\documentclass[twoside]{article}
\usepackage{amssymb, amsmath} % font used for R in Real numbers
\pagestyle{myheadings}
\markboth{\hfil Elliptic systems with critical Sobolev exponent
\hfil EJDE--2002/49}
{EJDE--2002/49\hfil P. Amster, P. De N\'apoli, \& M. C. Mariani\hfil}
\begin{document}
\title{\vspace{-1in}\parbox{\linewidth}{\footnotesize\noindent
{\sc Electronic Journal of Differential Equations},
Vol. {\bf 2002}(2002), No. 49, pp. 1--13. \newline
ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu
\newline ftp ejde.math.swt.edu (login: ftp)}
\vspace{\bigskipamount} \\
%
Existence of solutions for elliptic systems with critical Sobolev exponent
%
\thanks{ {\em Mathematics Subject Classifications: 35J50.}
\hfil\break\indent
{\em Key words: Elliptic Systems, Critical Sobolev exponent, variational methods.}
\hfil\break\indent
\copyright 2002 Southwest Texas State University. \hfil\break\indent
Submitted January 2, 2002. Published June 2, 2002.} }
\date{}
%
\author{Pablo Amster, Pablo De N\'apoli, \& Maria Cristina Mariani}
\maketitle
\begin{abstract}
We establish conditions for existence and for nonexistence of
nontrivial solutions to an elliptic system of partial differential
equations. This system is of gradient type and has a nonlinearity
with critical growth.
\end{abstract}
\newtheorem{theorem}{Theorem}[section]
\newtheorem{corollary}[theorem]{Corollary}
\newtheorem{lemma}[theorem]{Lemma}
\numberwithin{equation}{section}
\section{Introduction}
The purpose of this work is to extend some results known for the
quasilinear elliptic equation
\begin{equation} \label{e1}
\begin{gathered}
-\Delta u=u^{p-1}+\lambda u \quad\text{in }\Omega
\\ u=0 \quad \text{on }\partial\Omega
\end{gathered}
\end{equation}
to the general system
\begin{equation} \label{e2}
\begin{gathered}
-\Delta u_{i}=f_{i}(u)+\sum ^{n}_{j=1}a_{ij}u_{j}
\quad\text{in }\Omega \\
u_{i}=0 \quad \text{on }\partial\Omega.
\end{gathered}
\end{equation}
First we recall some results for the single equation (\ref{e1})
on a bounded domain $\Omega \subset \mathbb{R}^N$.
If $ 2
0$. Then,
using the Mountain Pass Theorem a critical value $c0$ for some $i$. Then (\ref{e2}) has a nontrivial weak
solution.
\end{corollary}
\begin{theorem} \label{thm3}
Let us assume that (\ref{e2}) admits a nonnegative nontrivial solution
$u\in H_{0}^{1}(\Omega ,\mathbb{R}^{n})$, and that $f_{i}(u)\geq 0$, with
$f_{i}(u)>0$ for $u>0$. We denote by $\mu_{{\rm min}}$ and
$\mu _{{\rm max}}$
the smallest and the largest eigenvalues of $A$, respectively.
Then \begin{enumerate}
\item[1)] If $A$ is symmetric and positive definite, then
$\mu_{{\rm min}}<\lambda _{1}(\Omega )$.
\item[2)] If $ A\geq 0$ is irreducible, then $\mu _{{\rm max}}<\lambda
_{1}(\Omega )$.
\item[3)] If $ a_{ij}>0$ for every $i,j$, and $A$ is symmetric, then
$\Vert A\Vert <\lambda _{1}(\Omega )$.
\end{enumerate}\end{theorem}
Using a Pohozaev-type identity \cite{P} we shall prove as in
\cite{PS} the following nonexistence result.
\begin{theorem} \label{thm4}
Let $F\in C^{1}(\mathbb{R}^{n})$ be homogeneous of degree
$p=2^{*}=2N/(N-2)$ and define $f_i =\frac 1p \partial_i F$.
