\documentclass[reqno]{amsart} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2002(2002), No. 64, pp. 1--25.\newline ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu \newline ftp ejde.math.swt.edu (login: ftp)} \thanks{\copyright 2002 Southwest Texas State University.} \vspace{1cm}} \begin{document} \title[\hfilneg EJDE--2001/64\hfil Expansions of solutions of evolution equations] {Expansions of solutions of higher order evolution equations in series of \\ generalized heat polynomials} \author[G. N. Hile \& A. Stanoyevitch\hfil EJDE--2001/64\hfilneg] {G. N. Hile \& Alexander Stanoyevitch} \address{G. N. Hile \hfill\break Mathematics Department, University of Hawaii \hfill\break Honolulu, HI 96822, USA} \email{hile@math.hawaii.edu} \address{Alexander Stanoyevitch \hfill\break Department of Mathematics, University of Guam \hfill\break UOG Station, Mangilao, GU 96923, USA} \email{alex@math.hawaii.edu} \subjclass{Primary 35C10, 35K25; Secondary 35C05, 35K30} \keywords{heat polynomials, polynomial solutions, evolution equations, series expansions} \date{} \thanks{Submitted January 22, 2002. Published July 11, 2002.} \subjclass[2000]{35C10, 35K25, 35C05, 35K30} \keywords{heat polynomials, polynomial solutions, evolution equations, \hfill\break\indent series expansions} \begin{abstract} Upper bound estimates are established on generalized heat polynomials for higher order linear homogeneous evolution equations with coefficients depending on the time variable. These estimates are analogous to well known bounds of Rosenbloom and Widder on the heat polynomials. The bounds lead to further estimates on the width of the strip of convergence of series expansions in terms of these polynomial solutions. An application is given to a Cauchy problem, wherein the solution is expressed as the sum of a series of polynomial solutions. \end{abstract} \maketitle \newtheorem{theorem}{Theorem}[section] \newtheorem{definition}[theorem]{Definition} \newtheorem{lemma}[theorem]{Lemma} \numberwithin{equation}{section} \section{Introduction} We consider a linear differential operator $\mathcal{L}$, represented by \begin{equation} \mathcal{L}u\left( x,t\right) =\partial_{t}u\left( x,t\right) -\sum_{\alpha}a_{\alpha}(t)\partial_{x}^{\alpha}u\left( x,t\right) \,. \label{intop}% \end{equation} Here $x\in\mathbb{R}^{n}$, $t\in\mathbb{R}$, and the coefficients $\left\{ a_{\alpha}\right\} $, of which there are only a finite number, are real valued continuous functions of $t$ on an interval $\mathbb{I}$ containing the origin. In an earlier paper \cite{HS} we developed explicit formulas for real valued solutions $\left\{ p_{\beta}\right\} $ of the initial value problems \begin{equation} \mathcal{L}p_{\beta}(x,t)=0\,, \quad p_{\beta}(x,0)=x^{\beta }\,. \label{initial}% \end{equation} Each $p_{\beta}$ is for fixed $t$ a polynomial in $x$ of degree $\left| \beta\right| $, of the form \[ p_{\beta}(x,t)=\sum_{\nu\leq\beta}c_{\nu}(t)x^{\nu}\,, \] where each coefficient $c_{\nu}$ is a real valued function in $C^{1}\left( \mathbb{I}\right) $. Moreover, when the coefficients $\left\{ a_{\alpha }\right\} $ are constant and $\mathcal{L}$ has no zero order term, $p_{\beta }$ is a polynomial in both $x$ and $t$. The polynomials $\left\{ p_{\beta }\right\} $ are direct analogs of the classical \textit{heat polynomials}, appearing in Appell's work \cite{AP}, and studied in depth by Rosenbloom and Widder \cite{RW,WID1,WID2,WID3}. Indeed, when $\mathcal{L}$ is the heat operator $\mathcal{H}=\partial_{t}-\Delta$, these polynomials become the heat polynomials. As Rosenbloom and Widder demonstrated, heat polynomials serve as a basis for expansion of other solutions of the heat equation. In this paper we study series expansions of the form \begin{equation} u\left( x,t\right) =\sum_{\beta}\frac{c_{\beta}}{\beta!}p_{\beta }(x,t)\,, \label{intexp}% \end{equation} investigating convergence questions in a horizontal strip $\left\{ \left( x,t\right) :\left| t\right| 0$ for each $i$, $f$ is any continuous real valued function on $\left[ 0,1\right] $, and $P$ is the region in $\mathbb{R}^{n}$% \[ P=\left\{ x:x_{i}\geq0\text{\ for each }i\text{,\ and }x_{1}+x_{2}% +\cdots+x_{n}\leq1\right\} \,. \] In Dirichlet's formula we take $f\equiv1$, replace each $\alpha_{i}$ with $\alpha_{i}+1$, perform the integration on the right, and use $\Gamma\left( t+1\right) =t\Gamma\left( t\right) $ to obtain \begin{equation} \left( \left| \alpha\right| +n\right) !\int_{P}x^{\alpha}\,dx=\alpha !\,, \label{dirich}% \end{equation} valid under our assumption that $\alpha_{i}\geq0$ for each $i$. For each $i=1,2,\cdots,n$ we define \[ P_{i}=\left\{ x\in P:x_{i}\leq x_{j}\text{\ },1\leq j\leq n\right\} \,, \] so that \begin{equation} \int_{P}x^{\alpha}\,dx=\sum_{i=1}^{n}\int_{P_{i}}x^{\alpha}\,dx\,. \label{sumofintegrals}% \end{equation} (The region where two or more of the $P_{i}{}^{\prime}s$ overlap is a subset of a finite union of hyperplanes in $\mathbb{R}^{n}$ and thus has measure zero.)\ Looking at the first integral in this sum, we observe that \[ \int_{P_{1}}x^{\alpha}\,dx\geq\int_{P_{1}}x_{1}{}^{\left| \alpha\right| }\,dx=\int_{0}^{1/n}x_{1}{}^{\left| \alpha\right| }\;I\left( x_{1}\right) \,dx_{1}\,, \] where \[ I\left( x_{1}\right) =\int_{x_{2},x_{3},\cdots,x_{n}\geq x_{1}% \,,\;x_{2}+x_{3}+\cdots+x_{n}\leq1-x_{1}}dx_{2}\,dx_{3}\cdots dx_{n}\,. \] In this integral we substitute $y_{i}=x_{i}-x_{1}$ for $i=2$ to $n$, and obtain \[ I\left( x_{1}\right) =\int_{y_{2},y_{3},\cdots,y_{n}\geq0\,,\;y_{2}% +y_{3}+\cdots+y_{n}\leq1-nx_{1}}\,dy_{2}\,dy_{3}\cdots dy_{n}=\frac{\left( 1-nx_{1}\right) ^{n-1}}{\left( n-1\right) !