\documentclass[twoside]{article} \usepackage{amsfonts,amsmath} \pagestyle{myheadings} \markboth{\hfil Positive solutions for a nonlocal boundary-value problem \hfil EJDE--2002/46} {EJDE--2002/46\hfil Andrzej Nowakowski \& Aleksandra Orpel \hfil} \begin{document} \title{\vspace{-1in}% \parbox{\linewidth}{\footnotesize\noindent {\sc Electronic Journal of Differential Equations}, Vol. {\bf 2002}(2002), No. 46, pp. 1--15. \newline ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu \newline ftp ejde.math.swt.edu (login: ftp)} \vspace{\bigskipamount} \\ % Positive solutions for a nonlocal boundary-value problem with vector-valued response % \thanks{\emph{Mathematics Subject Classifications:} 34B18. \hfil\break\indent \emph{Key words:} Nonlocal boundary-value problems, positive solutions, duality method, \hfil\break\indent variational method. \hfil\break\indent \copyright 2002 Southwest Texas State University. \hfil\break\indent Submitted February 27, 2002. Published May 28, 2002.} } \date{} \author{Andrzej Nowakowski \& Aleksandra Orpel} \maketitle \begin{abstract} Using variational methods, we study the existence of positive solutions for a nonlocal boundary-value problem with vector-valued response. We develop duality and variational principles for this problem and present a numerical version which enables the approximation of solutions and gives a measure of a duality gap between primal and dual functional for approximate solutions for this problem. \end{abstract} \newtheorem{theorem}{Theorem}[section] \newtheorem{remark}[theorem]{Remark} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{corollary}[theorem]{Corollary} \numberwithin{equation}{section} \allowdisplaybreaks \section{Introduction} The aim of this paper is to establish the conditions for which the differential equation \begin{equation} (k(t)| x'(t)| ^{q-2}x'(t))'+V_{x}(t,x(t))=0, \quad \mbox{a.e. in }[0,T] \label{1.1} \end{equation} possesses a positive solution $x:[ 0,T] \to \mathbb{R}^n$ such that $x(0)=0$, and satisfies the non-local boundary condition \begin{equation} | x'(T)| ^{q-2}x'(T)=\int_{t_{0}}^{T}| x'(s)| ^{q-2}x'(s)dg(s), \label{boc} \end{equation} where $|z|=\sqrt{\sum_{i=1}^nz_{i}^{2}}$ and the integral is understood in the Riemann-Stieltjes sense. The general assumptions for this article are as follows: \begin{description} \item[(H)] The number $q$ is even and greater than zero, $T$ is an arbitrary positive number, $t_{0}$ is a real number in the open interval $(0,T)$, $g=(g_{1},\dots ,g_{n}):[0,T]\rightarrow \mathbb{R}^{n}$ where $g_{i} $ increases and $g(t_{0})=0$, $V:[0,T]\times \mathbb{R}^{n}\rightarrow \mathbb{R}$ is Gateaux differentiable in the second variable and measurable in $t$, $k:[0,T]\rightarrow \mathbb{R}^{+}$, and $k(T)=1$. \end{description} Of course, when $k$ is an absolutely continuous, the solution of (\ref{1.1}) belongs to $C^{1,+}([0,T],\mathbb{R}^{n})$, the space of continuously differentiable functions whose first derivative is absolutely continuous. Note that we do not assume that $V_{x}$ is superlinear or sublinear. In this paper we shall apply some variational methods and consider (\ref{1.1}) as the Euler-Lagrange equation to the functional \begin{equation} J(x)=\int_{0}^{T}(-V(t,x(t))+\frac{k(t)}{q}|x^{\prime }(t)|^{q})dt \label{1.2} \end{equation} defined on the space $A_{0}$ of absolutely continuous functions $x:[0,T]\rightarrow \mathbb{R}^{n}$, $x(0)=0$ with $x^{\prime }$ in $L^{q}([0,T],\mathbb{R}^{n})$ and the norm $\Vert x\Vert _{A_{0}}=\big( \int_{0}^{T}|x^{\prime }(t)|^{q}dt\big)^{1/q}$. We shall denote by $A_{0b}$ the subset of $A_{0}$ consisting of functions satisfying (\ref{boc}) . This problem appears in mathematical models of physical phenomena and it is associated with the principle of minimal action, which holds true universally in nature. Problems like (\ref{1.1}), (\ref{boc}) have been studied by many authors, mainly in one-dimensional case ($n=1$) with $q=2$. This problem is discussed also in \cite{K-T}, where a topological approach is presented and the methods are based on the fixed point theorem in cones by Krasnosielski \cite{dd}. In \cite{K-T}, it is assumed that $g(t_{0}+)>0$, that $V$ has the special form $V_{x}(t,x)=q(t)f(x)$ for some continuous functions $q:[0,1]\to \mathbb{R}$, $f:\mathbb{R}\to \mathbb{R}$, $f$ is nonnegative for $x>0$, and $V$ quiet at infinity, and \begin{equation} \sup_{x\in [ 0,v]} f(x)\leq \theta v \label{war} \end{equation} for some $v>0$ and $\theta >0$. It appears that weaker assumptions ($n\geq 1$, $t$ and $x$ not separated in the left-hand side of the equation, $V_{x}(\cdot ,x)$ only measurable, and $V_{x}(t,\cdot )$ not necessarily quiet at infinity) are still sufficient to conclude the existence of solutions for (\ref{1.1}). We consider the general case when $V$ satisfies hypothesis (\textbf{H}) which are not as strong as in \cite{K-T}. We are also able to omit the condition $g(t_{0}+)>0$. In this paper we study (\ref{1.1}), (\ref{boc}) by duality methods analogous to the methods developed for (\ref{1.1}) in sublinear cases \cite{M-W,N}. Functional (\ref{1.2}) is, in general, unbounded in $A_{0}$ (especially in the superlinear case), so that we must look for critical points of (\ref{1.2}) of ''minmax'' type, or find subsets $X$ and $X^{d}$ on which the action functional $J$ or its dual $J_{D}$ is bounded. We shall apply the second approach; i.e., choose the special sets over which we calculate minimum of $J $ and $J_{D}$ and then link this value with critical points of $J$. Of course, we have the Morse theory and its generalization, the saddle points theorems, and the mountain pass theorems \cite{M-W,R,RM}. However, because of the boundary condition (\ref{boc}) they cannot be applied directly to find critical points of $J$. Moreover, our assumptions are not strong enough to use, for example, the Mountain Pass Theorem: $V$ is not sufficiently smooth, $V_{x}$ and $V$ do not have growth conditions. In consequence, $J$ is not necessary of $C^{1}$class and it does not satisfy, in general, the PS-condition. We shall develop duality, and because of this theory we are able to omit in our proof of the existence of critical points, the deformation lemmas, the Ekeland variational principle, and the PS type conditions. Our approach also enables the numerical characterization of solutions for this problem. It seems to us that this is the first publication that applies variational methods to problem (\ref{1.1}), (\ref{boc}). Let the positive cone in $\mathbb{R}^n$ be denoted by \begin{equation*} P=\big\{ x=(x_{1},\dots ,x_{n})\in \mathbb{R}^n: x_{i}>0,\; i=1,\dots ,n \big\} \end{equation*} and let $\bar{P}=\{ x\in \mathbb{R}^n:x_{i}\geq 0,\;i=1,\dots ,n\}$. We say that $x\geq y$ for $x$, $y\in \mathbb{R}^n$ if $x-y\in \bar{P}$. If $b,c\in \mathbb{R}^n$ by $bc$ we always mean a vector $[b_{i}c_{i}]_{i=1,\dots ,n}$ and by $\sqrt[q-1]{b}=b^{\frac{1}{q-1}}$ a vector $[\sqrt[q-1]{b_{i}}% ]_{i=1,\dots ,n}=[b_{i}^{\frac{1}{q-1}}]_{i=1,\dots ,n}$. We denote $\mathbf{1}=(1,\dots 1)$ the vector in $\mathbb{R}^n$. Let us investigate the operator $\widetilde{\mathbf{A}}$, for $x\in A_{0b}$, $x(t)\in P$, $t\in \lbrack 0,T]$. \begin{equation*} \widetilde{\mathbf{A}}x(t)=\alpha \frac{1}{k(t)}\int_{t_{0}}^{T}\frac{1}{k(r)% }\int_{r}^{T}V_{x}(s,x(s))dsdg(r)+\frac{1}{k(t)}\int_{t}^{T}V_{x}(s,x(s))ds. \end{equation*} where $\alpha :=[\alpha _{i}]_{i=1,\dots ,n}=[(1-a_{i})^{-1}]_{i=1,\dots ,n}$ and \begin{equation*} a:=\int_{t_{0}}^{T}\frac{1}{k(t)}dg(t)=\left[ \int_{t_{0}}^{T}\frac{1}{k(t)}% dg_{i}(t)\right] _{i=1,\dots ,n}. \end{equation*} For the functions that appear in this paper we assume the following: \begin{description} \item[(H1)] The function $k$ is continuous and positive, $V(t,\cdot )$ is convex in $\overline{P}$, $V_{x}(t,\cdot )$ is continuous and nonnegative in $P$, $t\in \lbrack 0,T]$, $|\int_{0}^{T}V(t,0)dt|<\infty $, and $\alpha >0$. \item[(H2)] There exist a function $u\in L^{\infty }([0,T],\mathbb{R}^{n})$, $u(t)\in P$, for a.e. $t\in (0,T)$, and constants $c$, $e\in P$, such that for \begin{gather*} b(t):=\frac{(\alpha a+\mathbf{1)}c+e}{k(t)},\quad v(t)=\int_{0}^{t}|b(s)| ^{-\frac{q-2}{q-1}}u(s)ds, \\ z(t)=\int_{0}^{t}|u(s)|^{-\frac{q-2}{q-1}}b(s)ds \end{gather*} we have $v(t)0$ for all $t\in [ 0,T] $, so the operator $\mathbf{A}$ is well-defined. We easily see that solving the boundary problem (\ref{1.1})-(\ref{boc}) is equivalent to solve the operator equation $x=\mathbf{A}x$ in $A_{0b}$. Now we give some auxiliary results \begin{lemma} \label{lm1.1} The set $X$ satisfies $\mathbf{A}X\subset X$; i.e. for each $x\in X$ there exists $w\in X$ such that $w=\mathbf{A}x$. \end{lemma} \paragraph{Proof.