Assume that $A$ is symmetric and negative definite, and
that $\Omega$ is star shaped. Then $u=0$ is the unique classical
solution of (\ref{e2}).
\end{theorem}
\section{The Brezis-Lieb Lemma}
We shall use the following version of the Brezis-Lieb lemma \cite{BL}.
\begin{lemma} \label{lm5}
Assume that $F\in C^{1}(\mathbb{R}^{n})$ with $F(0)=0$ and $\left|
\frac{\partial F}{\partial u_{i}}\right| \leq C|u|^{p-1}$.
Let $(u_{k})\subset L^{p}(\Omega )$, ($1\leq p<\infty$).
If $ (u_{k}) $ is bounded in $L^{p}(\Omega )$ and $ u_{k}\to u $ a.e.
on $\Omega $, then
$$ \lim _{k\to \infty }\Big( \int_{\Omega
}F(u_{k})-F(u_{k}-u)\Big) =\int _{\Omega }F(u)
$$
\end{lemma}
\paragraph{Proof}
We first remark that $u\in L^{p}(\Omega )$ and
$\|u\|_{p}\leq \liminf \|u_{k}\|_{p}<\infty $.
We claim that for a fixed $ \varepsilon >0$ there exists $
c(\varepsilon ) $ such that for $ a,b\in \mathbb{R}^{n}$, it holds
\begin{equation}
|F(a+b)-F(a)| \leq \varepsilon |a|^{p}+c(\varepsilon )|b|^{p}
\label{e4}
\end{equation}
Indeed, writing
$$
|F(a+b)-F(a)|=\left| \sum ^{n}_{i=1}\int ^{1}_{0} \frac{\partial
F}{\partial u_{i}}(a+bt)b_{i}dt\right| \leq C\sum ^{n}_{i=1}\int
^{1}_{0}|a+bt|^{p-1}|b_{i}|dt
$$
and using that
$xy\leq c(\widetilde\varepsilon )x^{p} +\widetilde \varepsilon
y^{p'}\, (x,y>0)$ we obtain
$$
|F(a+b)-F(a)|\leq C\sum ^{n}_{i=1}\int ^{1}_{0} \left(
\widetilde\varepsilon |a+bt|^{p}+c(\widetilde\varepsilon
)|b_{i}|^{p}\right) dt
$$
Moreover, as $(x+y)^{p}\leq 2^{p-1}(x^{p}+y^{p})\, (x,y>0) $,
we obtain:
$$
|F(a+b)-F(a)|\leq 2^{p-1}C\sum ^{n}_{i=1}\int ^{1}_{0}
\widetilde \varepsilon( |a|^{p}+t^{p}|b|^{p})
+c(\widetilde \varepsilon) |b_{i}|^{p} dt
$$
and (\ref{e4}) follows. Letting $a=u_{k}(x)-u(x)$, $ b=u(x)$ we
obtain
$$
|F(u_{k})-F(u_{k}-u)|\leq \varepsilon
|u_{k}-u|^{p}+c(\varepsilon)|u|^{p}
$$
We introduce the functions:
$$
f^{\varepsilon }_{k}=
(|F(u_{k})-F(u_{k}-u)-F(u)|-\varepsilon |u_{k}-u|^{p})^{+}
$$
As $|F(u)|\leq K|u|^{p}$, then $|f^{\varepsilon }_{k}|\leq
(K+c(\varepsilon ))|u|^{p}$. By Lebesgue theorem
$\int_{\Omega}f_{k}^{\varepsilon }\to 0 $. Since
$|F(u_{k})-F(u_{k}-u)-F(u)|\leq f^{\varepsilon }_{k}+ \varepsilon
|u_{k}-u|^{p}$, we obtain
$$
\limsup _{k \to \infty }\int _{\Omega
}|F(u_{k})-F(u_{k}-u)-F(u)| \leq \varepsilon c
$$
with $ c=\sup_{k}\|u_{k}-u\|^{p}_{p}<\infty $.