}\,. \] Therefore, \[ \int_{P_{1}}x^{\alpha}\,dx\geq\frac{1}{\left( n-1\right) !}\int_{0}% ^{1/n}x_{1}{}^{\left| \alpha\right| }\;\left( 1-nx_{1}\right) ^{n-1}\,dx_{1}\,. \] In the integral on the right we substitute $t=nx_{1}$ and find that \[ \int_{P_{1}}x^{\alpha}\,dx\geq\frac{n^{-\left| \alpha\right| }}{n!}\int _{0}^{1}t^{\left| \alpha\right| }\left( 1-t\right) ^{n-1}% \,dt=\frac{n^{-\left| \alpha\right| }}{n!}B\left( \left| \alpha\right| +1,n\right) \,, \] where the well-known \textit{beta function} $B$ (see \cite{ART}, chapter 2, or \cite{LEB}, section 1.5) satisfies, for $p,q>0$, \[ B\left( p,q\right) :=\int_{0}^{1}t^{p-1}\left( 1-t\right) ^{q-1}% \,dt=\frac{\Gamma\left( p\right) \Gamma\left( q\right) }{\Gamma\left( p+q\right) }\,. \] Thus, \[ \int_{P_{1}}x^{\alpha}\,dx\geq\frac{n^{-\left| \alpha\right| }}% {n!}\frac{\Gamma\left( \left| \alpha\right| +1\right) \Gamma\left( n\right) }{\Gamma\left( \left| \alpha\right| +1+n\right) }% =\frac{n^{-\left| \alpha\right| }\left| \alpha\right| !}{n\left( \left| \alpha\right| +n\right) !}\,. \] By symmetry the same lower bound holds for each of the integrals in the summation of (\ref{sumofintegrals}); thus \[ \int_{P}x^{\alpha}\,dx\geq\sum_{i=1}^{n}\frac{n^{-\left| \alpha\right| }\left| \alpha\right| !}{n\left( \left| \alpha\right| +n\right) !}=\frac{n^{-\left| \alpha\right| }\left| \alpha\right| !}{\left( \left| \alpha\right| +n\right) !}\,. \] Finally, this inequality and (\ref{dirich}) give the right inequality of (\ref{fac2}). \end{proof} \begin{lemma} For real numbers $x\geq0$, \begin{align} \frac{\sqrt{2\pi}}{e}\left( x+1\right) ^{x+1/2}e^{-x} & \leq x!\leq\left( x+1\right) ^{x+1/2}e^{-x}\,,\label{stirling}\\ x^{x}e^{-x} & \leq x!\leq x^{x}e^{1-x}\sqrt{x+1}\,, \label{g1}% \end{align} and for $x,y\geq0$,% \begin{equation} \frac{y^{x}}{x!}\leq e^{y}\,. \label{g2}% \end{equation} (We interpret $0^{0}=1$ in these inequalities.) \end{lemma} \begin{proof} The inequalities (\ref{stirling}) are minor variations on Stirling's formula; we include the brief proofs because a statement of Stirling's formula in this exact form is not easily found. In chapter 1 of \cite{LEB} and section 12.31 of \cite{WW} we find two equations of Binet for $\log\Gamma\left( x\right) $, $x>0$ -- namely, \begin{equation} \log\Gamma(x)=\left( x-\frac{1}{2}\right) \log x-x+1+\int_{0}^{\infty }f\left( t\right) \left[ e^{-tx}-e^{-t}\right] \,dt\,, \label{gam1}% \end{equation}% \begin{equation} \log\Gamma(x)=\left( x-\frac{1}{2}\right) \log x-x+\frac{1}{2}\log2\pi +\int_{0}^{\infty}f\left( t\right) e^{-tx}\,dt\,, \label{gam2}% \end{equation} where $f$ is given for $t\geq0$ as \[ f\left( t\right) =\left[ \frac{1}{2}-\frac{1}{t}+\frac{1}{e^{t}-1}\right] \frac{1}{t}=2\sum_{k=1}^{\infty}\frac{1}{t^{2}+4\pi^{2}k^{2}}\,. \] Moreover, $f$ is continuous, positive, and decreasing on $[0,\infty)$, with $f\left( 0^{+}\right) =1/12$. If $x\geq1$ then the integrand in (\ref{gam1}) is nonpositive, and we get \[ \log\Gamma(x)\leq\left( x-\frac{1}{2}\right) \log x-x+1\,, \] and then the right inequality of (\ref{stirling}) by exponentiation. On the other hand, if $x>0$ then the integrand of (\ref{gam2}) is positive, and thus \[ \log\Gamma\left( x\right) \geq\left( x-\frac{1}{2}\right) \log x-x+\frac{1}{2}\log2\pi\,, \] which yields the left side of (\ref{stirling}). The right side of (\ref{g1}) follows from the right side of (\ref{stirling}), and the observation% \[ \left( x+1\right) ^{x+1/2}=\left( \frac{x+1}{x}\right) ^{x}x^{x}\sqrt {x+1}\leq ex^{x}\sqrt{x+1}\,. \] To verify the left side of (\ref{g1}) we show that the function% \[ h\left( x\right) =x!x^{-x}e^{x}% \] is increasing on $\left( 0,\infty\right) $; then it follows that $h(x)\geq h\left( 0^{+}\right) =1$. We replace $x$ by $x+1$ in (\ref{gam2}) and differentiate with respect to $x$ to find that \[ \frac{\left( x!\right) ^{\prime}}{x!}=\log\left( x+1\right) -\frac{1}% {2\left( x+1\right) }-\int_{0}^{\infty}tf(t)e^{-t\left( x+1\right) }\,dt\,. \] Using $00$ then $\log\left( x+1\right) \geq\log x+1/\left( x+1\right) $, and consequently \[ \frac{\left( x!\right) ^{\prime}}{x!}\geq\log x+\frac{1}{2\left( x+1\right) }-\frac{1}{12\left( x+1\right) ^{2}}>\log x\,. \] This inequality implies that, for $x>0$, \[ \frac{d}{dx}\log h(x)=\frac{d}{dx}\left[ \log x!-x\log x+x\right] =\frac{\left( x!\right) ^{\prime}}{x!}-\log x>0\,, \] and consequently $h\left( x\right) $ increases with $x$. Finally, we write (\ref{g2}) as $y^{x}e^{-y}\leq x!$, and observe that $y^{x}e^{-y}$ is maximized as a function of $y$ on $[0,\infty)$ by taking $y=x$. Thus it is sufficient to verify the one variable inequality $x^{x}e^{-x}\leq x!$, which is contained in (\ref{g1}). \end{proof} \begin{lemma} \label{expineq}Let $x,\alpha\in\mathbb{R}^{n}$, $n\geq1$, with $\alpha\geq0$ and $1<\ell<\infty$. If either (a) each component $\alpha_{i}$ of $\alpha$ is an integer, or (b) $x\geq0$, then \begin{equation} \frac{\left| x^{\alpha}\right| }{\alpha!}\leq\frac{1}{\left( \left| \alpha\right| /\ell\right) !}\exp\left[ \left( n\left| x\right| \right) ^{\ell/\left( \ell-1\right) }\right] \,, \label{mainfacineq}% \end{equation} where for $x$ we use the Euclidean norm (\ref{euclidnorm}) and for $\alpha$ the $\ell^{1}$ norm (\ref{multinorm}). \end{lemma} \begin{proof} Under either condition (a) or (b), $x^{\alpha}$ is defined and \[ \left| x^{\alpha}\right| =\left| x_{1}{}^{\alpha_{1}}x_{2}{}^{\alpha_{2}% }\cdots x_{n}{}^{\alpha_{n}}\right| \leq\left| x\right| ^{\alpha_{1}% }\left| x\right| ^{\alpha_{2}}\cdots\left| x\right| ^{\alpha_{n}}=\left| x\right| ^{\left| \alpha\right| }\,. \] We use this inequality, along with (\ref{fac2}), (\ref{fac1}), and (\ref{g2}), to derive \begin{align*} \left| x^{\alpha}\right| & \leq\frac{\left| \alpha\right| !