\documentclass[twoside]{article} \usepackage{amssymb,amsmath} \pagestyle{myheadings} \markboth{\hfil Existence of solutions of a variational unilateral system \hfil EJDE--2002/22} {EJDE--2002/22\hfil M. R. Clark \& Osmundo A. Lima \hfil} \begin{document} \title{\vspace{-1in}\parbox{\linewidth}{\footnotesize\noindent {\sc Electronic Journal of Differential Equations}, Vol. {\bf 2002}(2002), No. 22, pp. 1--18. \newline ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu \newline ftp ejde.math.swt.edu (login: ftp)} \vspace{\bigskipamount} \\ % Existence of solutions for a variational unilateral system % \thanks{ {\em Mathematics Subject Classifications:} 35L85, 49A29. \hfil\break\indent {\em Key words:} weak solutions, variational unilateral nonlinear problem, Galerkin method, \hfil\break\indent penalization method. \hfil\break\indent \copyright 2001 Southwest Texas State University. \hfil\break\indent Submitted November 17, 2000. Published February 21, 2002. \hfil\break\indent M. R. Clark was a visiting professor of State University of Piau\'{\i} } } \date{} % \author{Marcondes R. Clark \& Osmundo A. Lima} \maketitle \begin{abstract} In this work the authors study the existence of weak solutions of the nonlinear unilateral mixed problem associated to the inequalities $$ \displaylines{ u_{tt}-M(| \nabla u| ^{2})\Delta u+\theta \geq f, \cr \theta_t-\Delta \theta +u_t\geq g ,} $$ where $f$, $g$, $M$ are given real-valued functions with $M$ positive. \end{abstract} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \renewcommand{\theequation}{\thesection.\arabic{equation}} \catcode`@=11 \@addtoreset{equation}{section} \catcode`@=12 \section{Introduction} Let $\Omega $ be a bounded and open set of $\mathbb{R}^n$, with smooth boundary $\Gamma =\partial \Omega $, and let $T$ be a positive real number. Let $\mathbb{Q}=\Omega \times ]0,T[$ be the cylinder with lateral boundary $\Sigma =\Gamma \times ]0,T[$. We study the variational nonlinear system \begin{gather} u_{tt}-M(| \nabla u| ^{2})\Delta u+\theta \geq f \quad\text{ in }\quad Q, \\ \theta_t-\Delta \theta +u_t\geq g \quad \text{in } \quad Q, \\ u=\theta =0 \quad\text{in }\quad\Sigma \\ u(0) =u_{0}, \quad u'(0) =u_1, \quad \theta(0) =\theta_{0}. \end{gather} The above system with $M(s)=m_{0}+m_1s$ ($m_{0}$ and $m_1$ positive constants) and $\theta =0$ is a nonlinear perturbation of the canonical Kirchhof model \begin{equation} u_{tt}-\big(m_{0}+ m_1\int_{\Omega }| \nabla u^{2}dx\big)\Delta u=f\,. \tag{1.5} \end{equation} This model describes small vibrations of a stretched string when only the transverse component of the tension is considered, see for example, Arosio \& Spagnolo \cite{a1}, Pohozaev \cite{p1}. Several authors have studied (1.5). For $\Omega $ bounded, we can cite: D'ancona \& Spagnolo \cite{d1}, Medeiros \& Milla Miranda \cite{m1}, Hosoya \& Yamada \cite{h1}, Lions \cite{l1}, Medeiros \cite{m2}, and Matos \cite{m1}. For $\Omega $ unbounded, we can cite Bisiguin \cite{b1}, Clark \& Lima \cite{c2}, and Matos \cite{m1}. The system (1.1)--(1.4) was studied also in the case when (1.1) and (1.2) are equations, see for example \cite{c1}. In the present work we show the existence of a weak solution for the variational nonlinear system (1.1)--(1.4), under appropriate assumptions on $M$, $f$ and $g$. We employ Galerkin's approximation method and the penalization method used by Frota \& Lar'kin \cite{f1}. \section{Notation and main result} We represent the Sobolev space of order $m$ on $\Omega $ by $$W^{m,p}(\Omega )=\{u\in L^{p}(\Omega);\,D^{\alpha }u\in L^{p}(\Omega ), \forall \;| \alpha | \leq m\}$$ and its associated norm by \begin{equation*} \| u\|_{m,p}=\Big(\sum_{| \alpha | \leq m}| D^{\alpha }u|_{L^{p}(\Omega ) }^{p}\Big)^{1/p},\quad u\in W^{m,p}(\Omega ) , \quad 1\leq p<\infty\,. \end{equation*} When $p=2$, we have the usual Sobolev space $H^{m}(\Omega )$. Let $D(\Omega )$ be the space of the test functions on $\Omega $, and let $W_{0}^{m,p}(\Omega )$ be the closure of $D(\Omega )$ in $W^{m,p}(\Omega )$. When $p=2$, we have $W_{0}^{2,p}(\Omega)=H_{0}^{m}(\Omega )$. The dual space of $W^{m,p}_{0}(\Omega)$ is denoted by $W^{-m,p'}(\Omega)$, with $p'$ such that $\frac{1}{p} + \frac{1}{p'} = 1$. For the rest of this paper we use the symbol $(\cdot,\cdot)$ to indicate the inner product in $L^2(\Omega)$, and $((\cdot,\cdot))$ to indicate the inner product in $H_0^1(\Omega)$. Let $\mathbb{K}=\{\psi \in W_{0}^{2,4}(\Omega );|\Delta \psi |\leq 1$ and $\psi \geq 0$ a. e. in $\Omega $ \}. Then we have the following proposition whose proof can be found in \cite{f1} \begin{proposition} \label{prop2.1} The set $\mathbb{K}$ is a closed and connected in $W_{0}^{2,4}(\Omega )$. \end{proposition} \paragraph{Definition} Let $V$ be a Banach space and $V'$ its dual. An operator $\beta$ from $V$ to $V'$ is called hemicontinous if the function \begin{equation*} \lambda \to \langle \beta (u+\lambda v),w\rangle \end{equation*} is continuous for all $\lambda \in \mathbb{R}$. The operator $\beta $ is called monotone if \begin{equation*} \langle \beta (u)-\beta (v),u-v\rangle \geq 0,\quad \forall u,v\in V. \end{equation*} We consider the penalization operator $\beta:W_{0}^{2,4}(\Omega )\to W^{-2,4/3}(\Omega )$ such that $\beta (z)=\beta_{1}(z)+\beta_{2}(z)$, $z\in W_{0}^{2,4}(\Omega )$, where $\beta_{1}(z)$ and $\beta_{2}(z)$ are defined by \begin{gather*} \langle \beta_{1}(z) ,v\rangle =-\int_{\Omega }z^{-}(x) v(x) dx, \\ \langle \beta_{2}(z) ,v\rangle =-\int_{\Omega }(1-| \Delta z(x) | ^{2})^{-}\Delta z(x) \Delta v(x) dx \end{gather*} for all $v$ in $W_{0}^{2,4}(\Omega )$. \begin{proposition} \label{prop2.2} The operator $\beta$ defined above satisfies the following coditions: \begin{itemize} \item[i)] $\beta$ is monotone and hemicontinous \item[ii)] $\beta$ is bounded; this is, $\beta(S)$ is bounded in $W^{2,4/3}(\Omega )$ for all bounded set $S$ in $W^{2,4}_{0}(\Omega)$. \item[iii)] $\beta(u) = 0$ if only if $u$ belongs to $\mathbb{K}$. \end{itemize} \end{proposition} The proof of this proposition can be found in \cite{f1}. In this article, we assume the following hypotheses: \begin{enumerate} \item[A1)] $M\in C^{1}[0,\infty )$, $M(s) \geq 0$ for $s\geq 0$, and $\int_{0}^{\infty }M(s) ds=\infty$ \item[A2)] $f,g$ belong to $H^{1}(0,T;L^{2}(\Omega )$. \end{enumerate} The main result of this paper is stated as follows. \begin{theorem} \label{thm2.1} Assume A1) and A2). For $u_{0}\in H_{0}^{1}(\Omega )\cap H^{2}(\Omega )$, $u_1,\theta_{0}$ in the interior of $\mathbb{K}$, there exist functions $u,\theta :\mathbb{Q}\to \mathbb{R}$ such that \begin{gather} u\in L^{\infty }(0,T;\;H_{0}^{1}(\Omega ) \cap H^{2}( \Omega ) ) \\ u'\in L^{1}(0,T;\;W_{0}^{2,4}(\Omega ) )\text{ and } u'(t) \in \mathbb{K}\text{ a.e. in }[0,T] \\ u''\in L^{\infty }(0,T;\;L^{2}(\Omega ) ) \\ \theta \in L^{\infty }(0,T;\;H_{0}^{1}(\Omega ) )\;\text{ and } \theta(t) \in \mathbb{K} \text{ a.e. in }[0,T]\,. \end{gather} Also \begin{gather} (u''(t) -M(\| u(t) \|^{2})\Delta u(t) +\theta (t) -f(t) ,v-u'(t) \geq 0, \;\forall v\in \mathbb{K\;}\text{ a.e. in }[0,T] \\ (\theta '(t) -\Delta \theta (t) +u'(t) -g(t) , v-\theta (t) )\geq 0\; \forall v\in \mathbb{K\;}\text{ a.e. in }[0,T] \\ u(0) =u_{0}, \; u'(0) =u_1, \;\theta(0) =\theta_{0}\,. \end{gather} \end{theorem} To obtain the solution $\{u,\theta \}$ of problem (2.1)--(2.4) in Theorem \ref{thm2.1}, we consider the following associated penalized problem. For $0<\varepsilon <1$, consider \begin{gather} u_{\varepsilon }''(t) -M(\|u_{\varepsilon }(t) \| ^{2}) \Delta u_{\varepsilon }(t) +\theta_{\varepsilon }(t) + \frac{1}{\varepsilon }\beta (u_{\varepsilon }'(t) ) =f(t) \text{ \ in }Q \tag{2.8} \\ \theta_{\varepsilon }'(t) -\Delta \theta _{\varepsilon }(t) +u_{\varepsilon }'+\frac{1}{ \varepsilon }\beta (\theta_{\varepsilon }(t) ) =g(t) \text{ \ in }Q \tag{2.9} \\ u_{\varepsilon }(0) =u_{0\varepsilon }, u_{\varepsilon}'(0) =u_{1\varepsilon }, \theta_{\varepsilon }(0) =\theta_{0\varepsilon }\text{ in }\Omega \tag{2.10} \end{gather} Here $\beta $ is a penalization operator, $M$, $f$, and $g$ are as above. The solution $\{u_{\varepsilon },\theta_{\varepsilon }\}$ of the penalized problem (2.8)--(2.10) are guaranteed by the following