Letting $\varepsilon \to 0$, the result follows.
\paragraph{Remark}
In particular, this result holds for $F$ is homogeneous of degree $p$.
\section{Proofs of results}
For the proof of part 1) of Theorem \ref{thm1} we shall use the
Lemma \ref{lm6}
below, which is a version of the concentration compactness lemma in
\cite{L}.
Let $ F:\mathbb{R}^{n}\to \mathbb{R}$ be a $C^1$ function homogeneous of degree
$p=2^{*} $, such that $F(u)>0$ if $u\neq 0$. By homogeneity, it is
easy to see that
$$
S_{F}=\inf_{u\in D^{1,2}(\mathbb{R}^{N},\mathbb{R}^{n}),u\neq 0}
\frac{\sum ^{n}_{k=1}\int_{\mathbb{R}^{N}}| \nabla u_{k}|^{2}}{\left( \int
_{\mathbb{R}^{N}}F(u)\right)^{2/2^{*}}}
$$
\begin{lemma} \label{lm6}
Let $(u^{(i)})\subset D_{0}^{1,2}(\mathbb{R}^{N},\mathbb{R}^{n})$ be a sequence
such that:
\begin{enumerate}
\item[i)] $u^{(i)}\to u$ weakly in $D^{1,2}(\Omega )$
\item[ii)] $|\nabla (u^{(i)}_{k}-u_{k})|\to \mu _{k}$ in $M(\mathbb{R}^{n})$
weak ${}^{*}$ for $k = 1,...,n$.
\item[iii)] $F(u^{(i)}-u)\to \nu $ in $M(\mathbb{R}^{n})$ weak${}^{*}$
\item[iv)] $u^{(i)}\to u$ a.e. on $\mathbb{R}^{N}$
\end{enumerate}
and define:
$\mu =\sum ^{n}_{k=1}\mu_{k}$,
\begin{gather*}
\nu ^\infty = \lim _{R\to \infty } \Big(\limsup _{i\to \infty }
\int _{|x|\geq R}F(u^{(i)})dx\Big),\\
\mu _{k}^{\infty }=\lim _{R\to \infty }
\Big( \limsup _{i\to \infty } \int _{|x|\geq R}|\nabla
u^{(i)}_{k}|^{2}dx\Big)
\end{gather*}
Then:
\begin{gather}
\left\Vert \nu \right\Vert
^{2/2^{*}}\leq \frac 1{S_{F}} \left\Vert \mu \right\Vert \label{e5.1}\\
(\nu ^{\infty })^{2/2^{*}}\leq \frac 1{S_{F}}\sum ^{n}_{k=1}
\mu ^{\infty }_{k} \label{e5.2}\\
\limsup _{i\to \infty }|\nabla
u_{k}^{(i)}|_{2}^{2}=|\nabla u|_{2}^{2}+ \left\Vert \mu
_{k}\right\Vert +\mu ^{\infty }_{k} \quad \text{for $k =
1,...,n$} \label{e6.1} \\
\limsup _{i\to \infty }\int_\Omega
F(u^{(i)})=\int_\Omega F(u)+ \left\Vert \nu \right\Vert +\nu
_{\infty }\label{e6.2}
\end{gather}
Moreover, if $ u=0 $ and equality holds in
(\ref{e5.1}), then $\mu =0 $ or
$\mu $ is concentrated at a single point.