} It is clear that if $x\in X$ then $\mathbf{A}x(t)\geq 0$ and \begin{equation*} (\mathbf{A}x(t))^{\prime }=\widetilde{\mathbf{A}}x(t)|\widetilde{\mathbf{A}}% x(t)|^{-\frac{q-2}{q-1}}\geq 0. \end{equation*} First we will prove that $\widetilde{\mathbf{A}}x(t)\leq b(t)$, $t\in (0,T]$ for $x\in X$. Indeed; fix $x\in X$, then using definition of $X$ we have for all $t\in (0,T]$ \begin{align*} \widetilde{\mathbf{A}}x(t)=& \alpha \frac{1}{k(t)}\int_{t_{0}}^{T}\frac{1}{% k(r)}\int_{r}^{T}V_{x}(s,x(s))dsdg(r)+\frac{1}{k(t)}% \int_{t}^{T}V_{x}(s,x(s))ds \\ \leq & \alpha \frac{1}{k(t)}\int_{t_{0}}^{T}\frac{1}{k(r)}dg(r)\int_{\ t_{0}}^{T}V_{x}(s,x(s))ds+\frac{1}{k(t)}\int_{0}^{T}V_{x}(s,x(s))ds \\ \leq & \frac{(\alpha a+\mathbf{1})c+e}{k(t)}=b(t) \end{align*} and \begin{equation*} \big|\widetilde{\mathbf{A}}x(t)\big|^{-\frac{q-2}{q-1}}\leq \big|\widetilde{% \mathbf{A}}v(t)\big|^{-\frac{q-2}{q-1}}\leq |u(t)|^{-\frac{q-2}{q-1}}. \end{equation*} Combining these results we obtain \begin{equation*} \mathbf{A}x(t)=\int_{0}^{t}\widetilde{\mathbf{A}}x(s)|\widetilde{\mathbf{A}}% x(s)|^{-\frac{q-2}{q-1}}ds\leq \int_{0}^{t}b(s)|u(s)|^{-\frac{q-2}{q-1}% }ds=z(t). \end{equation*} Thus, assumptions \textbf{(H1)} and \textbf{(H2) }imply \begin{equation*} \int_{t_{0}}^{T}V_{x}(s,\mathbf{A}x(s))ds\leq \int_{t_{0}}^{T}V_{x}(s,z(s))ds\leq c. \end{equation*} On the other hand we have for all $t\in (0,T)$ \begin{align*} \mathbf{A}x(t)=& \int_{0}^{t}\widetilde{\mathbf{A}}x(s)|\widetilde{\mathbf{A}% }x(s)|^{-\frac{q-2}{q-1}}ds \\ \geq & \int_{0}^{t}|b(s)|^{-\frac{q-2}{q-1}}\widetilde{\mathbf{A}}x(s)ds\geq \int_{0}^{t}|b(s)|^{-\frac{q-2}{q-1}}\widetilde{\mathbf{A}}v(s)ds \\ \geq & \int_{0}^{t}|b(s)|^{-\frac{q-2}{q-1}}u(s)ds=v(t). \end{align*} Summarizing: $\mathbf{A}x\in X$. As the dual set to $X$ we shall consider the set \begin{align*} X^{d}=\Big\{& p\in A^{q^{\prime }}:\text{ there exists $x\in X$ such that} \\ p(t)& =k(t)|x^{\prime }(t)|^{q-2}x^{\prime }(t),\;t\in \lbrack 0,T]\;\Big\}. \end{align*} \begin{remark} \label{rmk1.2} \rm From the definition of $\mathbf{A}$ and $X$, we derive that for each $x\in X$ there exists $p\in X^{d}$ such that $p'(\cdot )=-V_{x}(\cdot ,x(\cdot ))$ and therefore \begin{equation*} \int_{0}^{T}\langle -p'(t),x(t)\rangle dt-\int_{0}^{T}V^{\ast }(t,-p'(t))dt= \int_{0}^{T}V(t,x(t))dt. \end{equation*} Indeed; fixing $x\in X$, Lemma \ref{lm1.1} leads to the existence of $\widetilde{x}\in X$ such that $\widetilde{x}=\mathbf{A}x$. So that we have \begin{align*} | \widetilde{x}'(t)| ^{q-2}\widetilde{x}'(t) =&[ | \widetilde{\mathbf{A}}x(t)| | \widetilde{\mathbf{A}}x(t)| ^{-\frac{q-2}{q-1}}] ^{q-2} \widetilde{\mathbf{A}}x(t)| \widetilde{\mathbf{A}}x(t)| ^{-\frac{q-2}{q-1}} \\ =&[ | \widetilde{\mathbf{A}}x(t)| ^{\frac{1}{q-1}} ] ^{q-2}\widetilde{\mathbf{A}}x(t)| \widetilde{\mathbf{A}} x(t)| ^{-\frac{q-2}{q-1}} =\widetilde{\mathbf{A}}x(t). \end{align*} Set $p(t)=k(t)| \widetilde{x}'(t)| ^{q-2} \widetilde{x}'(t)$, $t\in [ 0,T]$. Since $\widetilde{x}\in X$ , $p\in X^{d}$ we get what follows \begin{align*} ( p(t)) '=&( k(t)| \widetilde{x}'(t)| ^{q-2}\widetilde{x}'(t)) ' \\ =&( k(t)\widetilde{\mathbf{A}}x(t)) '\\ =&\Big( \alpha \int_{t_{0}}^{T}\frac{1}{k(r)} \int_{r}^{T}V_{x}(s,x(s))dsdg(r)+\int_{t}^{T}V_{x}(s,x(s))ds\Big)' \\ =&-V_{x}(t,x(t)). \end{align*} Taking into account the properties of the subdifferential, we can infer that the required relation is satisfied. \end{remark} Now we study the action functional \begin{equation*} J(x)=\int_{0}^{T}(-V(t,x(t))+\frac{1}{q}k(t)| x'(t)| ^{q})dt-\langle x(T),| x'(T)| ^{q-2}x'(T)\rangle \end{equation*} on the set $X$. To show that $\bar{x}\in X$ realizing ``min'' is a critical point of $J$ we develop a duality theory between $J$ and dual to it $J_{D}$. \section{Duality results} In this section we shall develop the duality, which describes the relationship between the critical value of $J$ and the infimum of the dual functional $J_{D}:X^{d}\to \mathbf{R}$, \begin{equation} J_{D}(p)=-\int_{0}^{T}\frac{1}{q'}[ k(t)] ^{1-q'}| p(t)| ^{q'}+\int_{0}^{T}V^{\ast }(t,-p'(t))dt, \label{funkdual} \end{equation} where $q':=q/(q-1)$. Now we need a kind of perturbation of $J$ and the convexity of a function considered on a whole space. Therefore, for each $x\in X$ the perturbation $% J_{x}:L^{q}([0,T],\mathbb{R}^{n})\times \mathbb{R}^{n}\rightarrow \mathbb{R}$ for the functional $J$ is defined as \begin{align*} J_{x}(y,a)=& \int_{0}^{T}(\breve{V}(t,x(t)+y(t))-\frac{k(t)}{q}|x^{\prime }(t)|^{q})dt+\langle x(T)-a,|x^{\prime }(T)|^{q-2}x^{\prime }(T)\rangle \\ =& \int_{0}^{T}(\breve{V}(t,x(t)+y(t))-\frac{k(t)}{q}|x^{\prime }(t)|^{q})dt \\ & +\langle x(T),|x^{\prime }(T)|^{q-2}x^{\prime }(T)\rangle -\langle a,|x^{\prime }(T)|^{q-2}x^{\prime }(T)\rangle , \end{align*} with \begin{equation*} \breve{V}(t,x)= \begin{cases} V(t,x) & \text{if }x\in \bar{P},\;t\in \lbrack 0,T] \\ \infty & \text{if }x\notin \bar{P},\;t\in \lbrack 0,T].