theorem. \begin{theorem} \label{thm2.2} Suppose the hypotheses of the Theorem \ref{thm2.1} hold, and for \linebreak $0<\varepsilon <1$, then there exist functions $\{u_{\varepsilon },\theta_{\varepsilon }\}$ such that \begin{gather} u_{\varepsilon },\theta_{\varepsilon }\in L^{\infty }( 0,T;H_{0}^{1}(\Omega ) \cap H^{2}(\Omega ) ) \tag{2.11} \\ u_{\varepsilon }'\in L^{4}(0,T;W_{0}^{2,4}(\Omega )) \tag{2.12} \\ u_{\varepsilon }''\in L^{\infty }(0,T;L^{2}(\Omega ) ) \tag{2.13} \\ \theta_{\varepsilon }\in L^{4 }(0,T;W_{0}^{2,4}(\Omega) ) \tag{2.14} \\ (u_{\varepsilon }''(t) ,v) +M( \| u_{\varepsilon }(t) \| ^{2}) (( u_{\varepsilon}(t) ,v) ) +(\theta_{\varepsilon }(t) ,v)+ \frac{1}{\varepsilon }\langle\beta (u_{\varepsilon }'(t) ) ,v\rangle \nonumber \\ =(f(t) ,v) \text{ a.e. in $[0,T]$ for all $v\in W^{2,4}_{0}(\Omega )$,}\tag{2.15} \\ % (\theta_{\varepsilon }'(t) ,v) +( (\theta_{\varepsilon}(t) ,v) ) +(u_{\varepsilon}'(t) ,v) +\frac{1}{\varepsilon }\langle \beta (\theta_{\varepsilon }(t) ) ,v\rangle \nonumber\\ =(g(t) ,v) \text{a.e. in $[0,T]$ for all $v\in W^{2,4}_{0}(\Omega ) $,} \tag{2.16}\\ % u_{\varepsilon }(0) =u_{0\varepsilon}, u_{\varepsilon}'(0) =u_{1\varepsilon }, \theta_{\varepsilon }(0) =\theta_{0\varepsilon } . \tag{2.17} \end{gather} \end{theorem} \paragraph{Proof} We will use Galerkin's method and a compactness argument. \noindent \textbf{First step} (Approximated system) Let $w_1,\ldots ,w_{m},\ldots $ be an orthonormal base of $W_{0}^{2,4}(\Omega ) $ consisting of eigenfunctions of the Laplacian operator. Let \linebreak $V_{m}=[w_1,\ldots ,w_{m}]$ the subspace of $W_{0}^{2,4}(\Omega ) $, generated by the first $m$ vectors $w_{j}$. We look for a pair of functions $$u_{\varepsilon m}(t) =\sum_{j=1}^{m}g_{jm}(t) w_{j}, \quad \theta_{\varepsilon m}(t) =\sum_{j=1}^{m}h_{jm}(t) w_{j}\quad \text{ in}\quad V_{m}$$ with $g_{jm}\in C^{2}([0,T]) $ and $h_{jm}\in C^{1}([0,T])$, for all $j=1,\ldots ,m$. Which are solutions of the following system of ordinary differential equations \begin{gather} (u_{\varepsilon m}''(t) ,w_{j}) +M(\| u_{\varepsilon m}(t) \| ^{2}) ((u_{\varepsilon m}(t) ,w_{j}) ) +( \theta_{\varepsilon m}(t) ,w_{j}) + \nonumber\\ \frac{1}{\varepsilon }\langle \beta (u_{\varepsilon m}'(t) ) ,w_{j}\rangle =(f(t) ,w_{j}), \tag{2.18} \\ (\theta_{\varepsilon m}'(t) ,w_{j}) +((\theta_{\varepsilon m}(t) ,w_{j}) ) +(u'_{\varepsilon m}(t) ,w_{j}) + \nonumber\\ \frac{1}{\varepsilon } \langle \beta (\theta_{\varepsilon m}( t) ) ,w_{j}\rangle =(g(t) ,w_{j}), \tag{2.19} \end{gather} for $j=1,\ldots ,m$, with the initial conditions: $u_{\varepsilon m}(0) =u_{0\varepsilon m}$, $u_{\varepsilon m}'(0) =u_{1\varepsilon m}$, $\theta_{\varepsilon m}(0) =\theta_{0\varepsilon m}$, where \begin{equation} \begin{gathered} u_{0\varepsilon