\end{lemma}
\paragraph{Proof of Theorem \ref{thm1} Part 1)}
Let $(u^{(i)})\subset D^{1,2}(\mathbb{R}^{N},\mathbb{R}^n)$ be a minimizing
sequence for $S_{F}$, i.e.,
$$
\int _{\mathbb{R}^{N}}F(u^{({i})})=1,\qquad \sum
^{n}_{k=1}\int _{\mathbb{R}^{N}}|\nabla u_{k}^{(i)}|^{2}\to S_{F}
$$
Using (\ref{e5.1})-(\ref{e6.1}), we deduce, as in \cite[Theorem 1.41]{W},
the existence of a sequence $(y_{i},\lambda _{i})\in \mathbb{R}^{N}\times
\mathbb{R}$ such that $ \lambda ^{(N-2)/2}_{i}u(\lambda _{i}x+y_{i})$
has a convergent subsequence. In particular there exists a minimizer for
$ S_{F}$.
To prove the second part of Theorem 1, we shall use the
following version of the Mountain Pass Lemma \cite{W}.
\begin{theorem}[Ambrosetti-Rabinowitz] \label{thm7}
Let $ X$ be a Hilbert space, $\varphi$ be an element of $C^{1}(X,\mathbb{R})$,
$ e\in X$ and $r>0$ such that $\left\Vert e\right\Vert >r$, $b=\inf
_{\left\Vert u\right\Vert =r}\varphi (u)>\varphi (0)\geq \varphi
(e)$. Then for each $\varepsilon >0$ there exists $u\in X$ such
that $c-\varepsilon \leq \varphi (u)\leq c+\varepsilon$ and
$\left\Vert \varphi'(u)\right\Vert \leq \varepsilon$
where
$$
c=\inf _{\gamma \in \Gamma }\max _{t\in [0,1]}\varphi (\gamma (t)),
$$
with $\Gamma =\left\{ \gamma \in C([0,1],X):\gamma (0)=0,\gamma
(1)= e\right\}$.
Letting $\varepsilon =1/k$, we get a Palais-Smale sequence
at level $c$; i.e., a sequence $(u^{(k)})\subset X$ such that
$$
\varphi (u^{(k)})\to c, \quad \varphi'(u^{(k)})\to 0
$$
We shall apply this result to the functional
$$
\varphi (u)=\frac{1}{2}\int _{\Omega }\sum ^{n}_{i=1}|\nabla u_{i}|^{2}-
\frac{1}{2^{*}}\int _{\Omega }F(u)-\frac{1}{2}\int _{\Omega } \sum
^{n}_{i,j=1}a_{ij}u_{i} u_{j}
$$
in the Sobolev space
$X=H_{0}^{1}(\Omega, \mathbb{R}^{n})$. As $\| A \|< \lambda_1(\Omega) $,
we may define on $X$ the norm
$$
\| u \|= \left(\int_{\Omega} \sum_{i=1}^n |\nabla u_i |^2 - \int_{\Omega}
\sum_{i,j=1}^n a_{ij} u_i u_j \right)^{1/2}
$$
which is equivalent to the usual norm. By standard arguments
$\varphi \in C^{1}(X)$ and
$$
\left\langle \varphi'(u),h \right\rangle = \sum
^{n}_{i=1} \int _{\Omega }\nabla u_{i}\cdot \nabla h_{i}-
\sum_{i=1}^n \int _{\Omega }f_{i}(u)h_{i}- \int _{\Omega }\sum
^{n}_{i,j=1}a_{ij}h_{i}u_{j}
$$
It follows that the critical points of $\varphi$ are weak
solutions of the system.
\end{theorem}
To ensure that the value $c$ given by the mountain pass
theorem is indeed a critical value we need to prove the following
lemma.
\begin{lemma} \label{lm7}
Let $F$ be homogeneous of degree $2^{*}$. Then any
$(PS)_{c}$ sequence with $c0
$$
Then, it is easy to conclude that $c< c^*$.
Now we consider the special case
$$
[u]=|u|_{q}=\Big( \sum ^{n}_{i=1}|u_{i}|^{q}\Big) ^{1/q}
\quad\text{and} \quad
F_{q}(u)=\Big( \sum^{n}_{i=1}|u_{i}|^{q}\Big) ^{2^{*}/q}
$$
for proving Corollary \ref{coro2}.
\begin{lemma} \label{lm8}
$ S_{F}(\Omega) =S$ for $q\geq 2$ where $S$ is the best constant
for the Sobolev inequality with $n=1$.