% \end{cases}% \end{equation*} We use this notation only for the purpose of duality and we will not change a notation for the functional $J$ containing $V$ or $\breve{V}$. It is associated with the fact that our all investigation reduce to the set $X$ on which $\breve{V}(t,x)=V(t,x)$ for all $t\in \lbrack 0,T]$. Let $% J_{x}^{\#}:X^{d}\rightarrow \mathbb{R}$, where $x\in X$, be defined as a type of conjugate of $J_{x}$: \begin{equation} \begin{aligned} J_{x}^{\#}(p) =&\sup_{y\in L^{q}([0,T],\mathbb{R}^n),a\in \mathbb{R}^n} \Big\{\int_{0}^{T}\langle y(t),p'(t)\rangle dt +\langle p(T),a\rangle -J_{x}(y,a)\Big\} \\ =&\sup_{y\in L^{q}([0,T],\mathbb{R}^n)}\Big\{\int_{0}^{T} \langle y(t),p'(t)\rangle dt-\int_{0}^{T}\breve{V}(t,x(t)+y(t))dt\Big\} \\ &+\sup_{a\in \mathbb{R}^n}\big\{\langle a,p(T)\rangle +\langle a,| x'(T)| ^{q-2}x'(T)\rangle \big\} \\ &+\int_{0}^{T}\frac{k(t)}{q}| x'(t)| ^{q}dt-\langle x(T),| x'(T)| ^{q-2}x'(T)\rangle . \end{aligned} \label{2.1} \end{equation} Put $l:\mathbb{R}^{n}\rightarrow \{0,+\infty \}$, $l(b)= \begin{cases} 0, & \text{for }b=0 \\ +\infty , & \text{for }b\neq 0.% \end{cases} $ We see at once that \begin{equation} \begin{aligned} J_{x}^{\#}(p)=&-\int_{0}^{T}\langle x(t),p'(t)\rangle dt+\frac{1}{q} \int_{0}^{T}k(t)| x'(t)| ^{q}dt +\int_{0}^{T}V^{\ast }(t,p'(t))dt\\ &-\langle x(T),| x'(T)| ^{q-2}x'(T)\rangle +l(| x'(T)|^{q-2}x'(T)+p(T)) \\ =&\int_{0}^{T}\langle x'(t),p(t)\rangle dt-\langle x(T),p(T)\rangle\\ &+\frac{1}{q}\int_{0}^{T}k(t)| x'(t)|^{q}dt+\int_{0}^{T}V^{\ast }(t,p'(t))dt\\ &-\langle x(T),| x'(T)| ^{q-2}x'(T)\rangle +l(| x'(T)| ^{q-2}x'(T)+p(T)). \end{aligned} \label{2.2} \end{equation} \begin{theorem} \label{thm2.1} For functionals $J$\textit and $J_{D}$, we have the duality relation \begin{equation*} \inf_{x\in X}J(x)\leq \inf_{p\in X^{d}}J_{D}(p). \end{equation*} \end{theorem} \paragraph{Proof.} Our proof starts with the observation that for all $p\in X^{d}$ \begin{equation} \inf_{x\in X}J_{x}^{\#}(-p)=J_{D}(p) \label{2.4} \end{equation}% and for all $x\in X$ \begin{equation} \underset{p\in X^{d}}{\inf }J_{x}^{\#}(-p)\geq J(x). \label{2.5} \end{equation}% Because $X$ is not a linear space we need some trick to avoid calculation of the conjugate with respect to a nonlinear space. To this effect we use the special structure of the sets $X^{d}$ and $X$. Indeed; fix $p\in X^{d}$. The definition of $X^{d}$ implies that there exists $x_{p}\in X$ satisfying the equality \begin{equation*} p(t)=k(t)|x_{p}^{\prime }(t)|^{q-2}x_{p}^{\prime }(t)\quad \text{for all }% t\in \lbrack 0,T] \end{equation*}% and, in consequence \begin{equation*} \int_{0}^{T}\langle x_{p}^{\prime }(t),p(t)\rangle dt-\int_{0}^{T}\frac{k(t)% }{q}|x_{p}^{\prime }(t)|^{q}dt=\int_{0}^{T}\frac{1}{q^{\prime }}% [k(t)]^{1-q^{\prime }}|p(t)|^{q^{\prime }}dt. \end{equation*}% An easy calculation yields \begin{align*} \int_{0}^{T}& \langle x_{p}^{\prime }(t),p(t)\rangle dt-\int_{0}^{T}\frac{% k(t)}{q}|x_{p}^{\prime }(t)|^{q}dt \\ \leq & \sup_{x\in \{z\in X,p(T)=|z^{\prime }(T)|^{q-2}z^{\prime }(T)\}}\Big\{% \int_{0}^{T}\langle x^{\prime }(t),p(t)\rangle dt-\int_{0}^{T}\frac{k(t)}{q}% |x(t)^{\prime }|^{q}dt\Big\} \\ \leq & \sup_{x\in X}\Big\{\int_{0}^{T}\langle x^{\prime }(t),p(t)\rangle dt-\int_{0}^{T}\frac{k(t)}{q}|x(t)^{\prime }|^{q}dt\Big\} \\ \leq & \sup_{x^{\prime }\in L^{q}([0,T],\mathbb{R}^{n})}\Big\{% \int_{0}^{T}\langle x^{\prime }(t),p(t)\rangle dt-\int_{0}^{T}\frac{k(t)}{q}% |x^{\prime }(t)|^{q}dt\Big\} \\ =& \int_{0}^{T}\frac{1}{q^{\prime }}[k(t)]^{1-q^{\prime }}|p(t)|^{q^{\prime }}dt\,. \end{align*}% Actually all inequalities above are equalities. Finally for $p\in X^{d}$, we obtain \begin{align*} -\inf_{x\in X}J_{x}^{\#}(-p)=& \sup_{x\in X}(-J_{x}^{\#}(-p)) \\ =& \sup_{x\in X}\Big\{\int_{0}^{T}\langle x^{\prime }(t),p(t)\rangle dt-% \frac{1}{q}\int_{0}^{T}k(t)|x^{\prime }(t)|^{q}dt \\ & -\int_{0}^{T}V^{\ast }(t,-p^{\prime }(t))dt-\langle x(T),p(T)\rangle +\langle x(T),|x^{\prime }(T)|^{q-2}x^{\prime }(T)\rangle \\ & -l(|x^{\prime }(T)|^{q-2}x^{\prime }(T)-p(T))\Big\} \\ =& -\int_{0}^{T}V^{\ast }(t,-p^{\prime }(t))dt+\int_{0}^{T}\frac{1}{% q^{\prime }}[k(t)]^{1-q^{\prime }}|p(t)|^{q^{\prime }}dt=-J_{D}(p), \end{align*}% which proves our claim. To show the other assertion, fix $x\in X$. Remark % \ref{rmk1.2} leads to the existence of $\bar{p}\in X^{d}$ such that \begin{equation*} \int_{0}^{T}\langle -\bar{p}^{\prime }(t),x(t)\rangle dt-\int_{0}^{T}V^{\ast }(t,-\bar{p}^{\prime }(t))dt=\int_{0}^{T}\breve{V}(t,x(t))dt. \end{equation*}% Moreover, \begin{align*} \int_{0}^{T}& \langle -\bar{p}^{\prime }(t),x(t)\rangle dt-\int_{0}^{T}V^{\ast }(t,-\bar{p}^{\prime }(t))dt \\ & \leq \sup_{p\in X^{d}}\{\int_{0}^{T}\langle -p^{\prime }(t),x(t)\rangle dt-\int_{0}^{T}V^{\ast }(t,-p^{\prime }(t))dt\} \\ & \leq \sup_{p^{\prime }\in L^{q^{\prime }}([0,T],\mathbb{R}% ^{n})}\{\int_{0}^{T}\langle -p^{\prime }(t),x(t)\rangle dt-\int_{0}^{T}V^{\ast }(t,-p^{\prime }(t))dt\} \\ & =\int_{0}^{T}\breve{V}(t,x(t))dt. \end{align*}% Combining both results we infer \begin{align*} \sup_{p\in X^{d}}(-J_{x}^{\#}(-p))=& \sup_{p\in X^{d}}\Big\{% \int_{0}^{T}\langle x(t),-p^{\prime }(t)\rangle dt-\int_{0}^{T}V^{\ast }(t,-p^{\prime }(t))dt \\ & -l(|x^{\prime }(T)|^{q-2}x^{\prime }(T)-p(T))\Big\} \\ & +\langle x(T),|x^{\prime }(T)|^{q-2}x^{\prime }(T)\rangle -\frac{1}{q}% \int_{0}^{T}k(t)|x^{\prime }(t)|^{q}dt \\ \leq & \sup_{p\in X^{d}}\big\{-l(|x^{\prime }(T)|^{q-2}x^{\prime }(T)-p(T))% \big\} \\ & +\sup_{p\in X^{d}}\Big\{\int_{0}^{T}\langle x(t),-p^{\prime }(t)\rangle dt-\int_{0}^{T}V^{\ast }(t,-p^{\prime }(t))dt\Big\} \\ & +\langle x(T),|x^{\prime }(T)|^{q-2}x^{\prime }(T)\rangle -\frac{1}{q}% \int_{0}^{T}k(t)|x^{\prime }(t)|^{q}dt \\ =& -\int_{0}^{T}(-\breve{V}(t,x(t))+\frac{k(t)}{q}|x^{\prime }(t)|^{q})dt+\langle x(T),|x^{\prime }(T)|^{q-2}x^{\prime }(T)\rangle \\ =& -J(x); \end{align*}% so that $\inf_{p\in X^{d}}J_{x}^{\#}(-p)\geq J(x)$. Combining (\ref{2.4}) and (\ref{2.5}) we obtain the chain of relations \begin{equation*} \inf_{x\in X}J(x)\leq \inf_{x\in X}\underset{p\in X^{d}}{\inf }% J_{x}^{\#}(-p)=\underset{p\in X^{d}}{\inf }\inf_{x\in X}J_{x}^{\#}(-p)=\inf_{p\in X^{d}}J_{D}(p). \end{equation*}% Denote by $\partial J_{x}(y)$ the subdifferential of $J_{x}$. Calculating $% \partial J_{x}$ at $0$ we obtain \begin{equation} \begin{aligned} \partial J_{x}(0)=\Big\{ &p'\in L^{q'}( [ 0,T] ,\mathbb{R}^n) : \int_{0}^{T}V^{\ast }(t,p'(t))dt\\ &+\int_{0}^{T}\breve{V}(t,x(t))dt=\int_{0}^{T}\langle p'(t),x(t)\rangle dt\Big\} \end{aligned} \label{subr} \end{equation}% Our task is now to prove a variational principle for ``min'' arguments. \begin{theorem} \label{thm2.2} Let $\bar{x}\in X$ be a minimizer of $J:X\to R$, $J(\bar{x})=\inf_{x\in X}J(x)$. Then there exists $\bar{p}\in X^{d}$ with $-\bar{p}'\in \partial J_{\bar{x}}(0)$, such that $\bar{p}$ satisfies $$ J_{D}(\bar{p})=\inf_{p\in X^{d}}J_{D}(p). $$ Furthermore, \begin{gather} J_{\overline{x}}(0)+J_{\bar{x}}^{\#}(-\bar{p})=0 \label{d.8}\\ J_{D}(\bar{p})-J_{\bar{x}}^{\#}(-\bar{p})=0. \label{2.9} \end{gather} \end{theorem} \paragraph{Proof.} From Theorem \ref{thm2.1}, $J(\bar{x})\leq \inf_{p\in X^{d}}J_{D}(p)$, so to prove the first assertion we need to show only the existence of $\bar{p}\in X^{d}$ such that $J(\bar{x})$ $\geq $ $J_{D}(\bar{p})$. To this effect we use Remark \ref{rmk1.2} which implies the existence of $\bar{p}\in X^{d}$ such that \begin{equation*} \bar{p}^{\prime }(t)=-V_{x}(t,\overline{x}(t))\text{ a.e. on }[0,T] \end{equation*} and further \begin{equation} \int_{0}^{T}\langle -\bar{p}^{\prime }(t),\overline{x}(t)\rangle dt-\int_{0}^{T}V^{\ast }(t,-\bar{p}^{\prime }(t))dt=\int_{0}^{T}\breve{V}(t,% \overline{x}(t))dt. \label{pom} \end{equation} Combining (\ref{pom}) and (\ref{subr}) we get the inclusion $-\bar{p}% ^{\prime }\in $ $\partial J_{\bar{x}}(0)$. On the other hand an easy computation gives the equality $J_{\bar{x}}^{\ast }(-\bar{p}^{\prime },-% \overline{p}(T))=J_{\bar{x}}^{\#}(-\bar{p})$ (where $J_{\bar{x}}^{\ast }(-% \bar{p}^{\prime },-\overline{p}(T))$ denotes the Fenchel transform of $J_{% \bar{x}}$ at $(-\bar{p}^{\prime },-\overline{p}(T))$ $)$. Indeed; from the definitions of $J_{\bar{x}}^{\ast }$ and of $J_{\bar{x}}^{\#}$ we have \begin{align*} J_{\bar{x}}^{\ast }& (-\bar{p}^{\prime },-\overline{p}(T)) \\ =& \sup_{y\in L^{q}([0,T],\mathbb{R}^{n}),a\in \mathbb{R}^{n}}\Big\{% \int_{0}^{T}\langle y(t),-\overline{p}^{\prime }(t)\rangle dt+\langle a,-% \overline{p}(T)\rangle -J_{\bar{x}}(y,a)\Big\} \\ =& \sup_{y\in L^{q}([0,T],\mathbb{R}^{n})}\Big\{\int_{0}^{T}\langle y(t),-% \overline{p}^{\prime }(t)\rangle dt-\int_{0}^{T}\breve{V}(t,\bar{x}% (t)+y(t))dt\Big\} \\ & +\sup_{a\in \mathbb{R}^{n}}\big\{\langle a,-\overline{p}(T)\rangle +\langle a,|\bar{x}^{\prime }(T)|^{q-2}\bar{x}^{\prime }(T)\rangle \big\} \\ & +\int_{0}^{T}\frac{k(t)}{q}|\bar{x}^{\prime }(t)|^{q}dt-\langle \bar{x}% (T),|\bar{x}^{\prime }(T)|^{q-2}\bar{x}^{\prime }(T)\rangle \\ =& -\int_{0}^{T}\langle \bar{x}(t),-\overline{p}^{\prime }(t)\rangle dt+% \frac{1}{q}\int_{0}^{T}k(t)|\bar{x}^{\prime }(t)|^{q}dt \\ & +\int_{0}^{T}V^{\ast }(t,-\overline{p}^{\prime }(t))dt-\langle \bar{x}(T),|% \bar{x}^{\prime }(T)|^{q-2}\bar{x}^{\prime }(T)\rangle +l(|\bar{x}^{\prime }(T)|^{q-2}\bar{x}^{\prime }(T)-\overline{p}(T)) \\ =& J_{\bar{x}}^{\#}(-\overline{p}). \end{align*} Therefore, we obtain (\ref{d.8}). Finally \begin{equation*} J(\bar{x})=J_{\bar{x}}^{\#}(-\bar{p})\geq \inf_{x\in X}J_{x}^{\#}(-\bar{p}% )=J_{D}(\bar{p}), \end{equation*} where the last equality is due to (\ref{2.4}). Hence $J(\bar{x})\geq J_{D}(% \bar{p})$. Now Theorem \ref{thm2.1} leads to $J(\bar{x})=J_{D}(\bar{p}% )=\inf_{p\in X^{d}}J_{D}(p)$. (\ref{2.9}) follows from (\ref{d.8}) and the chain of equalities $J_{\bar{x}}(0)=-J(\bar{x})=-J_{D}(\overline{p})$. \begin{corollary} \label{coro2.1} Let $\bar{x}\in X$ be such that $J(\bar{x})=\inf_{x\in X}J(x)$. Then there exists $\bar{p}\in X^{d}$ such that the pair $(\bar{x},\bar{p})$ satisfies the relations \begin{equation} J_{D}(\bar{p})=\inf_{p\in X^{d}}J_{D}(p)=\inf_{x\in X}J(x)=J( \bar{x}) \label{2.12} \end{equation} and \begin{equation} -( k(t)| \bar{x}'(t)| ^{q-2}\bar{x}'(t)) '=V_{x}(t,\bar{x}(t)), \label{2.13} \end{equation} \end{corollary} \paragraph{Proof.} From Theorems \ref{thm2.1} and \ref{thm2.2}, we obtain immediately (\ref% {2.12}). To show (\ref{2.13}) we use (\ref{d.8}) and (\ref{2.9}) obtaining the two equalities: \begin{gather*} \int_{0}^{T}V(t,\bar{x}(t))dt+\int_{0}^{T}V^{\ast }(t,-\bar{p}% '(t))dt -\int_{0}^{T}\langle \bar{x}(t),-\bar{p}'(t)\rangle dt=0, \\ \int_{0}^{T}\frac{1}{q'}[ k(t)] ^{1-q'}| \bar{p}(t)| ^{q'}dt+\int_{0}^{T}\frac{k(t)}{q}| \bar{x} '(t)| ^{q}dt-\int_{0}^{T}\langle \bar{x}'(t),\bar{p}(t)\rangle dt=0 \end{gather*} and further \begin{equation*} -\bar{p}'(t)=V_{x}(t,\bar{x}(t))\text{ and }\bar{p}(t)=k(t)| \bar{x}% '(t)| ^{q-2}\bar{x}'(t) \end{equation*} which gives (\ref{2.13}). \section{Variational principles and a duality gap for minimizing sequences} In this section we prove that a statement analogous to Theorem \ref{thm2.2} is true for a minimizing sequence of $J$. It is worth noting that as a consequence of our duality we obtain for the first time in the superlinear case a measure of a duality gap between primal and dual functional for approximate solutions to (\ref{1.1}) (for the sublinear case see \cite{N}). \begin{theorem} \label{thm3.1} Let $\{ x_{j}\} $, $x_{j}\in X$, $j=1,2,\dots $, be a minimizing sequence for $J$. Then there exist $p_{j}\in X^{d}$ with $-p_{j}'\in \partial J_{x_{j}}(0)$ such that $\{ p_{j}\}$ is a minimizing sequence for $J_{D}$ i.e., \begin{equation} \inf_{x\in X}J(x)=\inf_{j\in N}J(x_{j})=\inf_{j\in N}J_{D}(p_{j}) =\inf_{p\in X^{d}}J_{D}(p). \label{rr} \end{equation} Furthermore, \begin{equation*} J_{x_{j}}(0)+J_{x_{j}}^{\#}(-p_{j})=0, \end{equation*} and for all $\varepsilon >0$ there exists $j_{0}\in N$ such that for all $j\geq j_{0}$, \begin{gather} J_{D}(p_{j})-J_{x_{j}}^{\#}(-p_{j})\leq \varepsilon , \label{rr1} \\ 0\leq J(x_{j})-J_{D}(p_{j})\leq \varepsilon . \label{rr2} \end{gather} \end{theorem} \paragraph{Proof.} We first show the boundedness of $J$ on $X$. By the assumptions made on $V$ and the definition of $X$ we get for all $x\in X$, $0\leq \int_{0}^{T}V_{x}(r,x(r))dr\leq c+e$ and, in consequence, \begin{equation*} \Vert x\Vert \int_{0}^{T}V_{x}(r,x(r))dr\leq \Vert x\Vert (c+e), \end{equation*} where $\Vert x\Vert =\max \{|x(t)|:t\in \lbrack 0,T]\}$. Therefore, \begin{equation*} \int_{0}^{T}V_{x}(r,x(r))x(r)dr\leq \Vert x\Vert (c+e). \end{equation*} Hence, by the property of the subdifferential \begin{equation*} \int_{0}^{T}V(r,0)dr-\int_{0}^{T}V(r,x(r))dr\geq \int_{0}^{T}V_{x}(r,x(r))[0-x(r)]dr\geq -\Vert x\Vert (c+e) \end{equation*} and further \begin{equation} \begin{aligned} J(x)\geq &\int_{0}^{T}\frac{k(t)}{q}| x'(t)|^{q}dt -\int_{0}^{T}V(t,0)dt \\ &-\| x\| ( c+e)-\langle