m}=\sum_{j=1}^{m}(u_{0\varepsilon },w_{j} ) w_{j}\to u_{0} \text{ strongly in }H_{0}^{1}(\Omega ) \cap H^{2}(\Omega ), \\ u_{1\varepsilon m}=\sum_{j=1}^{m}(u_{1\varepsilon},w_{j}) w_{j}\to u_1 \text{ strongly in } H_{0}^{1}(\Omega ), \\ \theta_{0\varepsilon m}=\sum_{j=1}^{m}(\theta_{0\varepsilon},w_{j}) w_{j} \to \theta_{0}\text{ strongly in } W_{0}^{2,4}(\Omega). \end{gathered} \tag{2.20} \end{equation} The system (2.18)--(2.20) contains $2m$ unknowns functions $g_{jm}(t), h_{jm}(t)$; \linebreak $j=1,2,\ldots ,m$. By Caratheodory's Theorem it follows that (2.18)--(2.20) has a local solution $\{u_{\varepsilon m}(t) , \theta_{\varepsilon m}(t) \}$ on $[0,t_{m}[$. In order to extend these local solution to the interval $[0,T[$ and to take the limit in $m$, we must obtain some a priori estimates. \noindent{\bf Estimate (i)} Note that finite linear combinations of the $w_{j}$ are dense in $W_{0}^{2,4}(\Omega ) $, then we can take $w\in W_{0}^{2,4}(\Omega) $ in (2.18) and (2.19) instead of $w_{j}$. Taking $w=2u_{\varepsilon m}'(t) $ in (2.18) and $w=2\theta_{\varepsilon m}(t) $ in (2.19) we obtain \begin{gather} \frac{d}{dt}| u_{\varepsilon m}'(t) | ^{2} +\frac{d}{dt}\widehat{M}(\| u_{\varepsilon m}(t)\| ^{2}) +\frac{2}{\varepsilon }\langle \beta (u_{\varepsilon m}'(t) ) ,u_{\varepsilon m}'(t) \rangle \nonumber\\ =2(f(t) ,u_{\varepsilon m}'(t)) -2(\theta_{\varepsilon m}(t), u_{\varepsilon m}'(t) ), \tag{2.21} \\ \frac{d}{dt}| \theta_{\varepsilon m}(t) |^{2} +\| \theta_{\varepsilon m}(t) \| ^{2} +\frac{2}{\varepsilon }\langle \beta (\theta_{\varepsilon m}(t) ) ,\theta_{\varepsilon m}(t) \rangle \nonumber\\ =-2(u_{\varepsilon m}'(t) ,\theta_{\varepsilon m}(t) ) +2\langle g(t) ,\theta_{\varepsilon m}(t) \rangle\,, \tag{2.22} \end{gather} where $\widehat{M}(\lambda ) =\int_{0}^{\lambda }M(s) ds$. Adding (2.21) and (2.22), and integrating from $0$ to $t\leq t_{m}$ we have \begin{equation} \begin{aligned} | u_{\varepsilon m}'(t) |^2+| \theta_{\varepsilon m}(t) |^2+ \int_{0}^{\| u_{\varepsilon m}(t) \|^2}M(s)ds+ \int_{0}^{t}\|\theta_{\varepsilon m}(s) \|^2ds+ \\ \frac{2}{\varepsilon }\int_{0}^{t}\langle \beta (u_{\varepsilon m}'(s) ) ,u_{\varepsilon m}'(s) \rangle ds+ \frac{2}{\varepsilon }\int_{0}^{t}\langle \beta (\theta_{\varepsilon m}(s) ) ,\theta_{\varepsilon m}(s) \rangle ds \leq \\ \int_{0}^{T}| f(t) |^{2}ds+3\int_{0}^{t}| u_{\varepsilon m}'(s)|^2ds+ 3\int_{0}^{t}| \theta_{\varepsilon m}(s) |^2ds+ \\ \int_{0}^{T}| g(t) |^2dt+| \theta_{0\varepsilon m}|^2+| u_{1\varepsilon m}|^2. \end{aligned} \tag{2.23} \end{equation} From (2.20) and hypothesis (A2) there exists a positive constant $C$, independently of $\varepsilon >0$ and $m$ such that \begin{equation} \begin{aligned} | u_{\varepsilon