\end{lemma}
\paragraph{Proof}
Suppose first that $q\geq 2^{*}$, then we have the estimate
\begin{align*}
\Big[ \int _{\Omega }\Big( \sum ^{n}_{i=1}|u_{i}|^{q}\Big) ^{2^{*}/q}
\Big] ^{2/2^{*}}
\leq& \Big[ \int _{\Omega } \sum
^{n}_{i=1}|u_{i}|^{2^{*}}\Big]^{2/2^{*}}= \Big[ \sum
^{n}_{i=1}\int _{\Omega }|u_{i}|^{2^{*}}\Big] ^{2/2^{*}}\\
\leq& \Big[ \sum ^{n}_{i=1}(S^{-1}\int _{\Omega } |\nabla
u_{i}|^{2}_{2})^{2^{*}/2}\Big] ^{2/2^{*}} \leq \sum
^{n}_{i=1}S^{-1}\int _{\Omega }|\nabla u_{i}|^{2}
\end{align*}
It follows that $S_{F}\geq S$.
For $2\leq q\leq 2^{*}$ we use Minkowski inequality:
\begin{align*}
\Big[ \int _{\Omega }\Big( \sum ^{n}_{i=1}|u_{i}|^{q}\Big)
^{2^{*}/q}\Big] ^{2/2^{*}}= &\left\{ \Big[ \int _{\Omega }\Big(
\sum ^{n}_{i=1}|u_{i}|^{q}\Big)^{2^{*}/q}\Big]^{q/2^{*}}
\right\}^{2/q}\\
\leq&
\Big[ \Big( \sum ^{n}_{i=1} \int_{\Omega }|u_{i}|^{2^{*}}
\Big)^{q/2^{*}}\Big]^{2/q} \\
=& \sum ^{n}_{i=1}
\Big( \int _{\Omega }|u_{i}|^{2^{*}}\Big)^{2/2^{*}} \leq
\sum^{n}_{i=1} S^{-1}\int_{\Omega }|\nabla u_{i}|^{2}
\end{align*}
The inequality $S_{F}\leq S$ is verified easily taking functions of
the form $u = (u_1,0,...,0)$.
\paragraph{Proof of Corollary \ref{coro2}}
First we note that by the $2^{*}$-homogeneity of $F$, $S_{F}$ does
not depend on $\Omega$.
Taking $u(x)=U(x)e_{i}$, where
$$
U(x)=\frac{[N(N-2)]^{(N-2)/4}}{(1+|x|^{2})^{(N-2)/2}}
$$
is the function that attains Sobolev's best constant in one
dimension \cite[Theorem 1.42]{W}, it follows that $S_{F}$ is achieved
when $\Omega =\mathbb{R}^{N}$ (where $N\geq 4$).
By translation invariance of the problem, $S_{F}$ is also achieved
with $u_{\varepsilon }(x)=U_{\varepsilon }(x)\cdot e_{i}$, for
$$
U_{\varepsilon }(x)=\varepsilon ^{(2-N)/2}U(x/\varepsilon )
$$
We shall see that $S_{F,A}0$. Then, if we
define $u(x)=v_{\varepsilon }(x)e_{i}$, with $v_{\varepsilon
}(x)=\psi (x)U_{\varepsilon }(x)$, and $ \psi$ a smooth function
with compact support in $\Omega$ such that $\psi \equiv 1$ in
$B(0,\rho )$, we obtain as in \cite[Lemma 1.46]{W}:
$$
\frac {\int _{\Omega }\sum ^{n}_{i=1} |\nabla
u_{i}|^{2}-\int_{\Omega }\left\langle Au,u \right\rangle }{\Big(
\int_{\Omega }F(u)\Big)^{2/p} } = \frac {\int _{\Omega } |\nabla
u_{\varepsilon }|^{2}-a_{ii}\int _{\Omega } u^{2}_{\varepsilon}
}{\Big( \int _{\Omega }|u_{\varepsilon }|^p \Big)} 0\, \forall x\in \Omega$.