\left| x\right| ^{\left| \alpha\right| }}{\left[ \frac{\left| \alpha\right| }{\ell}+\left( \left| \alpha\right| -\frac{\left| \alpha\right| }{\ell }\right) \right] !}\leq\frac{n^{\left| \alpha\right| }\alpha!\left| x\right| ^{\left| \alpha\right| }}{\left( \frac{\left| \alpha\right| }{\ell}\right) !\left( \left| \alpha\right| -\frac{\left| \alpha\right| }{\ell}\right) !}\\ & =\frac{\alpha!}{\left( \frac{\left| \alpha\right| }{\ell}\right) !}\frac{\left[ \left( n\left| x\right| \right) ^{\ell/\left( \ell-1\right) }\right] ^{\left( \frac{\ell-1}{\ell}\right) \left| \alpha\right| }}{\left( \frac{\ell-1}{\ell}\left| \alpha\right| \right) !}\leq\frac{\alpha!}{\left( \frac{\left| \alpha\right| }{\ell}\right) !}\exp\left[ \left( n\left| x\right| \right) ^{\ell/\left( \ell-1\right) }\right] \,. \end{align*} The last inequality implies (\ref{mainfacineq}). \end{proof} \begin{lemma} \label{trans}If $x,y,p$ are nonnegative real numbers, then \[ x\leq y\Longrightarrow\frac{\left( x+p\right) !}{x!}\leq\frac{\left( y+p\right) !}{y!}\,. \] \end{lemma} \begin{proof} It is sufficient to confirm that the function \[ f\left( x\right) =\frac{(x+p)!}{x!}=\frac{\Gamma\left( x+p+1\right) }{\Gamma\left( x+1\right) }% \] increases with $x$ on $[0,\infty)$. But% \[ \frac{f\,^{\prime}\left( x\right) }{f\left( x\right) }=\frac{d}{dx}\log f\left( x\right) =\frac{\Gamma^{\prime}\left( x+p+1\right) }{\Gamma\left( x+p+1\right) }-\frac{\Gamma^{\prime}\left( x+1\right) }{\Gamma\left( x+1\right) }\,. \] Again recalling that $\Gamma^{\prime}/\Gamma$ increases on $\left( 0,\infty\right) $, we infer that $f\,^{\prime}\left( x\right) \geq0$. \end{proof} The next three lemmas yield estimates of certain sums involving factorials. \begin{lemma} \label{sumineqa}For $y=\left( y_{1},y_{2},\cdots,y_{n}\right) $ with all $y_{i}\geq0$, and for real numbers $s,r\geq0$, \begin{equation} \sum_{\sigma\in\mathbb{R}^{n}\,,\;\left| \sigma\right| \leq s}\frac{\left| y^{\sigma}\right| r^{s-\left| \sigma\right| }}{\sigma!\left( s-\left| \sigma\right| \right) !}\leq\frac{\left( \left| y_{1}\right| +\left| y_{2}\right| +\cdots+\left| y_{n}\right| +r\right) ^{s}}{s!}\,, \label{sumin}% \end{equation} where the summation is over all multi-indices $\sigma=\left( \sigma _{1},\sigma_{2},\cdots,\sigma_{n}\right) $ in $\mathbb{R}^{n}$ such that $\left| \sigma\right| \leq s$. (We interpret $0^{0}=1$.) \end{lemma} \begin{proof} Since $\left| y^{\sigma}\right| \leq\left( \left| y_{1}\right| ,\left| y_{2}\right| ,\cdots,\left| y_{n}\right| \right) ^{\sigma}$, we may assume that each $y_{i}\geq0$. First we consider the case $n=1$, when $y$ and $\sigma$ are scalars. When $r=0$ the right side of (\ref{sumin}) is $y^{s}/s!$, while the left side is the same if $s$ is an integer, and $0$ if $s$ is not an integer. Thus we may assume $r>0$. When $y=0$ both sides reduce to $r^{s}/s!$, so likewise we may assume $y>0$. We set \[ f(y)=\left( y+r\right) ^{s}\,. \] Let $\ell$ be the largest integer such that $\ell\leq s$. By Taylor's formula with remainder, there exists $x$ between $0$ and $y$ such that \begin{align*} f(y) & =\sum_{\sigma=0}^{\ell}\frac{f^{(\sigma)}(0)}{\sigma!}y^{\sigma }+\frac{f^{(\ell+1)}(x)}{\left( \ell+1\right) !}y^{\ell+1}\\ & =\sum_{\sigma=0}^{\ell}\frac{f^{(\sigma)}(0)}{\sigma!}y^{\sigma }+\frac{s(s-1)\cdots(s-\ell)(x+r)^{s-\ell-1}}{\left( \ell+1\right) !}% y^{\ell+1}\\ & \geq\sum_{\sigma=0}^{\ell}\frac{f^{(\sigma)}(0)}{\sigma!}y^{\sigma}% =s!\sum_{\sigma\leq s}\frac{y^{\sigma}r^{s-\sigma}}{\sigma!\left( s-\sigma\right) !}\,. \end{align*} This inequality gives (\ref{sumin}) for $n=1.$ Next we assume the lemma holds for $n-1$, and consider the case of $n$. We use the induction hypotheses for $n-1$ and the established result for $n=1$ to derive \begin{align*} & \sum_{\left| \sigma\right| \leq s}\frac{y^{\sigma}r^{s-\left| \sigma\right| }}{\sigma!\left( s-\left| \sigma\right| \right) !}\\ & =\sum_{\sigma_{n}\leq s}\frac{y_{n}^{\sigma_{n}}}{\sigma_{n}!}\sum _{\sigma_{1}+\cdots+\sigma_{n-1}\leq s-\sigma_{n}}\frac{\left( y_{1}% ,\cdots,y_{n-1}\right) ^{\left( \sigma_{1},\cdots,\sigma_{n-1}\right) }r^{s-\sigma_{n}-\sigma_{1}-\cdots-\sigma_{n-1}}}{\sigma_{1}!\cdots \sigma_{n-1}!\left( s-\sigma_{n}-\sigma_{1}-\cdots-\sigma_{n-1}\right) !}\\ & \leq\sum_{\sigma_{n}\leq s}\frac{y_{n}^{\sigma_{n}}}{\sigma_{n}% !}\frac{\left( y_{1}+y_{2}+\cdots+y_{n-1}+r\right) ^{s-\sigma_{n}}}{\left( s-\sigma_{n}\right) !}\leq\frac{\left( y_{1}+y_{2}+\cdots+y_{n}+r\right) ^{s}}{s!}\,, \end{align*} which is (\ref{sumin}). \end{proof} \begin{lemma} \label{sumineqb}For real numbers $r,s\geq0$ and for any integers $m,n\geq1$, \[ J(r,s,m,n):=\sum_{\sigma\in\mathbb{R}^{n}\,,\;\left| \sigma\right| \leq s}\frac{r^{\left( s-\left| \sigma\right| \right) /m}}{\left( \frac{\sigma}{m}\right) !\left( \frac{s-\left| \sigma\right| }{m}\right) !}\leq m^{n}\frac{\left( n+r\right) !}{r!}\frac{\left( n+r\right) ^{s/m}% }{\left( \frac{s}{m}\right) !}\,, \] where the summation is over all multi-indices $\sigma$ in $\mathbb{R}^{n}$ such that $\left| \sigma\right| \leq s$. \end{lemma} \begin{proof} First we consider the case $n=1$, when the summation is over nonnegative integers $\sigma$ such that $0\leq\sigma\leq s$.