\documentclass[twoside]{article} \usepackage{amssymb, amsmath} % font used for R in Real numbers \pagestyle{myheadings} \markboth{\hfil Elliptic systems with critical Sobolev exponent \hfil EJDE--2002/49} {EJDE--2002/49\hfil P. Amster, P. De N\'apoli, \& M. C. Mariani\hfil} \begin{document} \title{\vspace{-1in}\parbox{\linewidth}{\footnotesize\noindent {\sc Electronic Journal of Differential Equations}, Vol. {\bf 2002}(2002), No. 49, pp. 1--13. \newline ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu \newline ftp ejde.math.swt.edu (login: ftp)} \vspace{\bigskipamount} \\ % Existence of solutions for elliptic systems with critical Sobolev exponent % \thanks{ {\em Mathematics Subject Classifications: 35J50.} \hfil\break\indent {\em Key words: Elliptic Systems, Critical Sobolev exponent, variational methods.} \hfil\break\indent \copyright 2002 Southwest Texas State University. \hfil\break\indent Submitted January 2, 2002. Published June 2, 2002.} } \date{} % \author{Pablo Amster, Pablo De N\'apoli, \& Maria Cristina Mariani} \maketitle \begin{abstract} We establish conditions for existence and for nonexistence of nontrivial solutions to an elliptic system of partial differential equations. This system is of gradient type and has a nonlinearity with critical growth. \end{abstract} \newtheorem{theorem}{Theorem}[section] \newtheorem{corollary}[theorem]{Corollary} \newtheorem{lemma}[theorem]{Lemma} \numberwithin{equation}{section} \section{Introduction} The purpose of this work is to extend some results known for the quasilinear elliptic equation \begin{equation} \label{e1} \begin{gathered} -\Delta u=u^{p-1}+\lambda u \quad\text{in }\Omega \\ u=0 \quad \text{on }\partial\Omega \end{gathered} \end{equation} to the general system \begin{equation} \label{e2} \begin{gathered} -\Delta u_{i}=f_{i}(u)+\sum ^{n}_{j=1}a_{ij}u_{j} \quad\text{in }\Omega \\ u_{i}=0 \quad \text{on }\partial\Omega. \end{gathered} \end{equation} First we recall some results for the single equation (\ref{e1}) on a bounded domain $\Omega \subset \mathbb{R}^N$. If $ 20$. Then, using the Mountain Pass Theorem a critical value $c0$ for some $i$. Then (\ref{e2}) has a nontrivial weak solution. \end{corollary} \begin{theorem} \label{thm3} Let us assume that (\ref{e2}) admits a nonnegative nontrivial solution $u\in H_{0}^{1}(\Omega ,\mathbb{R}^{n})$, and that $f_{i}(u)\geq 0$, with $f_{i}(u)>0$ for $u>0$. We denote by $\mu_{{\rm min}}$ and $\mu _{{\rm max}}$ the smallest and the largest eigenvalues of $A$, respectively. Then \begin{enumerate} \item[1)] If $A$ is symmetric and positive definite, then $\mu_{{\rm min}}<\lambda _{1}(\Omega )$. \item[2)] If $ A\geq 0$ is irreducible, then $\mu _{{\rm max}}<\lambda _{1}(\Omega )$. \item[3)] If $ a_{ij}>0$ for every $i,j$, and $A$ is symmetric, then $\Vert A\Vert <\lambda _{1}(\Omega )$. \end{enumerate}\end{theorem} Using a Pohozaev-type identity \cite{P} we shall prove as in \cite{PS} the following nonexistence result. \begin{theorem} \label{thm4} Let $F\in C^{1}(\mathbb{R}^{n})$ be homogeneous of degree $p=2^{*}=2N/(N-2)$ and define $f_i =\frac 1p \partial_i F$. Assume that $A$ is symmetric and negative definite, and that $\Omega$ is star shaped. Then $u=0$ is the unique classical solution of (\ref{e2}). \end{theorem} \section{The Brezis-Lieb Lemma} We shall use the following version of the Brezis-Lieb lemma \cite{BL}. \begin{lemma} \label{lm5} Assume that $F\in C^{1}(\mathbb{R}^{n})$ with $F(0)=0$ and $\left| \frac{\partial F}{\partial u_{i}}\right| \leq C|u|^{p-1}$. Let $(u_{k})\subset L^{p}(\Omega )$, ($1\leq p<\infty$). If $ (u_{k}) $ is bounded in $L^{p}(\Omega )$ and $ u_{k}\to u $ a.e. on $\Omega $, then $$ \lim _{k\to \infty }\Big( \int_{\Omega }F(u_{k})-F(u_{k}-u)\Big) =\int _{\Omega }F(u) $$ \end{lemma} \paragraph{Proof} We first remark that $u\in L^{p}(\Omega )$ and $\|u\|_{p}\leq \liminf \|u_{k}\|_{p}<\infty $. We claim that for a fixed $ \varepsilon >0$ there exists $ c(\varepsilon ) $ such that for $ a,b\in \mathbb{R}^{n}$, it holds \begin{equation} |F(a+b)-F(a)| \leq \varepsilon |a|^{p}+c(\varepsilon )|b|^{p} \label{e4} \end{equation} Indeed, writing $$ |F(a+b)-F(a)|=\left| \sum ^{n}_{i=1}\int ^{1}_{0} \frac{\partial F}{\partial u_{i}}(a+bt)b_{i}dt\right| \leq C\sum ^{n}_{i=1}\int ^{1}_{0}|a+bt|^{p-1}|b_{i}|dt $$ and using that $xy\leq c(\widetilde\varepsilon )x^{p} +\widetilde \varepsilon y^{p'}\, (x,y>0)$ we obtain $$ |F(a+b)-F(a)|\leq C\sum ^{n}_{i=1}\int ^{1}_{0} \left( \widetilde\varepsilon |a+bt|^{p}+c(\widetilde\varepsilon )|b_{i}|^{p}\right) dt $$ Moreover, as $(x+y)^{p}\leq 2^{p-1}(x^{p}+y^{p})\, (x,y>0) $, we obtain: $$ |F(a+b)-F(a)|\leq 2^{p-1}C\sum ^{n}_{i=1}\int ^{1}_{0} \widetilde \varepsilon( |a|^{p}+t^{p}|b|^{p}) +c(\widetilde \varepsilon) |b_{i}|^{p} dt $$ and (\ref{e4}) follows. Letting $a=u_{k}(x)-u(x)$, $ b=u(x)$ we obtain $$ |F(u_{k})-F(u_{k}-u)|\leq \varepsilon |u_{k}-u|^{p}+c(\varepsilon)|u|^{p} $$ We introduce the functions: $$ f^{\varepsilon }_{k}= (|F(u_{k})-F(u_{k}-u)-F(u)|-\varepsilon |u_{k}-u|^{p})^{+} $$ As $|F(u)|\leq K|u|^{p}$, then $|f^{\varepsilon }_{k}|\leq (K+c(\varepsilon ))|u|^{p}$. By Lebesgue theorem $\int_{\Omega}f_{k}^{\varepsilon }\to 0 $. Since $|F(u_{k})-F(u_{k}-u)-F(u)|\leq f^{\varepsilon }_{k}+ \varepsilon |u_{k}-u|^{p}$, we obtain $$ \limsup _{k \to \infty }\int _{\Omega }|F(u_{k})-F(u_{k}-u)-F(u)| \leq \varepsilon c $$ with $ c=\sup_{k}\|u_{k}-u\|^{p}_{p}<\infty $. Letting $\varepsilon \to 0$, the result follows. \paragraph{Remark} In particular, this result holds for $F$ is homogeneous of degree $p$. \section{Proofs of results} For the proof of part 1) of Theorem \ref{thm1} we shall use the Lemma \ref{lm6} below, which is a version of the concentration compactness lemma in \cite{L}. Let $ F:\mathbb{R}^{n}\to \mathbb{R}$ be a $C^1$ function homogeneous of degree $p=2^{*} $, such that $F(u)>0$ if $u\neq 0$. By homogeneity, it is easy to see that $$ S_{F}=\inf_{u\in D^{1,2}(\mathbb{R}^{N},\mathbb{R}^{n}),u\neq 0} \frac{\sum ^{n}_{k=1}\int_{\mathbb{R}^{N}}| \nabla u_{k}|^{2}}{\left( \int _{\mathbb{R}^{N}}F(u)\right)^{2/2^{*}}} $$ \begin{lemma} \label{lm6} Let $(u^{(i)})\subset D_{0}^{1,2}(\mathbb{R}^{N},\mathbb{R}^{n})$ be a sequence such that: \begin{enumerate} \item[i)] $u^{(i)}\to u$ weakly in $D^{1,2}(\Omega )$ \item[ii)] $|\nabla (u^{(i)}_{k}-u_{k})|\to \mu _{k}$ in $M(\mathbb{R}^{n})$ weak ${}^{*}$ for $k = 1,...,n$. \item[iii)] $F(u^{(i)}-u)\to \nu $ in $M(\mathbb{R}^{n})$ weak${}^{*}$ \item[iv)] $u^{(i)}\to u$ a.e. on $\mathbb{R}^{N}$ \end{enumerate} and define: $\mu =\sum ^{n}_{k=1}\mu_{k}$, \begin{gather*} \nu ^\infty = \lim _{R\to \infty } \Big(\limsup _{i\to \infty } \int _{|x|\geq R}F(u^{(i)})dx\Big),\\ \mu _{k}^{\infty }=\lim _{R\to \infty } \Big( \limsup _{i\to \infty } \int _{|x|\geq R}|\nabla u^{(i)}_{k}|^{2}dx\Big) \end{gather*} Then: \begin{gather} \left\Vert \nu \right\Vert ^{2/2^{*}}\leq \frac 1{S_{F}} \left\Vert \mu \right\Vert \label{e5.1}\\ (\nu ^{\infty })^{2/2^{*}}\leq \frac 1{S_{F}}\sum ^{n}_{k=1} \mu ^{\infty }_{k} \label{e5.2}\\ \limsup _{i\to \infty }|\nabla u_{k}^{(i)}|_{2}^{2}=|\nabla u|_{2}^{2}+ \left\Vert \mu _{k}\right\Vert +\mu ^{\infty }_{k} \quad \text{for $k = 1,...,n$} \label{e6.1} \\ \limsup _{i\to \infty }\int_\Omega F(u^{(i)})=\int_\Omega F(u)+ \left\Vert \nu \right\Vert +\nu _{\infty }\label{e6.2} \end{gather} Moreover, if $ u=0 $ and equality holds in (\ref{e5.1}), then $\mu =0 $ or $\mu $ is concentrated at a single point. \end{lemma} \paragraph{Proof of Theorem \ref{thm1} Part 1)} Let $(u^{(i)})\subset D^{1,2}(\mathbb{R}^{N},\mathbb{R}^n)$ be a minimizing sequence for $S_{F}$, i.e., $$ \int _{\mathbb{R}^{N}}F(u^{({i})})=1,\qquad \sum ^{n}_{k=1}\int _{\mathbb{R}^{N}}|\nabla u_{k}^{(i)}|^{2}\to S_{F} $$ Using (\ref{e5.1})-(\ref{e6.1}), we deduce, as in \cite[Theorem 1.41]{W}, the existence of a sequence $(y_{i},\lambda _{i})\in \mathbb{R}^{N}\times \mathbb{R}$ such that $ \lambda ^{(N-2)/2}_{i}u(\lambda _{i}x+y_{i})$ has a convergent subsequence. In particular there exists a minimizer for $ S_{F}$. To prove the second part of Theorem 1, we shall use the following version of the Mountain Pass Lemma \cite{W}. \begin{theorem}[Ambrosetti-Rabinowitz] \label{thm7} Let $ X$ be a Hilbert space, $\varphi$ be an element of $C^{1}(X,\mathbb{R})$, $ e\in X$ and $r>0$ such that $\left\Vert e\right\Vert >r$, $b=\inf _{\left\Vert u\right\Vert =r}\varphi (u)>\varphi (0)\geq \varphi (e)$. Then for each $\varepsilon >0$ there exists $u\in X$ such that $c-\varepsilon \leq \varphi (u)\leq c+\varepsilon$ and $\left\Vert \varphi'(u)\right\Vert \leq \varepsilon$ where $$ c=\inf _{\gamma \in \Gamma }\max _{t\in [0,1]}\varphi (\gamma (t)), $$ with $\Gamma =\left\{ \gamma \in C([0,1],X):\gamma (0)=0,\gamma (1)= e\right\}$. Letting $\varepsilon =1/k$, we get a Palais-Smale sequence at level $c$; i.e., a sequence $(u^{(k)})\subset X$ such that $$ \varphi (u^{(k)})\to c, \quad \varphi'(u^{(k)})\to 0 $$ We shall apply this result to the functional $$ \varphi (u)=\frac{1}{2}\int _{\Omega }\sum ^{n}_{i=1}|\nabla u_{i}|^{2}- \frac{1}{2^{*}}\int _{\Omega }F(u)-\frac{1}{2}\int _{\Omega } \sum ^{n}_{i,j=1}a_{ij}u_{i} u_{j} $$ in the Sobolev space $X=H_{0}^{1}(\Omega, \mathbb{R}^{n})$. As $\| A \|< \lambda_1(\Omega) $, we may define on $X$ the norm $$ \| u \|= \left(\int_{\Omega} \sum_{i=1}^n |\nabla u_i |^2 - \int_{\Omega} \sum_{i,j=1}^n a_{ij} u_i u_j \right)^{1/2} $$ which is equivalent to the usual norm. By standard arguments $\varphi \in C^{1}(X)$ and $$ \left\langle \varphi'(u),h \right\rangle = \sum ^{n}_{i=1} \int _{\Omega }\nabla u_{i}\cdot \nabla h_{i}- \sum_{i=1}^n \int _{\Omega }f_{i}(u)h_{i}- \int _{\Omega }\sum ^{n}_{i,j=1}a_{ij}h_{i}u_{j} $$ It follows that the critical points of $\varphi$ are weak solutions of the system. \end{theorem} To ensure that the value $c$ given by the mountain pass theorem is indeed a critical value we need to prove the following lemma. \begin{lemma} \label{lm7} Let $F$ be homogeneous of degree $2^{*}$. Then any $(PS)_{c}$ sequence with $c0 $$ Then, it is easy to conclude that $c< c^*$. Now we consider the special case $$ [u]=|u|_{q}=\Big( \sum ^{n}_{i=1}|u_{i}|^{q}\Big) ^{1/q} \quad\text{and} \quad F_{q}(u)=\Big( \sum^{n}_{i=1}|u_{i}|^{q}\Big) ^{2^{*}/q} $$ for proving Corollary \ref{coro2}. \begin{lemma} \label{lm8} $ S_{F}(\Omega) =S$ for $q\geq 2$ where $S$ is the best constant for the Sobolev inequality with $n=1$. \end{lemma} \paragraph{Proof} Suppose first that $q\geq 2^{*}$, then we have the estimate \begin{align*} \Big[ \int _{\Omega }\Big( \sum ^{n}_{i=1}|u_{i}|^{q}\Big) ^{2^{*}/q} \Big] ^{2/2^{*}} \leq& \Big[ \int _{\Omega } \sum ^{n}_{i=1}|u_{i}|^{2^{*}}\Big]^{2/2^{*}}= \Big[ \sum ^{n}_{i=1}\int _{\Omega }|u_{i}|^{2^{*}}\Big] ^{2/2^{*}}\\ \leq& \Big[ \sum ^{n}_{i=1}(S^{-1}\int _{\Omega } |\nabla u_{i}|^{2}_{2})^{2^{*}/2}\Big] ^{2/2^{*}} \leq \sum ^{n}_{i=1}S^{-1}\int _{\Omega }|\nabla u_{i}|^{2} \end{align*} It follows that $S_{F}\geq S$. For $2\leq q\leq 2^{*}$ we use Minkowski inequality: \begin{align*} \Big[ \int _{\Omega }\Big( \sum ^{n}_{i=1}|u_{i}|^{q}\Big) ^{2^{*}/q}\Big] ^{2/2^{*}}= &\left\{ \Big[ \int _{\Omega }\Big( \sum ^{n}_{i=1}|u_{i}|^{q}\Big)^{2^{*}/q}\Big]^{q/2^{*}} \right\}^{2/q}\\ \leq& \Big[ \Big( \sum ^{n}_{i=1} \int_{\Omega }|u_{i}|^{2^{*}} \Big)^{q/2^{*}}\Big]^{2/q} \\ =& \sum ^{n}_{i=1} \Big( \int _{\Omega }|u_{i}|^{2^{*}}\Big)^{2/2^{*}} \leq \sum^{n}_{i=1} S^{-1}\int_{\Omega }|\nabla u_{i}|^{2} \end{align*} The inequality $S_{F}\leq S$ is verified easily taking functions of the form $u = (u_1,0,...,0)$. \paragraph{Proof