Then
$$
\lambda _{1}\int _{\Omega }u_{i}e_{1}= \int _{\Omega }-\Delta
u_{i}e_{1} =\int _{\Omega }f_{i}(u)e_{1} +\sum
^{n}_{j=1}a_{ij}\int _{\Omega }u_{j}e_{1}
$$
If $z_{i}=\int _{\Omega }u_{i}e_{1}$, then
$$\lambda _{1}z\geq Az,$$
and the inequality between the $i$-th components is strict if
$u_{i}\neq 0$ for some $i$.
Since $z\geq 0$, and $z_{i}>0$ for some $i$, we obtain
$$
\lambda _{1}|z|^{2}>\left\langle Az,z\right\rangle.
$$
Since $A$ is symmetric and positive definite,
$$
\lambda _{1}|z|^{2}>\mu_{{\rm min}}|z|^{2}
\quad{and}\quad \lambda _{1}>\mu_{{\rm min}}.
$$
This proves the first claim of the theorem.
For $A\geq 0$ and irreducible, let $v$ be the eigenvector of
$A^{t}$ corresponding to $\mu _{{\rm max}}$, then from the
Perron-Frobenius Theorem \cite{G}, $v_i >0$ for any $i$ and
$$
\lambda _{1}\left\langle z,v\right\rangle > \left\langle
Az,v\right\rangle =\left\langle z,A^{t}v\right\rangle = \mu
_{{\rm max}}\left\langle z,v\right\rangle$$ and since $\left\langle
z,v\right\rangle >0$, it follows that $\lambda _{1}>\mu _{{\rm max}}$
and the second claim is proved.
Finally when $A\geq 0$ is symmetric, we have $\mu
_{{\rm max}}=\left\Vert A\right\Vert$, and the proof is complete.
\hfill$\Box$
\paragraph{Proof of Theorem \ref{thm4}}
The proof of Theorem \ref{thm4} consists of the next lemma and
the next corollary.
\begin{lemma} \label{lm9}
Suppose that $u\in C^{2}(\overline{\Omega },\mathbb{R}^{n})$ is a
classical solution of the gradient elliptic system
\begin{gather*}
-\Delta u_{i} = g_{i}(u) \quad\text { in } \Omega \\
u = 0 \text { on } \quad \partial \Omega
\end{gather*}
where $g_{i}=\frac{\partial G}{\partial u_{i}}$, $G\in
C^{1}(\mathbb{R}^{n})$, $G(0)=0$ and $\Omega \subset \mathbb{R}^{N}$ is a
bounded open set with smooth boundary. Then for a fixed $y$,
$$
\sum ^{n}_{k=1} \int _{\partial \Omega } |\nabla
u_{k}|^{2}(x-y)\cdot n(x)dS =2N\int _{\Omega }G(u)dx-(N-2) \sum
^{n}_{k=1}\int _{\Omega }g_{k}(u)u_{k}dx
$$
\end{lemma}
\paragraph{Proof}
Multiply the $k$-th equation by $(x-y)\cdot \nabla u_{k}
=\sum ^{N}_{i=1}(x_{i}-y_{i})\frac{\partial u_{k}}{\partial
x_{i}}$ and integrate by parts, then we have
\begin{multline*}
\int _{\Omega } \sum ^{N}_{i=1}
(x_{i}-y_{i})\frac{\partial u_{k}}{\partial x_{i}}g_{k}(u) \\
