\documentclass[twoside]{article} \usepackage{amssymb,amsmath} \pagestyle{myheadings} \markboth{\hfil Nonlinear Klein-Gordon equations \hfil EJDE--2002/26} {EJDE--2002/26\hfil Pietro d'Avenia \& Lorenzo Pisani \hfil} \begin{document} \title{\vspace{-1in}\parbox{\linewidth}{\footnotesize\noindent {\sc Electronic Journal of Differential Equations}, Vol. {\bf 2002}(2002), No. 26, pp. 1--13. \newline ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu \newline ftp ejde.math.swt.edu (login: ftp)} \vspace{\bigskipamount} \\ % Nonlinear Klein-Gordon equations coupled with Born-Infeld type equations % \thanks{ {\em Mathematics Subject Classifications:} 58E15, 35J50, 35Q40, 35Q60. \hfil\break\indent {\em Key words:} Nonlinear Klein-Gordon equation, solitary waves, electromagnetic field, variational methods. \hfil\break\indent \copyright 2002 Southwest Texas State University. \hfil\break\indent Submitted November 14, 2001. Published March 4, 2002. \hfil\break\indent Sponsored by M.I.U.R. (ex 40\% and ex 60\% funds).\hfil\break\indent P. d'Avenia is also sponsored by European Social Fund.} } \date{} % \author{Pietro d'Avenia \& Lorenzo Pisani} \maketitle \begin{abstract} In this paper we prove the existence of infinitely many radially symmetric standing waves in equilibrium with their own electro-magnetic field. The interaction is described by means of the minimal coupling rule; on the other hand the Lagrangian density for the electro-magnetic field is the second order approximation of the Born-Infeld Lagrangian density. \end{abstract} \newtheorem{theorem}{Theorem} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{remark}[theorem]{Remark} \renewcommand{\theequation}{\thesection.\arabic{equation}} \catcode`@=11 \@addtoreset{equation}{section} \catcode`@=12 \section{Electrically charged fields} Let us consider the nonlinear Klein-Gordon equation \begin{equation} \psi_{tt}-\Delta\psi+m_{0}^{2}\psi-\left| \psi\right| ^{p-2}\psi =0,\label{110} \end{equation} where $\psi=\psi\left( x,t\right) \in\mathbb{C}$, $x\in\mathbb{R}^{3}$, $t\in\mathbb{R}$, $m_{0}$ is a real constant and $p>2$. It is known that (\ref{110}) can be used to develop the theory of electrically charged fields (see \cite{fel}). Of course we can study the interaction of $\psi$ with its own electro-magnetic field as it has been done in \cite{bf}. As usual, the electro-magnetic field is described by the gauge potential $\left(\phi,\mathbf{A}\right) $ $$ \phi :\mathbb{R}^{3}\times\mathbb{R}\to \mathbb{R},\quad \mathbf{A} :\mathbb{R}^{3}\times\mathbb{R}\to\mathbb{R}^{3}. $$ Indeed, from $\left( \phi,\mathbf{A}\right) $, we obtain the electric field \begin{equation} \mathbf{E}=-\nabla\phi-\mathbf{A}_{t}\label{112} \end{equation} and the magnetic induction field \begin{equation} \mathbf{B}=\nabla\times\mathbf{A.}\label{113} \end{equation} The interaction of $\psi$ with the electro-magnetic field is described by the minimal coupling rule, that is the formal substitution \begin{gather} \frac{\partial}{\partial t} \longmapsto\frac{\partial}{\partial t} +ie\phi\label{115}\\ \nabla \longmapsto\nabla-ie\mathbf{A}\label{116} \end{gather} where $e$ is the electric charge. We recall that (\ref{110}) is the Euler-Lagrange equation with respect to the Lagrangian density \begin{equation} \mathcal{L}_{\mathrm{NLKG}}=\frac{1}{2}\Big[ \big| \frac{\partial\psi }{\partial t}\big| ^{2}-\left| \nabla\psi\right| ^{2}-m_{0}^{2}\left| \psi\right| ^{2}\Big] +\frac{1}{p}\left| \psi\right| ^{p}.