\ We may write any such $\sigma$ in a unique way as \begin{equation} \sigma=m\tau-\rho\,, \label{zero0}% \end{equation} where $\tau$ and $\rho$ are nonnegative integers and $0\leq\rho0$ by assumption, and we may assume $K>0$ as otherwise the result is already proved. Given any multi-index $\sigma$ in $\mathbb{R}^{M}$ we may write \[ \sigma=\tau+\lambda\,, \] where $\tau$ and $\lambda$ are multi-indices also in $\mathbb{R}^{M}$, defined according to \begin{equation} \tau_{\alpha}=\left\{ \begin{array} [c]{cc}% \sigma_{\alpha}\text{\ \ ,} & \;\text{if }\left| \alpha\right| =\ell\,,\\ 0\text{\ \ ,} & \;\text{if }0<\left| \alpha\right| <\ell\,, \end{array} \right. \label{sum3}% \end{equation}% \begin{equation} \lambda_{\alpha}=\left\{ \begin{array} [c]{cc}% 0\text{\ \ ,} & \;\text{if }\left| \alpha\right| =\ell\,,\\ \sigma_{\alpha}\text{\ \ ,} & \;\text{if }0<\left| \alpha\right| <\ell\,. \end{array} \right. \label{sum4}% \end{equation} Then \begin{gather*} \left| \overline{\alpha}\cdot\sigma\right| =\left| \overline{\alpha}% \cdot\tau\right| +\left| \overline{\alpha}\cdot\lambda\right| \,,\;\;\;\;\;\left| \overline{\alpha}\cdot\tau\right| =\ell\left| \tau\right| =\left| \ell\tau\right| \,,\\ \prod_{\alpha\in\mathcal{M}}\left( \frac{\left| \alpha\right| }{m}% \sigma_{\alpha}\right) !=\prod_{\alpha\in\mathcal{M}_{\ell}}\left( \frac{\ell}{m}\tau_{\alpha}\right) !\prod_{\alpha\in\mathcal{M}_{0}}\left( \frac{\left| \alpha\right| }{m}\lambda_{\alpha}\right) !\,, \end{gather*} and \[ S=\sum_{\left| \overline{\alpha}\cdot\tau\right| +\left| \overline{\alpha }\cdot\lambda\right| \leq s}\frac{1}{\left( \frac{s-\left| \overline {\alpha}\cdot\tau\right| -\left| \overline{\alpha}\cdot\lambda\right| }% {m}\right) !\left( \frac{\ell\tau}{m}\right) !\prod_{\alpha\in \mathcal{M}_{0}}\left( \frac{\left| \alpha\right| }{m}\lambda_{\alpha }\right) !}=\sum_{\left| \ell\tau\right| \leq s}\frac{1}{\left( \frac{\ell\tau}{m}\right) !}\cdot S_{0}\,, \] where% \[ S_{0}:=\sum_{\left| \overline{\alpha}\cdot\lambda\right| \leq s-\left| \ell\tau\right| }\frac{1}{\left( \frac{s-\left| \ell\tau\right| -\left| \overline{\alpha}\cdot\lambda\right| }{m}\right) !\prod_{\alpha \in\mathcal{M}_{0}}\left( \frac{\left| \alpha\right| }{m}\lambda_{\alpha }\right) !}\,. \] Since% \[ \overline{\alpha}\cdot\lambda=\sum_{\alpha\in\mathcal{M}_{0}}\alpha \lambda_{\alpha}\,, \] and because the zero entries of $\lambda$ play no role in the calculations, we may disregard the zero entries and regard $\lambda$ as a multi-index in $\mathbb{R}^{K}$; then by the induction hypotheses, \[ S_{0}\leq m^{K}\left( K+1\right) !\frac{\left( K+1\right) ^{\left( s-\left| \ell\tau\right| \right) /m}}{\left( \frac{s-\left| \ell \tau\right| }{m}\right) !}\,, \] and consequently% \[ S\leq m^{K}\left( K+1\right) !\sum_{\left| \ell\tau\right| \leq s}\frac{\left( K+1\right) ^{\left( s-\left| \ell\tau\right| \right) /m}% }{\left( \frac{\ell\tau}{m}\right) !\left( \frac{s-\left| \ell\tau\right| }{m}\right) !}\,. \] As the zero entries of $\tau$ play no role in the calculations, we may ignore these entries as well and regard $\tau$ as a multi-index in $\mathbb{R}^{L}$; then we use Lemma \ref{sumineqb} once again to derive% \begin{align*} S & \leq m^{K}\left( K+1\right) !\sum_{\nu\in\mathbb{R}^{L}\,,\;\left| \nu\right| \leq s}\frac{\left( K+1\right) ^{\left( s-\left| \nu\right| \right) /m}}{\left( \frac{\nu}{m}\right) !\left( \frac{s-\left| \nu\right| }{m}\right) !}\\ & \leq m^{K}\left( K+1\right) !m^{L}\frac{\left( K+L+1\right) !}{\left( K+1\right) !}\frac{\left( K+L+1\right) ^{s/m}}{\left( s/m\right) !}\,, \end{align*} which with the substitution $M=K+L$ gives (\ref{sum1}). \end{proof} \section{Polynomial Bounds} We now derive bounds on the polynomials $\left\{ p_{\beta}\right\} $, as specified by (\ref{poly1}) and (\ref{poly2}), for the operator (\ref{intop}). We assume that the highest order of any space derivative is $m$, so that the operator may be written as% \begin{equation} \mathcal{L}u\left( x,t\right) =\partial_{t}u\left( x,t\right) -\sum_{\alpha\in\mathcal{A}}a_{\alpha}(t)\partial_{x}^{\alpha}u\left( x,t\right) \,, \label{genop}% \end{equation} where $\mathcal{A}$ is a finite collection of multi-indices $\alpha$ in $\mathbb{R}^{n}$ with $\left| \alpha\right| \leq m$ for each $\alpha \in\mathcal{A}$, and with $\left| \alpha\right| =m$ for at least one such $\alpha$. We suppose also that there are finite bounds $\left\{ \Lambda_{\alpha}\right\} $ and $\Lambda$ such that% \begin{equation} \Lambda_{\alpha}=\sup_{t\in\mathbb{I}}\;\left| a_{\alpha}(t)\right| \;\;\;\left( \alpha\in\mathcal{A}\right) \,,\;\;\;\;\;\Lambda =\sup_{t\in\mathbb{I}}\sum_{\alpha\in\mathcal{A}\text{\ ,\ }\left| \alpha\right| =m}\left| a_{\alpha}(t)\right| \,. \label{bnd}% \end{equation} The utility of Theorem \ref{genthm1} below will arise mainly from the nature of the dependence of the bounds on $\beta$. Series in the polynomials $\left\{ p_{\beta}\right\} $ will, under rather general circumstances, converge in strips in $\mathbb{R}^{n+1}$ of the form $\left| t\right| 0$,% \begin{align} \frac{\left| p_{\beta}(x,t)\right| }{\beta!} & \leq\frac{m^{M}\left( M+1\right) !}{\left( \left| \beta\right| /m\right) !}\left( \Lambda\left| t\right| +\delta\right) ^{\left| \beta\right| /m}\label{gen1}\\ & \cdot\exp\left[ \left( \frac{M+1}{\delta}\right) ^{1/\left( m-1\right) }\left( n\left| x\right| \right) ^{m/(m-1)}\right. \nonumber\\ & +\left. \sum_{\alpha\in\mathcal{A}\text{\ ,\ }\left| \alpha\right| 0$, Lemma \ref{expineq} (with $\ell=m$) yields% \begin{align*} \;\;\;\frac{\left| x^{\gamma}\right| }{\gamma!} & =\frac{\delta^{\left| \gamma\right| /m}}{\gamma!