m}'(t) | ^{2}+| \theta_{\varepsilon m}(t) | ^{2}+\int_{0}^{\| u_{\varepsilon m}(t) \|^{2}}M(s) ds+ \int_{0}^{t}\| \theta_{\varepsilon m}(s) \| ^{2}ds+ \\ \frac{2}{\varepsilon }\Big[ \int_{0}^{t}\langle \beta ( u_{\varepsilon m}'(s) ) ,u_{\varepsilon m}'(s) \rangle ds +\int_{0}^{t}\langle \beta (\theta _{\varepsilon m}(s) ) ,\theta_{\varepsilon m}(s) \rangle ds\Big] \leq\\ C+3\int_{0}^{t}| u_{\varepsilon m}'(s) | ^{2}ds+3\int_{0}^{t}| \theta_{\varepsilon m}(s) | ^{2}ds. \end{aligned} \tag{2.24} \end{equation} Next we analyze the sign of the term $\int_{0}^{t}\langle \beta ( u_{\varepsilon m}'(s) ) ,u_{\varepsilon m}'(s) \rangle ds$. Note that $-u_{\varepsilon m}'(t) \leq u_{\varepsilon m}'(t) ^{-}$. Then, by the definition of $\beta $, we have $$ \begin{aligned} \langle \beta (u_{\varepsilon m}'(t) ),u_{\varepsilon m}'(t) \rangle =& \langle \beta_{1}( u_{\varepsilon m}'(t) ) ,u_{\varepsilon m}'(t) \rangle+ \langle \beta_{2}(u_{\varepsilon m}'(t) ) ,u_{\varepsilon m}'(t) \rangle \\ =& -\int_{\Omega }(u_{\varepsilon m}'(x,t)) ^{-}u_{\varepsilon m}'(x,t)dx+\\ & \int_{\Omega }(1-| \Delta u_{\varepsilon m}'(t) | ^{2})^{-} (\Delta u_{\varepsilon m}'(t) ) ^{2}dx\geq 0. \end{aligned} $$ Similarly, we have, $$\langle \beta (\theta_{\varepsilon m}(t) ) ,\theta _{\varepsilon m}(t) \rangle \geq 0\,. $$ Because $M(s) \geq 0$ for all $s$, from (2.24) and Gronwall's inequality it follows that $$ | u_{\varepsilon m}'(t) | ^{2}+|\theta_{\varepsilon m}(t) | ^{2}\leq C_1, \quad \forall \varepsilon ,m, \forall t\in [ 0,t_{m}[. $$ Returning to (2.24), we obtain \begin{equation} \begin{aligned} | u_{\varepsilon m}'(t) | ^{2}+| \theta _{\varepsilon m}(t) | ^{2} +\int_{0}^{\|u_{\varepsilon m}(t) \| ^{2}}M(s) ds+\int_{0}^{t} \| \theta_{\varepsilon m}(s) \| ^{2}ds +\\ \frac{2}{\varepsilon }[\int_{0}^{t}\langle \beta (u_{\varepsilon m}'(s) ) ,u_{\varepsilon m}'(s) \rangle ds +\int_{0}^{t}\langle \beta (\theta_{\varepsilon m}(s) ) , \theta_{\varepsilon m}(s) \rangle ds] \leq C+3C_1T\,. \end{aligned} \tag{2.25} \end{equation} Since $\int_{0}^{\infty }M(s) ds=\infty $, by (2.25) we can find $C_1$ such that \begin{equation*} \| u_{\varepsilon m}(t) \| ^{2}\leq C_1, \quad \forall \varepsilon ,m, \forall t\in [0,t_{m}[. \end{equation*} Thus there exists, other constant $C=C(T) $ independently of $ \varepsilon ,m$ and $t\in [ 0,t_{m}[$ such that \begin{equation} \begin{aligned} | u_{\varepsilon m}'(t) | ^{2}+| \theta_{\varepsilon m}(t) | ^{2} +\| u_{\varepsilon m}(t) \| ^{2}+\int_{0}^{t}\| \theta_{\varepsilon m}(s) \| ^{2}ds+\\ \frac{2}{\varepsilon }\int_{0}^{t}\langle \beta (u_{\varepsilon m}'(s) ) ,u_{\varepsilon m}'(s) \rangle ds +\frac{2}{\varepsilon }\int_{0}^{t}\langle \beta (\theta _{\varepsilon m}(s) ) ,\theta_{\varepsilon