\label{120} \end{equation} Then, by (\ref{115}) and (\ref{116}), the Lagrangian density (\ref{120}) becomes \[ \mathcal{L}_{0}=\frac{1}{2}\Big[ \big| \frac{\partial\psi}{\partial t}+ie\phi\psi\big| ^{2}-\left| \nabla\psi-ie\mathbf{A}\psi\right| ^{2}-m_{0}^{2}\left| \psi\right| ^{2}\Big] +\frac{1}{p}\left| \psi\right| ^{p}. \] The total action of the system is the sum \begin{equation} \mathcal{S}=\iint\left( \mathcal{L}_{0}+\mathcal{L}_{\mathrm{e.m.f.}}\right) dxdt\label{125} \end{equation} where $\mathcal{L}_{\mathrm{e.m.f.}}$ is the Lagrangian density of the electro-magnetic field. In the classical Maxwell theory, with a suitable choice of constants, we have \[ \mathcal{L}_{\mathrm{e.m.f.}}=\mathcal{L}_{\text{\textrm{M}}}=\frac{1}{8\pi }\left( \left| \mathbf{E}\right| ^{2}-\left| \mathbf{B}\right| ^{2}\right) . \] The existence of infinitely many solutions for the Euler-Lagrange equations associated to \[ \mathcal{S}=\iint\left( \mathcal{L}_{0}+\mathcal{L}_{\text{\textrm{M}} }\right) dxdt \] has been proved by Benci and Fortunato in \cite{bf}. We recall that Maxwell equations coupled with Schr\"{o}dinger or Dirac equations have been studied respectively in \cite{bf98}, \cite{coc1}, \cite{coc2} and in \cite{egs}. It is well known that the classical theory has two difficulties arising from the divergence of energy (see the first section of \cite{fop}). An attempt to avoid this divergence is the Born-Infeld theory, where \begin{equation} \mathcal{L}_{\mathrm{BI}}=\frac{b^{2}}{4\pi}\Big( 1-\sqrt{1-\frac{1}{b^{2} }\big( \left| \mathbf{E}\right| ^{2}-\left| \mathbf{B}\right| ^{2}\big) }\Big) \label{130} \end{equation} being $b\gg1$ the so-called Born-Infeld parameter (see \cite{bi}). In \cite{fop}, the authors consider the second order expansion of (\ref{130}) for \[ \beta=\frac{1}{2b^{2}}\to 0. \] They obtain the Lagrangian density \[ \mathcal{L}_{1}=\frac{1}{4\pi}\left[ \frac{1}{2}\left( \left| \mathbf{E}\right| ^{2}-\left| \mathbf{B}\right| ^{2}\right) +\frac{\beta }{4}\left( \left| \mathbf{E}\right| ^{2}-\left| \mathbf{B}\right| ^{2}\right) ^{2}\right] \] and they prove some existence results of finite-energy electrostatic solutions. In this paper we consider \[ \mathcal{L}_{\mathrm{e.m.f.}}=\mathcal{L}_{1}. \] So the total action we study is \begin{equation} \mathcal{S}=\iint\left( \mathcal{L}_{0}+\mathcal{L}_{1}\right) dxdt.\label{140} \end{equation} As in \cite{bf}, we consider \[ \psi\left( x,t\right) =u\left( x,t\right) e^{iS\left( x,t\right) } \] with $u,S\in\mathbb{R}$; therefore \[ \mathcal{S=S}\left( u,S,\phi,\mathbf{A}\right) \] and the explicit expression of the Lagrangian densities is \begin{align*} \mathcal{L}_{0} & =\frac{1}{2}\left\{ u_{t}^{2}-\left| \nabla u\right| ^{2}-\left[ \left| \nabla S-e\mathbf{A}\right| ^{2}-\left( S_{t} +e\phi\right) ^{2}+m_{0}^{2}\right] u^{2}\right\} +\frac{1}{p}\left| u\right| ^{p},\\ \mathcal{L}_{1} & =\frac{1}{4\pi}\left[ \frac{1}{2}\left( \left| \mathbf{A}_{t}+\nabla\phi\right| ^{2}-\left| \nabla\times\mathbf{A}\right| ^{2}\right) +\frac{\beta}{4}\left( \left| \mathbf{A}_{t}+\nabla\phi\right| ^{2}-\left| \nabla\times\mathbf{A}\right| ^{2}\right) ^{2}\right] . \end{align*} The Euler-Lagrange equations associated to (\ref{140}) are \begin{gather} d\mathcal{S}\left[ \delta u\right] =0\label{210a}\\ d\mathcal{S}\left[ \delta S\right] =0\label{210b}\\ d\mathcal{S}\left[ \delta\phi\right] =0\label{210c}\\ d\mathcal{S}\left[ \delta\mathbf{A}\right] =0.\label{210d} \end{gather} By standard calculations, we get \begin{gather} \Box u+\left[ \left| \nabla S-e\mathbf{A}\right| ^{2}-\left( S_{t} +e\phi\right) ^{2}+m_{0}^{2}\right] u-\left| u\right| ^{p-2} u=0\label{220a} \\ \frac{\partial}{\partial t}\left[ \left( S_{t}+e\phi\right) u^{2}\right] -\nabla\left[ \left( \nabla S-e\mathbf{A}\right) u^{2}\right] =0\label{220b} \\ \nabla\cdot\left[ \left( 1+\beta\left| \mathbf{A}_{t}+\nabla\phi\right| ^{2}-\beta\left| \nabla\times\mathbf{A}\right| ^{2}\right) \left( \mathbf{A}_{t}+\nabla\phi\right) \right] =4\pi e\left( S_{t}+e\phi\right) u^{2}\label{220c} \end{gather} \begin{equation} \begin{aligned} \frac{\partial}{\partial t}\left[ \left( 1+\beta\left| \mathbf{A} _{t}+\nabla\phi\right| ^{2}-\beta\left| \nabla\times\mathbf{A}\right| ^{2}\right) \left( \mathbf{A}_{t}+\nabla\phi\right) \right] &\\ +\nabla\times\left[ \left( 1+\beta\left| \mathbf{A}_{t}+\nabla\phi\right| ^{2}-\beta\left| \nabla\times\mathbf{A}\right| ^{2}\right) \left( \nabla\times\mathbf{A}\right) \right] &=4\pi e\left( \nabla S-e\mathbf{A} \right) u^{2}. \end{aligned} \label{220d} \end{equation} From the physical point of view, it may be interesting to introduce the following notation: we set \begin{gather} \rho=-e\left( S_{t}+e\phi\right) u^{2},\label{222} \\ \mathbf{J}=e\left( \nabla S-e\mathbf{A}\right) u^{2}.\label{223} \end{gather} Taking into account (\ref{112}) and (\ref{113}), the equations (\ref{220b}), (\ref{220c}) and (\ref{220d}) become respectively \begin{gather} \frac{\partial\rho}{\partial t}+\nabla\mathbf{J}=0\label{225} \\ \nabla\left[ \left( 1+\beta\left( \left| \mathbf{E}\right| ^{2}-\left| \mathbf{B}\right| ^{2}\right) \right) \mathbf{E}\right] =4\pi \rho\label{226} \\ \nabla\times\left[ \left( 1+\beta\left( \left| \mathbf{E}\right| ^{2}-\left| \mathbf{B}\right| ^{2}\right) \right) \mathbf{B}\right] -\frac{\partial}{\partial t}\left[ \left( 1+\beta\left( \left| \mathbf{E}\right| ^{2}-\left| \mathbf{B}\right| ^{2}\right) \right) \mathbf{E}\right] =4\pi\mathbf{J}.\label{227} \end{gather} We notice that (\ref{222}) and (\ref{223}) are good definitions respectively of charge density and current density, indeed the continuity equation (\ref{225}) is satisfied. Equations (\ref{226}) and (\ref{227}) are formally identical to equations (24) and (25) of \cite{fop}, indeed they replace the second pair of Maxwell equations when we use the second order approximation of the Born-Infeld Lagrangian density. \section{Statement of the main result} In this paper we look for solutions of (\ref{220a})-(\ref{220d}) such that \begin{gather} u =u\left( x\right) ,\nonumber\\ S =\omega t,\nonumber\\ \phi =\phi\left( x\right) ,\label{228}\\ \mathbf{A} =\mathbf{0}.