}\left| \left( \frac{x_{1}}{\delta^{1/m}% },\frac{x_{2}}{\delta^{1/m}},\cdots,\frac{x_{n}}{\delta^{1/m}}\right) ^{\gamma}\right| \\ & \leq\frac{\delta^{\left| \gamma\right| /m}}{\left( \left| \gamma\right| /m\right) !}\exp\left( \frac{n\left| x\right| }% {\delta^{1/m}}\right) ^{m/(m-1)}\,. \end{align*} This estimate, used in (\ref{new1}), leads to the bound% \begin{equation} \frac{\left| p_{\beta}(x,t)\right| }{\beta!}\leq\exp\left( \frac{n\left| x\right| }{\delta^{1/m}}\right) ^{m/(m-1)}\cdot S\,, \label{new2}% \end{equation} where% \begin{equation} S=\sum_{\gamma+\overline{\alpha}\cdot\sigma=\beta}\frac{\delta^{\left| \gamma\right| /m}}{\left( \left| \gamma\right| /m\right) !}\frac{\left| b^{\sigma}\right| }{\sigma!}\,. \label{new3}% \end{equation} (Henceforth, for brevity we suppress the arguments of functions of $t$.) We let $N$ denote the number of terms in the summation of (\ref{genop}) corresponding to $\left| \alpha\right| =m$, and $M$ the number with $0<\left| \alpha\right| 0\text{\ .} \label{new6}% \end{align} In the case $M>0$ we let $\mathcal{M}$ denote the collection of multi-indices $\left| \alpha\right| $ appearing in (\ref{genop}) such that $0<\left| \alpha\right| 0$ and $M=0$. We insert this estimate into (\ref{new4}), and then (\ref{new4}) into (\ref{new2}), to obtain% \begin{gather} \frac{\left| p_{\beta}(x,t)\right| }{\beta!}\leq m^{M}\left( M+1\right) !\cdot U\label{new7}\\ \cdot\exp\left[ \left( \frac{n\left| x\right| }{\delta^{1/m}}\right) ^{m/(m-1)}+\sum_{\alpha\in\mathcal{M}}\left( \frac{\left| b_{\alpha}\right| }{\delta^{\left| \alpha\right| /m}}\right) ^{m/\left( m-\left| \alpha\right| \right) }\right] \,,\nonumber \end{gather} where% \begin{equation} U=\sum_{\overline{\alpha}\cdot\nu\leq\beta}\frac{\left| b^{\nu}\right| }% {\nu!}\frac{\delta^{\left| \beta-\overline{\alpha}\cdot\nu\right| /m}\left( M+1\right) ^{\left| \beta-\overline{\alpha}\cdot\nu\right| /m}}{\left( \left| \beta-\overline{\alpha}\cdot\nu\right| /m\right) !}\,. \label{new8}% \end{equation} Now, in (\ref{new8}) we have $\left| \overline{\alpha}\cdot\nu\right| =m\left| \nu\right| \leq\left| \beta\right| $, which allows us to use Lemma \ref{sumineqa} to estimate% \begin{align} U & \leq\sum_{\left| \nu\right| \leq\left| \beta\right| /m}\frac{\left| b^{\nu}\right| }{\nu!}\frac{\left[ \delta\left( M+1\right) \right] ^{\left| \beta\right| /m-\left| \nu\right| }}{\left( \left| \beta\right| /m-\left| \nu\right| \right) !}\label{new9}\\ & \leq\frac{1}{\left( \left| \beta\right| /m\right) !}\left[ \sum_{\left| \alpha\right| =m}\left| b_{\alpha}(t)\right| +\delta\left( M+1\right) \right] ^{\left| \beta\right| /m}\,.\nonumber \end{align} We substitute this inequality into (\ref{new7}) and replace $\delta$ by $\delta/(M+1)$ to obtain% \begin{gather} \frac{\left| p_{\beta}(x,t)\right| }{\beta!}\leq\frac{m^{M}\left( M+1\right) !}{\left( \left| \beta\right| /m\right) !}\left[ \sum_{\left| \alpha\right| =m}\left| b_{\alpha}(t)\right| +\delta\right] ^{\left| \beta\right| /m}\label{new10}\\ \cdot\exp\left[ \left( \frac{M+1}{\delta}\right) ^{1/\left( m-1\right) }\left( n\left| x\right| \right) ^{m/(m-1)}\right. \nonumber\\ \left. +\sum_{\alpha\in\mathcal{A}\text{\ ,\ }\left| \alpha\right| 0$, inequality (\ref{gen1}) shows that, under the hypotheses of Theorem \ref{genthm1}, there is a constant $C=C\left( X,T,\delta\right) $, independent of $\beta$, such that for all $\left( x,t\right) \in R\left( X,T\right) $,% \begin{equation} \frac{\left| p_{\beta}\left( x,t\right) \right| }{\beta!}\leq C\frac{\left( \Lambda T+\delta\right) ^{\left| \beta\right| /m}}{\left( \left| \beta\right| /m\right) !}\,. \label{st1}% \end{equation} By (\ref{g1}), in (\ref{st1}) we have% \begin{equation} \frac{1}{\left( \left| \beta\right| /m\right) !}\leq\frac{e^{\left| \beta\right| /m}}{\left( \left| \beta\right| /m\right) ^{\left| \beta\right| /m}}=\left( \frac{em}{\left| \beta\right| }\right) ^{\left| \beta\right| /m}\,. \label{st3}% \end{equation} Let $T_{1}$ satisfy $T0$ such that $\left| \beta\right| \geq k$ implies% \begin{equation} \frac{\left| c_{\beta}\right| ^{m/\left| \beta\right| }me\Lambda}{\left| \beta\right| }\leq\frac{1}{T_{1}}\,. \label{st5}% \end{equation} We combine (\ref{st1}), (\ref{st3}), and (\ref{st5}) to conclude that, for $\left| \beta\right| \geq k$ and under the hypotheses of Theorem \ref{genthm1}, \begin{equation} \left| c_{\beta}\right| \frac{\left| p_{\beta}\left( x,t\right) \right| }{\beta!}\leq C\left( \frac{\Lambda T+\delta}{\Lambda T_{1}}\right) ^{\left| \beta\right| /m}\,. \label{st7}% \end{equation} As $\Lambda$ is positive and $T_{1}>T$, in (\ref{st7}) we can choose $\delta$ sufficiently small that the quanitity in parentheses on the right is less than some positive constant $r$, with $r<1$; then we obtain% \[ \sum_{\left| \beta\right| \geq k}\left| \frac{c_{\beta}}{\beta!}p_{\beta }\left( x,t\right) \right| \leq C\sum_{\left| \beta\right| \geq k}r^{\left| \beta\right| /m}<\infty\,. \] Thus (\ref{series}) converges absolutely and uniformly in the region $R\left( X,T\right) $ -- and likewise on compact subsets of $S_{s}$ because $X$ can be arbitrarily large and $T$ arbitrarily close to $s$. Keeping in mind the identity (\ref{oppol}), we consider a formal space derivative of the series (\ref{series}), \begin{align} \partial_{x}^{\nu}u(x,t) & =\partial_{x}^{\nu}\sum_{\beta}\frac{c_{\beta}% }{\beta!}p_{\beta}\left( x,t\right) =\sum_{\beta}\frac{c_{\beta}}{\beta !}\partial_{x}^{\nu}p_{\beta}\left( x,t\right) \label{dese}\\ & =\sum_{\beta\geq\nu}\frac{c_{\beta}}{\left( \beta-\nu\right) !}% p_{\beta-\nu}\left( x,t\right) =\sum_{\beta}\frac{c_{\beta+\nu}}{\beta !