=\int_{\Omega }|\nabla u_{k}|^{2}+\int _{\Omega }\sum ^{n}_{i,j=1}
(x_{i}-y_{i})\frac{\partial u_{k}}{\partial x_{j}}\frac{\partial
^{2} u_{k}}{\partial x_{i}x_{j}}-\int _{\partial \Omega }|\nabla
u_k|^{2}(x-y) \cdot n(x)dS
\end{multline*}
Hence,
$$
\int _{\Omega }\sum ^{N}_{i=1}
(x_{i}-y_{i})\frac{\partial u_{k}}{\partial x_{i}}g_{k}(u)
=\big(1-\frac{N}{2}\big) \int _{\Omega }|\nabla u_{k}|^{2}-\frac{1}{2}
\int _{\partial \Omega }|\nabla u_{k}|^{2}(x-y)\cdot n(x)dS
$$
Adding this identities for $k=1,2,\ldots n$,
\begin{multline*}
\int _{\Omega }\sum ^{N}_{i=1}(x_{i}-y_{i})
\sum ^{n}_{k=1}\frac{\partial u_{k}}{\partial x_{i}}g_{k}(u)\\
=\big( 1-\frac{N}{2}\big) \sum ^{n}_{k=1} \int _{\Omega
}|\nabla u_{k}|^{2}-\frac{1}{2} \sum ^{n}_{k=1}\int _{\partial
\Omega }|\nabla u|^{2}(x-y)\cdot n(x)dS
\end{multline*}
By the chain rule we have
\begin{align*}
\int _{\Omega }\sum ^{N}_{i=1}(x_{i}-y_{i})\sum ^{N}_{k=1}
\frac{\partial u_{k}}{\partial x_{i}}g_{k}(u)
=&\int _{\Omega } \sum
^{N}_{i=1}(x_{i}-y_{i})\frac{\partial G(u)}{\partial x_{i}}\\
=&-N\int _{\Omega }G(u)+\sum ^{n}_{i=1} \int_{\partial \Omega }
G(u)(x_{i}-y_{i}) \cdot n_{i}(x)dS\,.
\end{align*}
Since $G(u)=0$ on $\partial \Omega$,
$$-N\int _{\Omega }G(u)=( 1-\frac{N}{2})
\sum ^{N}_{k=1}\int _{\Omega }|\nabla u_{j}|^{2}- \frac{1}{2}\sum
^{N}_{k=1}\int _{\partial \Omega }|\nabla u|^{2}(x-y) \cdot
n(x)dS
$$
Finally
$$
\int _{\Omega }|\nabla u_{k}|^{2}=\int _{\Omega }g_{k}(u)u_{k}
$$
and
$$
\sum ^{N}_{k=1}\int _{\partial \Omega }|\nabla u_{k}|^{2}(x-y)
\cdot n(x)=2N\int _{\Omega }G(u)-(N-2)\sum ^{N}_{k=1} \int
_{\Omega }g_{k}(u)u_{k}
$$
\quad\hfill$\Box$
With the following corollary, we complete the proof of Theorem \ref{thm4}.
\begin{corollary} \label{coro10}
Assume that $ F\in C^{1}(\mathbb{R}^{n})$ is homogeneous of degree
$p=2^{*}=2N/(N-2)$, with $F(0)=0$. Further, assume that $A$
is symmetric and negative definite, and that $\Omega $ is star
shaped. Then the system
\begin{gather*}
-\Delta u_{j} = f_{k}(u)+\sum ^{k}_{j=1}a_{jk}u_{j} \quad\text {in } \Omega \\
u = 0 \quad\text {on } \partial \Omega
\end{gather*}
with $f_{k}=\frac{\partial F}{\partial u_{k}}$ admits only the
trivial solution.
\end{corollary}
\paragraph{Proof}
Let
$G(u)=F(u)+\frac{1}{2}\langle Au,u\rangle$.