\label{229} \end{gather} We recall that solutions \[ \psi\left( x,t\right) =u\left( x\right) e^{i\omega t} \] are called \emph{standing waves}. On the other hand, (\ref{228}) and (\ref{229}) characterize a purely \emph{electrostatic field}. With the above \emph{ansatz}, equations (\ref{220b}) and (\ref{220d}) are identically satisfied; (\ref{220a}) and (\ref{220c}) take the form \begin{gather} -\Delta u+\left[ m_{0}^{2}-\left( \omega+\phi\right) ^{2}\right] u-\left| u\right| ^{p-2}u=0\label{231a}\\ \Delta\phi+\beta\Delta_{4}\phi=4\pi\left( \omega+\phi\right) u^{2} ,\label{231c} \end{gather} where we have taken $e=1$. Now we can state our main result. \begin{theorem} \label{main} If $\left| \omega\right| <\left| m_{0}\right| $ and $4
0$ such that
\begin{equation}
A_{n}\geq c_{3}\left( \int\left| \nabla\Phi\left[ u_{n}\right] \right|
^{2}dx+\int\left| \nabla\Phi\left[ u_{n}\right] \right| ^{4}dx+\int\left(
\Phi\left[ u_{n}\right] \right) ^{2}u_{n}^{2}dx\right) .\label{331}
\end{equation}
Thus, being $A_{n}\geq0$, from (\ref{320}) we obtain that $\left\{
u_{n}\right\} $ is bounded in $H_{r}^{1}\left( \mathbb{R}^{3}\right) $.
Moreover, the equation (\ref{320}) implies that $\left\{ A_{n}\right\} $ is
bounded and so, from (\ref{331}), also $\left\{ \Phi\left[ u_{n}\right]
\right\} $ is bounded in $D$.
Hence, up to subsequence,
\begin{gather*}
u_{n} \rightharpoonup u\text{ in }H_{r}^{1}\left( \mathbb{R}^{3}\right) \\
\Phi\left[ u_{n}\right] \rightharpoonup\bar{\Phi}\text{ in }D.
\end{gather*}
Now we prove that
$u_{n}\to u$ in $H_{r}^{1}(\mathbb{R}^{3})$.
We know that
\[
-\Delta u_{n}+\left[ m_{0}^{2}-\left( \omega+\Phi\left[ u_{n}\right]
\right) ^{2}\right] u_{n}-\left| u_{n}\right| ^{p-2}u_{n}=\varepsilon_{n},
\]
i.e.
\[
-\Delta u_{n}+\left( m_{0}^{2}-\omega^{2}\right) u_{n}=2\omega\Phi\left[
u_{n}\right] u_{n}+\left( \Phi\left[ u_{n}\right] \right) ^{2}
u_{n}+\left| u_{n}\right| ^{p-2}u_{n}+\varepsilon_{n}.
\]
Let
$L:H_{r}^{1}\left( \mathbb{R}^{3}\right) \to \left( H_{r}^{1}\left(
\mathbb{R}^{3}\right) \right)'$
be the isomorphism
\[
Lu=-\Delta u+\left( m_{0}^{2}-\omega^{2}\right) u.
\]
Then
\begin{equation}
u_{n}=2\omega L^{-1}\left( \Phi\left[ u_{n}\right] u_{n}\right)
+L^{-1}\left( \left( \Phi\left[ u_{n}\right] \right) ^{2}u_{n}\right)
+L^{-1}\left( \left| u_{n}\right| ^{p-2}u_{n}\right) +L^{-1}\left(
\varepsilon_{n}\right) .\label{333}
\end{equation}
To prove the strong convergence of $\left\{ u_{n}\right\} ,$ it is
sufficient to prove the strong convergence of each term in the right hand side
of (\ref{333}).
Obviously the sequence $\left\{ L^{-1}\left( \varepsilon_{n}\right)
\right\} $ converges strongly.
Since $H_{r}^{1}\left( \mathbb{R}^{3}\right) $ is compactly embedded into
$L^{q}\left( \mathbb{R}^{3}\right) $ for $2 4$, we obtain $\left(
\text{G}_{2}\right) $.
\begin{thebibliography}{99} \frenchspacing
\bibitem {bf98}\textsc{V. Benci, D. Fortunato}, \textit{An eigenvalue problem
for the Schroedinger-Maxwell equations, }Topological Methods in Nonlinear
Analysis \textbf{11} (1998), 283-293.