}p_{\beta}\left( x,t\right) \,.\nonumber \end{align} Under assumption (\ref{con1}), for the coefficients in the derived series we have% \begin{align*} & \lim\sup_{\beta\rightarrow\infty}\frac{\left| c_{\beta+\nu}\right| ^{m/\left| \beta\right| }me\Lambda}{\left| \beta\right| }\\ & =\lim\sup_{\beta\rightarrow\infty}\left[ \frac{\left| c_{\beta+\nu }\right| ^{m/\left| \beta+\nu\right| }me\Lambda}{\left| \beta+\nu\right| }\right] ^{\left| \beta+\nu\right| /\left| \beta\right| }\frac{\left| \beta+\nu\right| }{\left| \beta\right| }\frac{\left| \beta+\nu\right| ^{\left| \nu\right| /\left| \beta\right| }}{\left( me\Lambda\right) ^{\left| \nu\right| /\left| \beta\right| }}\\ & =\left( \frac{1}{s}\right) ^{1}\cdot1\cdot\frac{1}{1}=\frac{1}{s}\,. \end{align*} We may now apply the result of (a) to deduce that each derived series (\ref{dese}) converges absolutely and uniformly on compact subsets of $S_{s}$. This conclusion legitimizes our formal termwise differentiations of the series, while also confirming the continuity of the sums. Next, in view of (\ref{oppoly}), we compute the formal derivative of (\ref{series})\ with respect to $t$ as \begin{equation} \partial_{t}\left( \sum_{\beta}\frac{c_{\beta}}{\beta!}p_{\beta}(x,t)\right) =\sum_{\beta}\sum_{\alpha\leq\beta}c_{\beta}a_{\alpha}(t)\frac{p_{\beta -\alpha}(x,t)}{\left( \beta-\alpha\right) !}\,, \label{st9}% \end{equation} where% \[ \sum_{\beta}\sum_{\alpha\leq\beta}\left| c_{\beta}a_{\alpha}(t)\frac{p_{\beta -\alpha}(x,t)}{\left( \beta-\alpha\right) !}\right| =\sum_{\alpha}\left| a_{\alpha}(t)\right| \sum_{\beta}\left| c_{\beta+\alpha}\right| \frac{\left| p_{\beta}\left( x,t\right) \right| }{\beta!}\,. \] As above, each of the series \[ \sum_{\beta}\left| c_{\beta+\alpha}\right| \frac{\left| p_{\beta }(x,t)\right| }{\beta!}% \] converges uniformly and absolutely on compact subsets of $S_{s}$; as the coefficients $\left\{ a_{\alpha}(t)\right\} $ are bounded, the same is true for the series (\ref{st9}). Thus termwise differentiation is justified in (\ref{st9}), and the sum of the series is continuous in $S_{s}$. Applying again (\ref{oppol}) and (\ref{oppoly}), we compute also formal mixed derivatives of (\ref{series}),% \[ \partial_{t}\partial_{x}^{\nu}\sum_{\beta}\frac{c_{\beta}}{\beta!}p_{\beta }\left( x,t\right) =\partial_{x}^{\nu}\partial_{t}\sum_{\beta}% \frac{c_{\beta}}{\beta!}p_{\beta}\left( x,t\right) =\sum_{\beta}\sum _{\alpha\leq\beta}c_{\beta+\nu}a_{\alpha}\left( t\right) \frac{p_{\beta -\alpha}\left( x,t\right) }{\left( \beta-\alpha\right) !}\,, \] where% \[ \sum_{\beta}\sum_{\alpha\leq\beta}\left| c_{\beta+\nu}a_{\alpha}\left( t\right) \frac{p_{\beta-\alpha}\left( x,t\right) }{\left( \beta -\alpha\right) !}\right| =\sum_{\alpha}\left| a_{\alpha}(t)\right| \sum_{\beta}\left| c_{\beta+\alpha+\nu}\right| \frac{\left| p_{\beta }\left( x,t\right) \right| }{\beta!}\,. \] By arguments above, these series likewise converge absolutely and uniformly on compact subsets of $S_{s}$, and termwise differentiation and continuity of the sums are justified. The formula $\mathcal{L}u=0$ follows by termwise differentiation and the fact that $\mathcal{L}p_{\beta}=0$ for each $\beta$. Finally, setting $\left( x,t\right) =\left( 0,0\right) $ in (\ref{dese}) and using $p_{\beta}\left( x,0\right) =x^{\beta}$ gives $\partial_{x}^{\nu}u\left( 0,0\right) =c_{\nu }$, and thereby (\ref{coefform}). \end{proof} It is noteworthy in formula (\ref{con1}) that bounds on lower order terms do not appear -- only highest order bounds affect the estimate on the width of the strip of convergence. For the special case of the Kemnitz operator in one space dimension,% \[ \partial_{t}u\left( x,t\right) -\partial_{x}^{m}u\left( x,t\right) \,, \] we have $\Lambda=1$ and (\ref{con1}) becomes the estimate of Kemnitz \cite{KEM}. \section{Cauchy Problems} Again we let $\mathcal{L}$ denote the operator (\ref{genop}). We consider Cauchy problems% \begin{equation} \left\{ \begin{array} [c]{c}% \mathcal{L}u(x,t)=0\,,\\ u\left( x,0\right) =f\left( x\right) \,. \end{array} \right. \label{cp}% \end{equation} We shall assume $f$ is a real valued function on $\mathbb{R}^{n}$, with a power series expansion in $\mathbb{R}^{n}$ which we write in the two ways% \begin{equation} f\left( x\right) =\sum_{\beta}a_{\beta}x^{\beta}=\sum_{\beta}\frac{c_{\beta }}{\beta!}x^{\beta}\,. \label{exp}% \end{equation} We introduce some terminology regarding growth conditions on the function $f$. We state the conditions for complex valued analytic functions defined in $\mathbb{C}^{n}$, as they are more natural in that setting. Whereas for entire functions of a single complex variable there is general agreement on definitions of order and type (see \cite{BOA}, for example), for functions of several complex variables there is no standard terminology, as there are several possible definitions depending on one's choice of norms in $\mathbb{C}^{n}$ and on other considerations. (See \cite{GL}, Chapter 1, for a discussion of this topic.) Although it appears that all definitions give the same order of an entire function, the type varies with the definition. The definitions below are most suitable for our purposes, as they allow the natural extension to higher space dimensions of one-dimensional results of Rosenbloom and Widder, and later of Kemnitz, regarding the Cauchy problem (\ref{cp}). We explain in Theorem \ref{grow} how the prescribed conditions on the coefficients of the power series expansion of an entire function are equivalent to growth limits at infinity on the function. \begin{definition} \label{defgrow} \rm Let $f=f\left( z\right) =f\left( z_{1},z_{2},\cdots ,z_{n}\right) $ be an entire function $f$ in $\mathbb{C}^{n}$, with the power series expansion (with complex coefficients)% \begin{equation} f\left( z\right) =\sum_{\beta}a_{\beta}z^{\beta}=\sum_{\beta}\frac{c_{\beta }}{\beta!