x(T),| x'(T)| ^{q-2}x'(T)\rangle \\ \geq &\int_{0}^{T}\frac{k(t)}{q}| x'(t)|^{q}dt-\int_{0}^{T}V(t,0)dt\\ &-T\| x'\|_{L^{q}([0,T],\mathbb{R}^n)}( c+e) -|x(T)||x'(T)|^{q-1}. \end{aligned} \label{ogr} \end{equation} It is clear that the definition of $J$ and (\ref{ogr}) give the estimate \begin{equation*} \infty >\inf_{j\in N}J(x_{j})=a>-\infty . \end{equation*} Fix $\varepsilon >0$. From the above there exists $j_{0}$ such that $% J(x_{j})-a<\varepsilon $, for all $j\geq j_{0}$. We can now proceed analogously to the proof of Theorem \ref{thm2.2}. First we observe that for each $j\in N$ there exists $p_{j}\in X^{d}$ such that $p_{j}^{\prime }(t)=-V_{x}(t,x_{j}(t))$ a.e. on $[0,T]$. This implies \begin{equation*} -p_{j}^{\prime }\in \partial J_{x_{j}}(0)\quad \text{for all }j\in \mathbb{N}% , \end{equation*} which gives $J_{x_{j}}(0)+J_{x_{j}}^{\#}(-p_{j})=0$ for all $j\in \mathbb{N}$% . As in the proof of Theorem \ref{thm2.2}, taking into account (\ref{2.4}), this assertion yields \begin{equation*} J(x_{j})=J_{x_{j}}^{\#}(-p_{j})\geq \inf_{x\in X}J_{x}^{\#}(-p_{j})=J_{D}(p_{j}). \end{equation*} Thus, by Theorem \ref{thm2.1}, we deduce that (\ref{rr}) holds. Then (\ref% {rr1}) and (\ref{rr2}) follow from (\ref{rr}) and two facts: \begin{gather*} J_{D}(p_{j})+\varepsilon \geq J(x_{j})\text{ \ for}\quad j\geq j_{0}, \\ -J(x_{j})=J_{x_{j}}(0)=-J_{x_{j}}^{\#}(-p_{j})\text{ for each }j\in N. \end{gather*} Theorem \ref{thm3.1} gives the below corollary \begin{corollary} \label{coro3.1} Let $\{ x_{j}\}$, $x_{j}\in X$, $j=1,2,\dots $, be a minimizing sequence for $J$. If $-p_{j}'(t)=V_{x}(t,x_{j}(t))$, then $$ p_{j}(t)=p_{j}(T)-\int_{t}^{T}p_{j}'(s)ds,p_{j}(T)=| x_{j}'(T)|^{q-2}x_{j}'(T) $$ which belongs to $X^{d}$ and $\{ p_{j}\}$ is a minimizing sequence for $J_{D}$; i.e., \begin{equation*} \inf_{x\in X}J(x)=\inf_{j\in N}J(x_{j})=\inf_{j\in N}J_{D}(p_{j})=\inf_{p\in X^{d}}J_{D}(p). \end{equation*} Furthermore for a given $\varepsilon >0$ and sufficiently large $j$, \begin{gather*} J_{D}(p_{j})-J_{x_{j}}^{\#}(-p_{j})\leq \varepsilon , \ 0\leq J(x_{j})-J_{D}(p_{j})\leq \varepsilon . \end{gather*} \end{corollary} \section{The existence result} In this section we prove the existence of a minimizer of $\bar{x}\in X$ of $% J $ on $X$; i.e., $J(\bar{x})=\min_{x\in X}J(x)$ being a solution of (\ref% {1.1}) with the non-local boundary condition (\ref{boc}). \begin{theorem} \label{thm4.1} Under hypotheses (\textbf{H}) and (\textbf{H1})-(\textbf{H3}) there exists $\bar{x}\in X$ such that $J(\bar{x})=\min_{x\in X}J(x)$ and $\bar{x}$ satisfies (\ref{1.1})-(\ref{boc}). \end{theorem} \paragraph{Proof.} Let $S_{z}=\{x\in X,J(x)\leq z\}$, where $z\in \mathbb{R}$. It follows from (% \ref{ogr}), the assumptions made on $V$, and the definition of $X$ that $% S_{z}$ is nonempty for sufficiently large $z$ and bounded with respect to the norm $\Vert x^{\prime }\Vert _{L^{q}([0,T],\mathbb{R}^{n})}$. This statement implies that $S_{z}$, $z\in \mathbb{R}$, are relatively weakly compact in $A_{0b}$. It is a well known fact that the functional $J$ is weakly lower semicontinuous in $A_{0}$ and thus also in $X$. Therefore, there exists a sequence $\{x_{n}\}$, $x_{n}\in X$, such that $% x_{n}\rightharpoonup \bar{x}$ weakly in $A_{0b}$ with $\bar{x}\in A_{0b}$ (we use the fact that $\{x_{n}\}$ is uniformly convergent to $\bar{x}$) and $% \liminf_{n\rightarrow \infty }J(x_{n})\geq J(\bar{x})$. Moreover, the uniform convergence of $\{x_{n}\}$ to $\bar{x}$, implies that $\bar{x}\in \overline{X}.$ Our task is now to show that $\bar{x}\in X$. For this purpose, we recall from Corollary \ref{coro3.1} that for \begin{equation} p_{n}^{\prime }(t)=-V_{x}(t,x_{n}(t)),\quad t\in \lbrack 0,T] \label{4.2} \end{equation} $p_{n}(t)=p_{n}(T)$ $-\int_{t}^{T}p_{n}^{\prime }(s)ds$, where $% p_{n}(T)=|x_{n}^{\prime }(T)|^{q-2}x_{n}^{\prime }(T)$, belongs to $X^{d}$. Then $\{p_{n}\}$ is a minimizing sequence for $J_{D}$. We easily check that $% \{p_{n}(T)\}$ is a bounded sequence and therefore we may assume (up to a subsequence) that it is convergent. From (\ref{4.2}) we infer that $% \{p_{n}^{\prime }\}$ is a bounded sequence in $L^{1}$ norm and that it is pointwise convergent to \begin{equation} \bar{p}^{\prime }(t)=-V_{x}(t,\bar{x}(t)). \label{4.3} \end{equation} Thus $\{p_{n}\}$ is uniformly convergent to $\bar{p}$ where $\bar{p}(t)=\bar{% p}(T)-$ $\int_{t}^{T}\bar{p}^{\prime }(s)ds$. By