of Corollary \ref{coro2}} First we note that by the $2^{*}$-homogeneity of $F$, $S_{F}$ does not depend on $\Omega$. Taking $u(x)=U(x)e_{i}$, where $$ U(x)=\frac{[N(N-2)]^{(N-2)/4}}{(1+|x|^{2})^{(N-2)/2}} $$ is the function that attains Sobolev's best constant in one dimension \cite[Theorem 1.42]{W}, it follows that $S_{F}$ is achieved when $\Omega =\mathbb{R}^{N}$ (where $N\geq 4$). By translation invariance of the problem, $S_{F}$ is also achieved with $u_{\varepsilon }(x)=U_{\varepsilon }(x)\cdot e_{i}$, for $$ U_{\varepsilon }(x)=\varepsilon ^{(2-N)/2}U(x/\varepsilon ) $$ We shall see that $S_{F,A}0$. Then, if we define $u(x)=v_{\varepsilon }(x)e_{i}$, with $v_{\varepsilon }(x)=\psi (x)U_{\varepsilon }(x)$, and $ \psi$ a smooth function with compact support in $\Omega$ such that $\psi \equiv 1$ in $B(0,\rho )$, we obtain as in \cite[Lemma 1.46]{W}: $$ \frac {\int _{\Omega }\sum ^{n}_{i=1} |\nabla u_{i}|^{2}-\int_{\Omega }\left\langle Au,u \right\rangle }{\Big( \int_{\Omega }F(u)\Big)^{2/p} } = \frac {\int _{\Omega } |\nabla u_{\varepsilon }|^{2}-a_{ii}\int _{\Omega } u^{2}_{\varepsilon} }{\Big( \int _{\Omega }|u_{\varepsilon }|^p \Big)} 0\, \forall x\in \Omega$. Then $$ \lambda _{1}\int _{\Omega }u_{i}e_{1}= \int _{\Omega }-\Delta u_{i}e_{1} =\int _{\Omega }f_{i}(u)e_{1} +\sum ^{n}_{j=1}a_{ij}\int _{\Omega }u_{j}e_{1} $$ If $z_{i}=\int _{\Omega }u_{i}e_{1}$, then $$\lambda _{1}z\geq Az,$$ and the inequality between the $i$-th components is strict if $u_{i}\neq 0$ for some $i$. Since $z\geq 0$, and $z_{i}>0$ for some $i$, we obtain $$ \lambda _{1}|z|^{2}>\left\langle Az,z\right\rangle. $$ Since $A$ is symmetric and positive definite, $$ \lambda _{1}|z|^{2}>\mu_{{\rm min}}|z|^{2} \quad{and}\quad \lambda _{1}>\mu_{{\rm min}}. $$ This proves the first claim of the theorem. For $A\geq 0$ and irreducible, let $v$ be the eigenvector of $A^{t}$ corresponding to $\mu _{{\rm max}}$, then from the Perron-Frobenius Theorem \cite{G}, $v_i >0$ for any $i$ and $$ \lambda _{1}\left\langle z,v\right\rangle > \left\langle Az,v\right\rangle =\left\langle z,A^{t}v\right\rangle = \mu _{{\rm max}}\left\langle z,v\right\rangle$$ and since $\left\langle z,v\right\rangle >0$, it follows that $\lambda _{1}>\mu _{{\rm max}}$ and the second claim is proved. Finally when $A\geq 0$ is symmetric, we have $\mu _{{\rm max}}=\left\Vert A\right\Vert$, and the proof is complete. \hfill$\Box$ \paragraph{Proof of Theorem \ref{thm4}} The proof of Theorem \ref{thm4} consists of the next lemma and the next corollary. \begin{lemma} \label{lm9} Suppose that $u\in C^{2}(\overline{\Omega },\mathbb{R}^{n})$ is a classical solution of the gradient elliptic system \begin{gather*} -\Delta u_{i} = g_{i}(u) \quad\text { in } \Omega \\ u = 0 \text { on } \quad \partial \Omega \end{gather*} where $g_{i}=\frac{\partial G}{\partial u_{i}}$, $G\in C^{1}(\mathbb{R}^{n})$, $G(0)=0$ and $\Omega \subset \mathbb{R}^{N}$ is a bounded open set with smooth boundary. Then for a fixed $y$, $$ \sum ^{n}_{k=1} \int _{\partial \Omega } |\nabla u_{k}|^{2}(x-y)\cdot n(x)dS =2N\int _{\Omega }G(u)dx-(N-2) \sum ^{n}_{k=1}\int _{\Omega }g_{k}(u)u_{k}dx $$ \end{lemma} \paragraph{Proof} Multiply the $k$-th equation by $(x-y)\cdot \nabla u_{k} =\sum ^{N}_{i=1}(x_{i}-y_{i})\frac{\partial u_{k}}{\partial x_{i}}$ and integrate by parts, then we have \begin{multline*} \int _{\Omega } \sum ^{N}_{i=1} (x_{i}-y_{i})\frac{\partial u_{k}}{\partial x_{i}}g_{k}(u) \\ =\int_{\Omega }|\nabla u_{k}|^{2}+\int _{\Omega }\sum ^{n}_{i,j=1} (x_{i}-y_{i})\frac{\partial u_{k}}{\partial x_{j}}\frac{\partial ^{2} u_{k}}{\partial x_{i}x_{j}}-\int _{\partial \Omega }|\nabla u_k|^{2}(x-y) \cdot n(x)dS \end{multline*} Hence, $$ \int _{\Omega }\sum ^{N}_{i=1} (x_{i}-y_{i})\frac{\partial u_{k}}{\partial x_{i}}g_{k}(u) =\big(1-\frac{N}{2}\big) \int _{\Omega }|\nabla u_{k}|^{2}-\frac{1}{2} \int _{\partial \Omega }|\nabla u_{k}|^{2}(x-y)\cdot n(x)dS $$ Adding this identities for $k=1,2,\ldots n$, \begin{multline*} \int _{\Omega }\sum ^{N}_{i=1}(x_{i}-y_{i}) \sum ^{n}_{k=1}\frac{\partial u_{k}}{\partial x_{i}}g_{k}(u)\\ =\big( 1-\frac{N}{2}\big) \sum ^{n}_{k=1} \int _{\Omega }|\nabla u_{k}|^{2}-\frac{1}{2} \sum ^{n}_{k=1}\int _{\partial \Omega }|\nabla u|^{2}(x-y)\cdot n(x)dS \end{multline*} By the chain rule we have \begin{align*} \int _{\Omega }\sum ^{N}_{i=1}(x_{i}-y_{i})\sum ^{N}_{k=1} \frac{\partial u_{k}}{\partial x_{i}}g_{k}(u) =&\int _{\Omega } \sum ^{N}_{i=1}(x_{i}-y_{i})\frac{\partial G(u)}{\partial x_{i}}\\ =&-N\int _{\Omega }G(u)+\sum ^{n}_{i=1} \int_{\partial \Omega } G(u)(x_{i}-y_{i}) \cdot n_{i}(x)dS\,. \end{align*} Since $G(u)=0$ on $\partial \Omega$, $$-N\int _{\Omega }G(u)=( 1-\frac{N}{2}) \sum ^{N}_{k=1}\int _{\Omega }|\nabla u_{j}|^{2}- \frac{1}{2}\sum ^{N}_{k=1}\int _{\partial \Omega }|\nabla u|^{2}(x-y) \cdot n(x)dS $$ Finally $$ \int _{\Omega }|\nabla u_{k}|^{2}=\int _{\Omega }g_{k}(u)u_{k} $$ and $$ \sum ^{N}_{k=1}\int _{\partial \Omega }|\nabla u_{k}|^{2}(x-y) \cdot n(x)=2N\int _{\Omega }G(u)-(N-2)\sum ^{N}_{k=1} \int _{\Omega }g_{k}(u)u_{k} $$ \quad\hfill$\Box$ With the following corollary, we complete the proof of Theorem \ref{thm4}. \begin{corollary} \label{coro10} Assume that $ F\in C^{1}(\mathbb{R}^{n})$ is homogeneous of degree $p=2^{*}=2N/(N-2)$, with $F(0)=0$. Further, assume that $A$ is symmetric and negative definite, and that $\Omega $ is star shaped. Then the system \begin{gather*} -\Delta u_{j} = f_{k}(u)+\sum ^{k}_{j=1}a_{jk}u_{j} \quad\text {in } \Omega \\ u = 0 \quad\text {on } \partial \Omega \end{gather*} with $f_{k}=\frac{\partial F}{\partial u_{k}}$ admits only the trivial solution. \end{corollary} \paragraph{Proof} Let $G(u)=F(u)+\frac{1}{2}\langle Au,u\rangle$. Since $F$ is homogeneous of degree $ p $, $$ \sum ^{N}_{k=1}f_{k}(u)u_{k}=pF(u) $$ and $$ \sum ^{N}_{k=1}\int _{\partial \Omega }|\nabla u_{k}|^{2}(x-y)\cdot n(x) =[2N-p(N-2)]\int _{\Omega }F(u)+2\sum ^{N}_{k=1}\int _{\Omega } \left\langle Au,u\right\rangle $$ Since $p=2N/(N-2)$, $$ \sum ^{N}_{k=1}\int _{\partial \Omega }|\nabla u_{k}|^{2}(x-y) \cdot n(x)=2\sum ^{N}_{k=1}\int _{\Omega }\left\langle Au,u\right\rangle $$ Now, because $A$ is negative definite, $\left\langle Au,u\right\rangle \leq M |u|^{2}$ where $M<0$ and then $$ \sum ^{N}_{k=1}\int _{\partial \Omega }|\nabla u_{k}|^{2}(x-y)\cdot n(x) \leq 2M \sum ^{n}_{k=1}\int _{\Omega }|u|^{2} $$ Since $\Omega$ is star shaped, $(x-y)\cdot n(x)>0$ on $\partial \Omega $, and we conclude that $u=0$. \begin{thebibliography}{00} \frenchspacing \bibitem{BN} H. Brezis and L. Nirenberg, {\it Positive Solutions of Nonlinear Elliptic Equations Involving Critical Sobolev Exponents,} Communications on Pure and Applied Mathematics. Vol XXXVI , 437-477 (1983) \bibitem{BF} L. Boccardo and D. de Figueiredo, {\it Some Remarks on a system of quasilinear elliptic equations}, to appear. \bibitem{BL} H. Brezis and E. Lieb, {\it A relation between point wise convergence of functions and convergence of functionals,} Proc. A.M.S. vol. 48, No 3 (1993), pp. 486-499 \bibitem{CMM} P. Cl\'ement, E. Mitidieri and R., Man\'asevich, {\it Positive solutions for a quasilinear system via blow up,} Comm. in Part. Diff. Eq., Vol. 18, No. 12, (1993). \bibitem{F1} D. de Figueiredo, {\it Semilinear Elliptic Systems}, Notes of the course on semilinear elliptic systems of the EDP Chile-CIMPA Summer School (Universidad de la Frontera, Temuco, Chile, January 1999). \bibitem{F2} D. de Figueiredo, {\it Semilinear Elliptic Systems: A survey of superlinear problems.} Resenhas IME-USP 1996, vol. 2, No. 4, pp. 373-391. \bibitem{GT} D. Gilbarg, and N. S. Trudinger, {\it Elliptic partial differential equations of second order}, Springer- Verlag (1983). \bibitem{G} F. R. Grantmacher, {\it The Theory of matrices}, Chelsea (1959). \bibitem{L} P. L. Lions, {\it The concentration compactness principle in the calculus of variations. The limit case.} Rev. Mat. Iberoamericana (1985), pp. 145-201 and 45-121. \bibitem{P} S. Pohozaev, {\it Eigenfunctions of the equation $\Delta u+\lambda f(u)=0$.} Nonlinearity Doklady Akad. Nauk SSRR 165, (1965), pp. 36-9. \bibitem{PS} P. Pucci and J. Serrin, {\it A general variational identity,} Indiana University Journal, Vol. 35, No. 3, (1986), 681-703. \bibitem{W} M. Willem, {\it Minimax Theorems}, Birkhauser (1986) \end{thebibliography} \noindent\textsc{Pablo Amster} (e-mail: pamster@dm.uba.ar)\\ \textsc{Pablo De N\'apoli} (e-mail: pdenapo@dm.uba.ar)\\ \textsc{Maria Cristina Mariani} (e-mail: mcmarian@dm.uba.ar)\\[2pt] Departamento. de Matem\'atica \\ Facultad de Ciencias Exactas y Naturales\\ Universidad de Buenos Aires.\\ Pabell\'on I, Ciudad Universitaria (1428) \\ Buenos Aires, Argentina \end{document}