|\xi_i|^{p-1}\mathop{\rm sgn}(\xi_i)\quad \mbox{for } i=1,\dots,N \\ %\leqno{(5.1)} g(x,s,\xi)=\mathop{\rm sgn}(s)\sum_{i=1}^Nw_i|\xi_i|^p\,,%\leqno{(5.2)} \end{gather*} where $w_i(x$) are a given weight functions strictly positive almost everywhere in $\Omega$. We shall assume that the weight functions satisfy, $$ w_i(x)=w(x),\quad x\in \Omega,\quad \mbox{for all }i=0,\dots,N. $$ Then, we consider the Hardy inequality (\ref{e2.7}) in the form, $$(\int_\Omega|u(x)|^q\sigma(x)\,dx)^{1/q} \leq c(\int_\Omega |\nabla u(x)|^pw)^{1/p}.%\leqno{(5.4)} $$ It is easy to show that the $a_i(x,s,\xi)$ are Carath\'eodory functions satisfying the growth condition (\ref{e3.1}) and the coercivity (\ref{e3.3}). Also the Carath\'eodory function $g(x,s,\xi)$ satisfies the conditions (\ref{e3.4}) and (\ref{e3.5}). On the other hand, the monotonicity condition is verified. In fact, \begin{multline*} \sum_{i=1}^N(a_i(x,s,\xi)-a_i(x,s,\hat\xi))(\xi_i-\hat\xi_i) \\ =w(x)\sum_{i=1}^N(|\xi_i|^{p-1}\mathop{\rm sgn}\xi_i-|\hat\xi_i|^{p-1} \mathop{\rm sgn}\hat \xi_i)(\xi_i-\hat\xi_i)>0 \end{multline*} for almost all $x\in \Omega$ and for all $\xi,\hat\xi\in \mathbb{R}^N$ with $\xi\neq \hat\xi$, since $w>0$ a.e. in $\Omega$. In particular, let us use the special weight functions $w$ and $\sigma$ expressed in terms of the distance to the boundary $\partial \Omega$. Denote $d(x)=\mathop{\rm dist}(x,\partial\Omega)$ and set $$ w(x)=d^\lambda(x),\quad \sigma(x)=d^\mu(x). $$ In this case, the Hardy inequality reads $$ \Big(\int_\Omega |u(x)|^q\;d^\mu(x)\,dx\Big)^{1/q} \leq c\Big(\int_\Omega |\nabla u(x)|^p\;d^\lambda(x)\,dx \Big)^{1/p}\,.% %\leqno{(5.5)} $$ The corresponding imbedding is compact if: (i) For, $1< p\leq q<\infty$, \begin{equation} \lambda< p-1,\quad \frac{N}{q}-\frac{N}{p}+1\geq 0,\quad \frac{\mu}{q}-\frac{\lambda}{p}+\frac{N}{q}-\frac{N}{p}+1>0,\label{e5.6} \end{equation} (ii) For $1\leq q0, \label{e5.7} \end{equation} (iii) For $q>1$, \begin{equation} \mu(q'-1)<1\,. \label{e5.8} \end{equation} \paragraph{Remarks.} \begin{enumerate} \item Condition (\ref{e5.6}) or (\ref{e5.7}) are sufficient for the compact imbedding (\ref{e2.8}) to hold; see for example \cite[Example 1]{drkumu}, \cite[Example 1.5]{drkuni}, and \cite[Theorems 19.17, 19.22]{opku}. \item Condition (\ref{e5.8}) is sufficient for (\ref{e2.6}) to hold \cite[pp. 40-41]{ku}. \end{enumerate} % Finally, the hypotheses of Theorem 3.1 are satisfied. Therefore, (\ref{calP}) has at least one solution. \begin{thebibliography}{00} \frenchspacing \bibitem{akazbe} Y. Akdim, E. Azroul and A. Benkirane, {\em Pseudo-monotonicity and degenerate elliptic operators of second order,} (submitted). \bibitem{be} O.T. Bengt, {\em Nonlinear Potential Theory and Weighted Sobolev Spaces,} Spinger-Verlag Berlin Heidelberg (2000). \bibitem{bebomu} A. Bensoussan, L. Boccardo and F. Murat, {\em On a non linear partial differential equation having natural growth terms and unbounded solution,} Ann. Inst. Henri Poincar\'e {\bf 5} No. 4 (1988), 347-364. \bibitem{bomupu} L. Boccardo, F. Murat and J.P. Puel, {\em Existence of bounded solutions for non linear elliptic unilateral problems,} Ann. Mat. Pura Appl. {\bf 152} (1988), 183-196. \bibitem{drkumu} P. Drabek, A. Kufner and V. Mustonen, {\em Pseudo-monotonicity and degenerate or singular elliptic operators,} Bull. Austral. Math. Soc. Vol. {\bf 58} (1998), 213-221. \bibitem{drkuni} P. Drabek, A. Kufner and F. Nicolosi, {\em Non linear elliptic equations, singular and degenerate cases,} University of West Bohemia, (1996). \bibitem{drni} P. Drabek and F. Nicolosi, {\em Existence of bounded solutions for some degenerate quasilinear elliptic equations,} Annali di Mathematica pura ed applicata (IV), Vol. CLXV (1993), pp. 217-238. \bibitem{tr} D. Gilbarg and N.S. Trudinger, {\em Elliptic partial differential equations of second order,} Springer-Verlag, Berlin, 1977. \bibitem{ku} A. Kufner, {\em Weighted Sobolev Spaces,} John Wiley and Sons, (1985). \bibitem{li} J. L. Lions, {\em Quelques m\'ethodes de r\'esolution des probl\`emes aux limites non lin\'eaires,} Dunod, Paris (1969). \bibitem{leli} J. Leray and J. L. Lions, {\em Quelques r\'esultats de Vi$\tilde s$ik sur des probl\`emes elliptiques non lin\'eaires par les m\'ethodes de Minty-Browder,} Bul. Soc. Math. France {\bf 93} (1965), 97-107. \bibitem{opku} B. Opic and A. Kufner, {\em Hardy-type inequalities}, Pitman Research Notes in Mathematics Series {\bf 219}(Longman Scientific and Technical, Harlow, 1990). \end{thebibliography} \noindent\textsc{Y. Akdim} (e-mail: y.akdim1@caramail.com)\\ \textsc{E. Azroul} (e-mail: elazroul@caramail.com)\\ {A. Benkirane} (e-mail: abdelmoujib@iam.net.ma )\\[2pt] D\'epartement de Math\'ematiques et Informatique, Facult\'e des Sciences Dhar-Mahraz, B.P. 1796 Atlas, F\`es, Maroc. \end{document}