m}(s) \rangle ds \leq C \end{aligned} \tag{2.26} \end{equation} {\bf Estimate (ii)} We will obtain a bound for $|u_{\varepsilon m}''(0)| $. For this, we note that $u_1$ being in the interior of $\mathbb{K}$ and $u_{1\varepsilon m}\to u_1$ imply that $u_{1\varepsilon m}$ is in the interior of $\mathbb{K}$, for $m$ large. Therefore, $|\Delta u_{1\varepsilon m}| \leq 1$ and $u_{1\varepsilon m}\geq 0$ a. e. in $\Omega $. Also we have $(u_{1\varepsilon m}) ^{-}=0$ and $(1-| \Delta u_{1\varepsilon m}| ^{2}) ^{-}=0$ a. e. in $\Omega $. Thus \begin{equation} \langle \beta (u_{1\varepsilon m}) ,u_{\varepsilon m}''(0) \rangle =0 \tag{2.27} \end{equation} Taking $t=0$ and $v=u_{\varepsilon m}''(0) $ in (2.14), and observing (2.27), we obtain \begin{equation*} | u_{\varepsilon m}''(0) |^{2}+M(\| u_{0\varepsilon m}\| ^{2}) ( (u_{0\varepsilon m},u_{\varepsilon m}''(0) ) ) +(\theta_{\varepsilon m},u_{\varepsilon m}''(0) ) =(f(0), u_{\varepsilon m}''(0) ) \end{equation*} which implies \begin{equation*} | u_{\varepsilon m}''(0) | ^{2}\leq | f(0) | | u_{\varepsilon m}''(0) | +M(\| u_{0\varepsilon m}\| ^{2}) | \Delta u_{0\varepsilon m}| | u_{\varepsilon m}''(0) | +|\theta_{0\varepsilon m}| | u_{\varepsilon m}''(0) | . \end{equation*} From $u_{0\varepsilon m}\to u_{0}$ in $H_{0}^{1}(\Omega ) \cap H^{2}(\Omega ) $, $\theta_{0\varepsilon m}\to \theta_{0}$ in $H_{0}^{1}(\Omega ) $, $M\in C^{1}[0,\infty )$, and $f\in H^{1}(0,T;L^{2}(\Omega ) $, we obtain \begin{equation} | u_{\varepsilon m}''(0) | \leq C, \tag{2.28} \end{equation} with $C$ independent of $\varepsilon , m$, and $t\in [0,T[$. \noindent{\bf Estimate (iii)} We obtain estimates for $| \Delta u_{\varepsilon m}'(t) |$, $| \Delta \theta_{\varepsilon m}(t) | $, $\int_{0}^{t}| u_{\varepsilon m}'(s) | ^{3}ds$, and $\int_{0}^{t}| \theta_{\varepsilon m}'(s) | ^{3}ds$. For this, we need the following lemma whose proof can be found in \cite{f1}. \begin{lemma} \label{lm2.1} Let $h:\Omega \to \mathbb{R}$ be an arbitrary function. Then \begin{equation*} h^{4}-1\leq 2(1-h^{2}) ^{-}h^{2}. \end{equation*} \end{lemma} By this lemma, we have \begin{equation*} (\Delta u_{\varepsilon m}') ^{4}-1\leq 2[1-( \Delta u_{\varepsilon m}') ^{2}]^{-}(\Delta u_{\varepsilon m}') ^{2}\,. \end{equation*} Therefore, $$\begin{aligned} \| \Delta u_{\varepsilon m}'\|_{L^{4}(Q)}^{4} = &\int_{0}^{T}\int_{\Omega}| \Delta u_{\varepsilon m}'(x,t) | ^{4}dx\,dt\\ \leq & 2\int_{0}^{T}\int_{\Omega}(1-\Delta |u_{\varepsilon m}'(x,t)| ^{2}) ^{-}(\Delta u_{\varepsilon m}'(x,t) ) ^{2}dx\,dt+ \mathop{\rm meas}(Q)\\ =& 2\int_{0}^{T}\langle \beta_{2}(\Delta u_{\varepsilon m}'(t) ) , u_{\varepsilon m}'(t) \rangle dx\,dt+\mathop{\rm meas}(Q)\\ \leq & 2\int_{0}^{T}(\beta (u_{\varepsilon m}'(t)) ,u_{\varepsilon