Since $F$ is homogeneous of degree $ p $,
$$ \sum ^{N}_{k=1}f_{k}(u)u_{k}=pF(u) $$
and
$$ \sum ^{N}_{k=1}\int _{\partial
\Omega }|\nabla u_{k}|^{2}(x-y)\cdot n(x) =[2N-p(N-2)]\int
_{\Omega }F(u)+2\sum ^{N}_{k=1}\int _{\Omega } \left\langle
Au,u\right\rangle
$$
Since $p=2N/(N-2)$,
$$
\sum ^{N}_{k=1}\int _{\partial \Omega }|\nabla u_{k}|^{2}(x-y)
\cdot n(x)=2\sum ^{N}_{k=1}\int _{\Omega }\left\langle
Au,u\right\rangle
$$
Now, because $A$ is negative definite, $\left\langle Au,u\right\rangle
\leq M |u|^{2}$ where $M<0$ and then
$$
\sum ^{N}_{k=1}\int _{\partial \Omega }|\nabla
u_{k}|^{2}(x-y)\cdot n(x) \leq 2M \sum ^{n}_{k=1}\int _{\Omega
}|u|^{2}
$$
Since $\Omega$ is star shaped, $(x-y)\cdot n(x)>0$ on
$\partial \Omega $, and we conclude that $u=0$.
\begin{thebibliography}{00} \frenchspacing
\bibitem{BN} H. Brezis and L. Nirenberg, {\it Positive Solutions of
Nonlinear Elliptic Equations Involving
Critical Sobolev Exponents,} Communications on Pure and Applied Mathematics.
Vol XXXVI , 437-477 (1983)
\bibitem{BF} L. Boccardo and D. de Figueiredo, {\it Some Remarks on a
system of quasilinear elliptic equations}, to appear.
\bibitem{BL} H. Brezis and E.
Lieb, {\it A relation between point wise
convergence of functions and convergence
of functionals,} Proc. A.M.S. vol. 48, No 3 (1993), pp. 486-499
\bibitem{CMM} P. Cl\'ement, E. Mitidieri and R., Man\'asevich, {\it
Positive solutions for a quasilinear system via blow up,} Comm. in
Part. Diff. Eq., Vol. 18, No. 12, (1993).
\bibitem{F1} D. de Figueiredo, {\it Semilinear Elliptic Systems},
Notes of the course on semilinear elliptic systems
of the EDP Chile-CIMPA Summer School
(Universidad de la Frontera, Temuco, Chile, January 1999).
\bibitem{F2} D. de Figueiredo, {\it Semilinear Elliptic Systems: A
survey of superlinear problems.}
Resenhas IME-USP 1996, vol. 2, No. 4, pp. 373-391.
\bibitem{GT} D. Gilbarg, and N. S. Trudinger, {\it Elliptic
partial differential equations of second order}, Springer- Verlag
(1983).
\bibitem{G} F. R. Grantmacher, {\it The Theory of matrices}, Chelsea
(1959).
\bibitem{L} P. L. Lions, {\it The concentration compactness
principle in the calculus of variations. The limit case.} Rev.
Mat. Iberoamericana (1985), pp. 145-201 and 45-121.
\bibitem{P} S. Pohozaev, {\it Eigenfunctions of the equation $\Delta
u+\lambda f(u)=0$.} Nonlinearity Doklady Akad. Nauk SSRR 165,
(1965), pp. 36-9.
\bibitem{PS} P. Pucci and J. Serrin, {\it A general variational
identity,} Indiana University Journal, Vol. 35, No. 3, (1986),
681-703.
\bibitem{W} M. Willem, {\it Minimax Theorems}, Birkhauser (1986)
\end{thebibliography}
\noindent\textsc{Pablo Amster} (e-mail: pamster@dm.uba.ar)\\
\textsc{Pablo De N\'apoli} (e-mail: pdenapo@dm.uba.ar)\\
\textsc{Maria Cristina Mariani} (e-mail: mcmarian@dm.uba.ar)\\[2pt]
Departamento. de Matem\'atica \\
Facultad de Ciencias Exactas y Naturales\\
Universidad de Buenos Aires.\\
Pabell\'on I, Ciudad Universitaria (1428) \\
Buenos Aires, Argentina
\end{document}