\bibitem {bf}\textsc{V. Benci, D. Fortunato}, \textit{Solitary waves of the
nonlinear Klein-Gordon equation coupled with the Maxwell equation}, to appear
in Rev. Math. Phys.
\bibitem {bl}\textsc{H. Berestycki, P.L. Lions}, \textit{Nonlinear Scalar
Field Equations, I - Existence of a round state}, Arch. Rat. Mech. Anal.
\textbf{82} (4) (1983), 313-345.
\bibitem {bi}\textsc{M. Born, L. Infeld}, \textit{Foundations of the new field
theory}, Proc. R. Soc. Lond. A \textbf{144} (1934), 425-451.
\bibitem {coc1}\textsc{G.M. Coclite}, \textit{A Multiplicity Result for the
Nonlinear Schr\"{o}dinger-Maxwell Equations,} to appear on Communications on
Applied Analysis.
\bibitem {coc2}\textsc{G.M. Coclite}, \textit{A Multiplicity Result for the
Linear Schr\"{o}dinger-Maxwell Equations with Negative Potential,} to appear
on Annales Polonici Matematici.
\bibitem {egs}\textsc{M.J. Esteban, V. Georgiev, E. Sere}, \textit{Stationary
solutions of the Maxwell-Dirac and Klein-Gordon-Dirac equations}, Calc. Var.
\textbf{4} (1996), 265-281.
\bibitem {fel}\textsc{B. Felsager}, \textit{Geometry, particles and fields},
Odense University Press, Odense, 1981.
\bibitem {fop}\textsc{D. Fortunato, L. Orsina, L. Pisani}, \textit{Born-Infeld
type equations for electrostatic fields}, preprint.
\bibitem {pal}\textsc{R.S. Palais}, \textit{The principle of symmetric
criticality}, Comm. Math. Phys. \textbf{69} (1979), 19-30.
\bibitem {rab}\textsc{P.H. Rabinowitz}, \textit{Minimax methods in critical
point theory with applications to differential equations}, Reg. Conf. Ser.
Math. \textbf{65} (1986).
\bibitem {str}\textsc{W.A. Strauss}, \textit{Existence of Solitary Waves in
Higher Dimensions}, Comm. Math. Phys. \textbf{55} (1977), 149-162.
\end{thebibliography}
\noindent\textsc{Pietro d'Avenia} (e-mail: pdavenia@dm.uniba.it) \\
\textsc{Lorenzo Pisani} (e-mail: pisani@dm.uniba.it) \\[2pt]
Dipartimento Interuniversitario di Matematica \\
Universit\`{a} degli Studi di Bari \\
Via Orabona, 4 \\
70125 Bari Italy
\end{document}
0$ such
that for every $u\in H_{r}^{1}\left( \mathbb{R}^{3}\right) $ with $\left\|
u\right\| _{H_{r}^{1}}=\rho$
\[
J\left( u\right) \geq\alpha
\]
\item[$(\text{G}_{2})$] For every finite dimensional subspace
$V $ of $H_{r}^{1}\left( \mathbb{R}^{3}\right) $ there exists $R>0$ such
that for every $u\in H_{r}^{1}\left( \mathbb{R}^{3}\right) $ with $\left\|
u\right\| _{H_{r}^{1}}\geq R$
\[
J\left( u\right) \leq0.
\]
\end{enumerate}
Then we deduce that $J\vline_{H_{r}^{1}\left( \mathbb{R}^{3}\right) }$
has infinitely many critical points.
Therefore we are left to prove the geometrical assumptions $\left(
\text{G}_{1}\right) $ and $\left( \text{G}_{2}\right)$.
In the sequel $c_{i}$ denotes a positive constant.
From the definition of $J$, for every $u\in H_{r}^{1}\left( \mathbb{R}
^{3}\right) $
\[
J\left( u\right) \geq c_{1}\left\| u\right\| _{H^{1}}^{2}-c_{2}\left\|
u\right\| _{L^{p}}^{p}.
\]
Since $4