Corollary 3.1 we also have that for $\varepsilon _{n}\rightarrow 0$ ($n\rightarrow \infty )$ \begin{equation*} 0\leq \int_{0}^{T}(\frac{1}{q^{\prime }}[k(t)]^{1-q^{\prime }}|p_{n}(t)|^{q^{\prime }}+\frac{k(t)}{q}|x_{n}^{\prime }(t)|^{q})dt-\int_{0}^{T}\langle x_{n}^{\prime }(t),p_{n}(t)\rangle dt\quad \leq \varepsilon _{n} \end{equation*} where $1/q+1/q^{\prime }=1$, and so, taking the limit \begin{equation*} 0=\int_{0}^{T}\frac{1}{q^{\prime }}[k(t)]^{1-q^{\prime }}|\bar{p}% (t)|^{q^{\prime }}dt+\lim_{n\rightarrow \infty }\int_{0}^{T}\frac{k(t)}{q}% |x_{n}^{\prime }(t)|^{q}dt-\int_{0}^{T}\langle \bar{x}^{\prime }(t),\bar{p}% (t)\rangle dt. \end{equation*} Therefore, in view of the property of Fenchel inequality, \begin{equation*} 0=\int_{0}^{T}\frac{1}{q^{\prime }}[k(t)]^{1-q^{\prime }}|\bar{p}% (t)|^{q^{\prime }}dt+\int_{0}^{T}\frac{k(t)}{q}|\bar{x}^{\prime }(t)|^{q}dt-\int_{0}^{T}\langle \bar{x}^{\prime }(t),\bar{p}(t)\rangle dt \end{equation*} and further \begin{equation} \bar{p}(t)=k(t)|\bar{x}^{\prime }(t)|^{q-2}\bar{x}^{\prime }(t). \label{4.4} \end{equation} Thus $\bar{x}\in X$. Substituting (\ref{4.4}) into (\ref{4.3}) we can assert that the minimizer $\bar{x}\in X$ is the solution of problem (\ref{1.1})-(% \ref{boc}). \paragraph{Acknowledgments} The authors are in debt to anonymous referee whose suggestions led to the improvement of the presentation and the corrections of a few mistakes in this paper. \begin{thebibliography}{99} \bibitem{} \frenchspacing \bibitem{C-M-Z} A. Capietto and J. Mawhin and F. Zanolin, \textit{Boundary value problems for forced superlinear second order ordinary differential equations}, in ''Nonlinear Partial Differential Equations and their Applications. College de France Seminar'', \textbf{XII }55-64, Pitman Res. Notes ser., 302, 1994. \bibitem{C} A. Castro and J. Cossio and J.M. Neuberger, \textit{A sign-changing solution for a superlinear Dirichlet problem}, Rocky Mountain J. Math. \textbf{27} (1997), 1041-1053. \bibitem{k16} L. H. Erbe \& H. Wang, \textit{On the existence of positive solutions of ordinary differential equations}, Proc. A.M.S. \textbf{120, } 743-748, (1994). \bibitem{hh} D. Hankerson \& J. Henderson, \textit{Positive solutions and extremal points for differential equations}, Appl. Anal., \textbf{39,} (1990),193-207. \bibitem{ff} G. L. Karakostas and P. Ch. Tsamatos, \textit{Positive solutions of a boundary-value problem for second order ordinary differential equations}, Electronic Journal of Differential Equations, \textbf{2000} \textbf{No 49} (2000), 1-9. \bibitem{K-T} G. L. Karakostas and P. Ch. Tsamatos, \textit{Positive solutions for a nonlocal boundary-value problem with increasing response,} Electronic Journal of Differential Equations,\textbf{2000} (2000), 1-8. \bibitem{kras} G. L.Karakostas \& P. Ch. Tsamatos, \textit{Multiple positive solutions for a nonlocal boundary-value problem with response function quiet at zero}, Electronic Journal of Differential Equations, \textbf{2001 No 13}, (2001), 1-10. \bibitem{dd} M. A. Krasnosielski, \textit{Positive solutions of operator equations,} Noordhoff, Groningen, (1964). \bibitem{Las} L. Lassoued, \textit{Periodic solutions of a second order superquadratic systems with a change of sign in the potential}, J. Differential Eqns. \textbf{93 }(1991), 1-18. \bibitem{gg} R. Ma, \textit{Positive solutions for a nonlinear three-point boundary-value problem, Electronic Journal of Differential Equations}, \textbf{1998 No 34,} (1998), 1-8. \bibitem{M-W} J. Mawhin, \textit{Probl\`{e}mes de Dirichlet Variationnels Non Lin\'{e}ares}, Les Presses de l'Universit\'{e} dr Montr\'{e}al, 1987. \bibitem{N} A. Nowakowski, \textit{A new variational principle and duality for periodic solutions of Hamilton's equations}, J. Differential Eqns. \textbf{97 }(1992), 174-188. \bibitem{R} P. H. Rabinowitz, \textit{Minimax Methods in Critical Points Theory with Applications to Differential Equations}, AMS, Providence, 1986. \bibitem{RM} M. Willem, \textit{Minimax Theorems}, Progress in Nonlinear Differential Equations and Their Applications. Basel, Boston, Berlin: Birkh \"{a}user, \textbf{24} (1996). \end{thebibliography} \smallskip \noindent\textsc{Andrzej Nowakowski} (e-mail: annowako@math.uni.lodz.pl)% \newline \textsc{Aleksandra Orpel} (e-mail: orpela@math.uni.lodz.pl)\\[3pt] Faculty of Mathematics, University of Lodz, \newline Banacha 22, 90-238 Lodz, Poland \end{document}