m}'(t) )dt +\mathop{\rm meas}(Q)\,. \end{aligned}$$ Using (2.26), we obtain \begin{equation} \| \Delta u_{\varepsilon m}'\|_{L^{4}(Q) }^{4}\leq C\varepsilon +\mathop{\rm meas}(Q) 0. $$ Consequently $\| u(t) \| >0$, for all $t\in [ 0,T]$. In fact, if there exists $t_{0}\in [ 0,T]$ such that $\|u_{0}\| =0$, then \begin{equation*} \int_{\Omega }| u(x,t_{0}) | ^{2}dx\leq C\| u(t_{0} ) \| ^{2}=0, \end{equation*} where $C$ is the constant of the embedding $H_{0}^{1}( \Omega ) \hookrightarrow L^{2}(\Omega )$. Therefore, \linebreak $u(x,t_{0}) =0$, a.e. in $\Omega $. Since $u'(t) \in K$ a.e. in $[0,T]$, we have $u'(t) \geq 0$ a.e. in $\Omega $. This implies that \begin{equation} u(x,t) \geq u(x,0) =u_{0}(x) \quad \text{in } \Omega \text{ a.e. in }[0,T]. \tag{4.1} \end{equation} Being $\| u_{0}\| >0$, there exists $\Omega '\subset\Omega $ with $\| \Omega '\| >0$ such that that $u_{0}(x) >0$. By (3.1) it follows that $u(x,t_{0}) >0$ in $\Omega $. This is a contradiction. \begin{theorem} \label{thm3.1} Under the hypotheses of Theorem \ref{thm2.1}, if \begin{description} \item[i)] $M(\lambda ) >0$ for all $\lambda >0$, and $M(0) =0$. \item[ii)] $u_{0}\in H_{0}^{1}(\Omega ) \cap H^{2}(\Omega) $, $u_{0}(x) \geq 0$ a.e. in $\Omega $, and $\|u_{0}\| >0$, \end{description} Then the solution $\{u,\theta \}$ of Theorem \ref{thm2.1} is unique. \end{theorem} \paragraph{Proof.} From (i) and (ii) it follows that $$m_{0}=\min \{M(\| u(t) \| ^{2}) ;\;t\in [ 0,T]\}>0.$$ Suppose we have two pairs of solutions $\{u,\theta \}$ and $\{w,\varphi \}$ satisfying the conditions of Theorem \ref{thm2.1}. Let $\Psi =u-w$ and $\phi =\theta-\varphi $. Thus, $\Psi $ and $\phi $ satisfy \begin{gather*} (\Psi ''(t) -M(\| u(t) \| ^{2}) \Delta \Psi (t) +\{M(\| w(t) \| ^{2}) -M(\| u(t) \| ^{2}) \}\Delta w+\phi (t) ,\Psi '(t) )\leq 0,\\ (\phi '(t) -\Delta \phi (t) +\Psi '(t) ,\phi (t) )\leq 0, \end{gather*} which implies \begin{align*} \frac{1}{2}\frac{d}{dt}\{| \Psi '(t) | ^{2}+| \phi (t) | ^{2}+\| \phi (t) \| ^{2}\}+M(\| u(t) \| ^{2}) \frac{1}{2}\frac{d}{dt}\| \Psi (t) \|^{2}+2(\phi (t) ,\Psi '(t) )& \leq \\ \{M(\| u(t) \| ^{2}) -M(\| w(t) \| ^{2}) \}(\Delta w(t) ,\Psi '(t) )\,.& \end{align*} Since $$M(\| u(t) \| ^{2}) \frac{d}{dt}\|\Psi (t) \| ^{2}=\frac{d}{dt}\{M(\| u( t) \| ^{2}) \| \Psi (t) \| ^{2}\}-\frac{d}{dt}[M(\| u(t) \| ^{2}) ]\| \Psi (t) \| ^{2}$$ we obtain \begin{align*} \frac{1}{2}\frac{d}{dt}\{| \Psi '(t) |^{2}+| \phi (t) | ^{2}+\| \phi ( t) \| ^{2}\}+\frac{d}{dt}\{M(\| u(t)\| ^{2}) \| \Psi (t) \| ^{2}\}+ 2(\phi (t) ,\Psi '(t) )\leq & \\ \{M(\| u(t) \| ^{2}) -M(\| w(t) \| ^{2}) \}(\Delta w(t) ,\Psi '(t) )+&\\ M'(\| u(t) \| ^{2}) ((u'(t) ,u(t) ) \| \Psi (t) \| ^{2}.& \end{align*} Now, integrating this inequality form $0$ to $t