}z^{\beta}\,. \label{expb}% \end{equation} Given $\rho,\tau$ with $0<\rho,\tau<\infty$, we say that $f$ has growth $\left\{ \rho,\tau\right\} $ provided that% \begin{equation} \lim\sup_{\beta\rightarrow\infty}\;\left| \beta\right| ^{1-\rho}\left( \beta^{\beta/\left| \beta\right| }\right) ^{\rho}\left| a_{\beta}\right| ^{\rho/\left| \beta\right| }\leq e\tau\rho\,. \label{gt1}% \end{equation} \end{definition} \begin{theorem} \label{grow}Assume $0<\rho,\tau<\infty$, and that $a_{\beta}=c_{\beta}/\beta!$ for each $\beta$. Then condition (\ref{gt1}) is equivalent to% \begin{equation} \lim\sup_{\beta\rightarrow\infty}\;\left( \frac{e}{\left| \beta\right| }\right) ^{\rho-1}\left| c_{\beta}\right| ^{\rho/\left| \beta\right| }\leq\tau\rho\,, \label{gt3}% \end{equation} and under these conditions on the coefficients the series (\ref{expb}) converges to an entire function $f$ in $\mathbb{C}^{n}$ satisfying the growth condition% \begin{equation} \left| f\left( z\right) \right| =\mathcal{O}\left( \exp\tau^{\prime }\left[ \sum_{i=1}^{n}\left| z_{i}\right| \right] ^{\rho}\right) \;\;\;\text{as }z\rightarrow\infty\text{,\ for all }\tau^{\prime}>\tau\,. \label{gt4}% \end{equation} Conversely, if $f$ is an entire function in $\mathbb{C}^{n}$ with growth condition (\ref{gt4}) and the expansion (\ref{expb}), then (\ref{gt1}) and (\ref{gt3}) must hold. \end{theorem} Before proving Theorem \ref{grow} we demonstrate how the coefficient conditions of that theorem pertain to the Cauchy problem (\ref{cp}). A real valued function $f$ with an expansion (\ref{exp}) in $\mathbb{R}^{n}$ can be viewed as the restriction to $\mathbb{R}^{n}$ of an analytic function in $\mathbb{C}^{n}$ with the expansion (\ref{expb}). Accordingly, we may apply Definition \ref{defgrow} just as well to real valued functions with expansions (\ref{exp}) valid in $\mathbb{R}^{n}$. \begin{theorem} \label{cauchprob}Under the hypotheses of Theorem \ref{genthm1} assume that the function (\ref{exp}) has growth $\left\{ m/\left( m-1\right) ,\tau\right\} $ for some $\tau$, $0<\tau<\infty$. Then the series% \begin{equation} u\left( x,t\right) =\sum_{\beta}\frac{c_{\beta}}{\beta!}p_{\beta}\left( x,t\right) \label{sol}% \end{equation} solves the Cauchy problem (\ref{cp}) in the strip% \[ S_{s}=\left\{ \left( x,t\right) :x\in\mathbb{R}^{n}\,,\;t\in\mathbb{I}% \,,\;\left| t\right| 0$. Then (\ref{gt3}) guarantees that for $\left| \beta\right| $ sufficiently large,% \[ \left| c_{\beta}\right| \leq\left[ \left( \tau+\delta\right) \rho\right] ^{\left| \beta\right| /\rho}\left( \left| \beta\right| /e\right) ^{\left| \beta\right| -\left| \beta\right| /\rho}\,. \] But the right hand side of this inequality is bounded below on any finite collection of $\beta^{\prime}s$ (as we interpret $0^{0}=1$), so for some constant $M$ we have for all $\beta$ that% \[ \left| c_{\beta}\right| \leq M\left[ \left( \tau+\delta\right) \rho\right] ^{\left| \beta\right| /\rho}\left( \left| \beta\right| /e\right) ^{\left| \beta\right| -\left| \beta\right| /\rho}\,. \] Then for the series (\ref{expb}) we have the bound% \begin{align*} \left| f\left( z\right) \right| & \leq M\sum_{\beta}\left[ \left( \tau+\delta\right) \rho\right] ^{\left| \beta\right| /\rho}\left( \left| \beta\right| /e\right) ^{\left| \beta\right| -\left| \beta\right| /\rho }\frac{\left| z^{\beta}\right| }{\beta!}\\ & =M\sum_{k=0}^{\infty}\frac{\left[ e\rho\left( \tau+\delta\right) \right] ^{k/\rho}k^{k-k/\rho}}{e^{k}}\sum_{\left| \beta\right| =k}\frac{\left| z^{\beta}\right| }{\beta!}\,. \end{align*} Writing $\left\| z\right\| _{1}:=\sum_{i=1}^{n}\left| z_{i}\right| $, we have% \[ \left( \left\| z\right\| _{1}\right) ^{k}=\sum_{\left| \beta\right| =k}\frac{k!}{\beta!}\prod_{i=1}^{n}\left| z_{i}\right| ^{\beta_{i}}% =k!\sum_{\left| \beta\right| =k}\frac{\left| z^{\beta}\right| }{\beta !}\,, \] and thereby% \[ \left| f\left( z\right) \right| \leq M\sum_{k=0}^{\infty}\frac{\left[ e\rho\left( \tau+\delta\right) \right] ^{k/\rho}}{k^{k/\rho}}% \frac{k^{k}\left( \left\| z\right\| _{1}\right) ^{k}}{e^{k}k!}\,. \] By (\ref{g1}), $e^{k}k!\geq k^{k}$, and consequently% \[ \left| f\left( z\right) \right| \leq M\sum_{k=0}^{\infty}\frac{\left\{ \left[ e\rho\left( \tau+\delta\right) \right] ^{1/\rho}\left\| z\right\| _{1}\right\} ^{k}}{k^{k/\rho}}\,. \] Finally, by Lemma \ref{tech} the series on the right converges uniformly on compact subsets of $\mathbb{C}^{n}$, and% \begin{align*} \left| f\left( z\right) \right| & \leq M\left[ 2^{\rho}e\rho\left( \tau+\delta\right) \left( \left\| z\right\| _{1}\right) ^{\rho}+2\right] \exp\left[ \left( \tau+\delta\right) \left( \left\| z\right\| _{1}\right) ^{\rho}\right] \\ & =\mathcal{O}\left( \exp\left[ \left( \tau+2\delta\right) \left( \left\| z\right\| _{1}\right) ^{\rho}\right] \right) \,. \end{align*} Since $\delta$ can be arbitrarily small, (\ref{gt4}) follows. Clearly $f$, the sum in $\mathbb{C}^{n}$ of a power series, is entire. Next suppose $f$ is entire in $\mathbb{C}^{n}$ with the expansion (\ref{expb}), and that (\ref{gt4}) holds. We verify (\ref{gt1}). Given $\tau^{\prime}>\tau$, (\ref{gt4}) implies there is a positive constant $M$ such that% \[ \left| f\left( z\right) \right| \leq M\exp\left[ \tau^{\prime}\left( \left\| z\right\| _{1}\right) ^{\rho}\right] \,. \] By the generalized Cauchy inequality for analytic functions in $\mathbb{C}% ^{n}$ (see \cite{HOR}, Theorem 2.2.7), for any multi-index $\beta$ and positive vector $r=\left( r_{1},\cdots,r_{n}\right) $,% \begin{align} \left| c_{\beta}\right| & =\left| \partial^{\beta}f\left( 0\right) \right| \leq\frac{\beta!}{r^{\beta}}\sup\left\{ \left| f\left( z\right) \right| :\left| z_{i}\right| \leq r_{i}\,,\;1\leq i\leq n\right\} \label{cauchy}\\ & \leq\frac{M\beta!}{r^{\beta}}\exp\left[ \tau^{\prime}\left( \sum _{i=1}^{n}r_{i}\right) ^{\rho}\right] \,.\nonumber \end{align} The gradient with respect to $r$ of the expression on the right vanishes when% \begin{equation} r_{i}=\frac{\beta_{i}}{\rho^{1/\rho}\left( \tau^{\prime}\right) ^{1/\rho }\left| \beta\right| ^{\left( \rho-1\right) /\rho}}\,,\;1\leq i\leq n\;\;; \label{setr}% \end{equation} we choose these values of $r_{i}$ and obtain% \begin{equation} \left| a_{\beta}\right| =\left| c_{\beta}\right| /\beta!\leq\frac{M\left( e\tau^{\prime}\rho\right) ^{\left| \beta\right| /\rho}\left| \beta\right| ^{\left| \beta\right| -\left| \beta\right| /\rho}}{\beta^{\beta}}\,. \label{setrb}% \end{equation} (In the event that $\beta_{i}=0$ for some $i$, we replace $\beta_{i}$ with $\beta_{i}+\varepsilon_{i}$ in the numerator on the right side of (\ref{setr}), as we require $r_{i}>0$; but then (\ref{setrb}) follows by letting $\varepsilon_{i}\rightarrow0^{+}$.) From (\ref{setrb}) it follows that% \[ \lim\sup_{\beta\rightarrow\infty}\;\left| \beta\right| ^{1-\rho}\left( \beta^{\beta/\left| \beta\right| }\right) ^{\rho}\left| a_{\beta}\right| ^{\rho/\left| \beta\right| }\leq\lim\sup_{\beta\rightarrow\infty}% \;M^{\rho/\left| \beta\right| }e\tau^{\prime}\rho=e\tau^{\prime}\rho\,. \] As this inequality holds for all $\tau^{\prime}>\tau,$ we have verified (\ref{gt1}). \begin{thebibliography}{9} % \bibitem {AP}P. Appell, \emph{Sur \v{l}\'{e}quation} $\partial^{2}z/\partial x^{2}-\partial z/\partial y=0$ \emph{et la th\'{e}orie de la chaleur}, J. Math. Pures Appl. 8 (1892), 187-216. \bibitem {ART}E. Artin, The \emph{Gamma Function}, Holt, Rinehart, and Winston, 1964. \bibitem {BOA}R. P. Boas, $\emph{Entire\;Functions}$, Academic Press, New York, 1954. \bibitem {BRA}L. R. Bragg, \emph{The radial heat polynomials and related functions}, Trans. Amer. Math. Soc. 119 (1965), 270-290. \bibitem {BD1}L. R. Bragg and J. W. Dettman, \emph{Expansions of solutions of certain hyperbolic and elliptic problems in terms of Jacobi polynomials}, Duke Math. J. 36 (1969), 129-144. \bibitem {BD2}L. R. Bragg and J. W. Dettman, \emph{Analogous function theories for the heat, wave, and Laplace equations}, Rocky Mountain J. Math. 13, No. 2 (1983), 191-214. \bibitem {CH}F. M. Cholewinski and D. T. Haimo, \emph{Expansions in terms of Laguerre heat polynomials and of their temperature transforms}, J. Math. Anal. 24 (1971), 285-322. \bibitem {COL}D. Colton, \emph{Analytic Theory of Partial Differential Equations}, Pitman Publishing, Boston, 1980. \bibitem {FIT}A. Fitouhi, \emph{Heat polynomials for a singular operator on (0,}$\infty\emph{)}$, Constr. Approx. 5 (1989), 241-270. \bibitem {GL}L. Gruman and P. Lelong, \emph{Entire Functions of Several Complex Variables}, Springer-Verlag, 1986. \bibitem {HAI0}D. T. Haimo, $\emph{L}^{2}$\emph{\ expansions in terms of generalized heat polynomials and of their Appell transforms}, Pacific J. Math. 15 (1965), 865-875. \bibitem {HAI1}D. T. Haimo, \emph{Expansions in terms of generalized heat polynomials and of their Appell transforms}, J. Math. Mechan. 15 (1966), 735-758. \bibitem {HAI2}D. T. Haimo, \emph{Generalized temperature functions}, Duke Math. J. 33 (1966), 305-322. \bibitem {HAI3}D. T. Haimo, \emph{Series expansions of generalized temperature functions in N dimensions}, Canad. J. Math. 18 (1966), 794-802. \bibitem {HAI4}D. T. Haimo, \emph{Series representation of generalized temperature functions}, SIAM J. Appl. Math. 15 (1967), 359-367. \bibitem {HAI5}D. T. Haimo, \emph{Series expansions and integral representations of generalized temperatures}, Illinois J. Math. 14 (1970), 621-629. \bibitem {HAI6}D. T. Haimo, \emph{Homogeneous generalized temperatures}, SIAM J. Math. Anal. 11 (1980), 473-487. \bibitem {HM1}D. T. Haimo and C. Markett, \emph{A representation theory for solutions of a higher order heat equation, I}, J. Math. Anal. Appl. 168 (1992), 89-107. \bibitem {HM2}D. T. Haimo and C. Markett, \emph{A representation theory for solutions of a higher order heat equation, II}, J. Math. Anal. Appl. 168 (1992), 289-305. \bibitem {HM}G. N. Hile and C. P. Mawata, \emph{The behaviour of the heat operator on weighted Sobolev spaces}, Trans. Amer. Math. Soc. 350, No. 4 (1998), 1407-1428. \bibitem {HS}G. N. Hile and A. Stanoyevitch, \emph{Heat polynomial analogs for higher order evolution equations}, Electronic Journal of Differential Equations 2001 (2001), No. 28, 1-19. \bibitem {HOR}L. H\"{o}rmander, \emph{An Introduction to Complex Analysis in Several Variables}, D. Van Nostrand, Princeton, N. J., 1966. \bibitem {KAR1}V. V. Karachik,\ \emph{Continuity of polynomial solutions with respect to the coefficient of the highest order derivative}, Indian J. Pure Appl. Math. 28(9) (1997), 1229-1234. \bibitem {KAR2}V. V. Karachik, \emph{On one set of orthogonal harmonic polynomials}, Proc. Amer. Math. Soc. 126, No. 12 (1998), 3513-3519. \bibitem {KAR3}V. V. Karachik, \emph{Polynomial solutions to systems of partial differential equations with constant coefficients}, Yokohama Math. J. 47 (2000), 121-142. \bibitem {KEM}H. Kemnitz, \emph{Polynomial expansions for solutions of} $D_{x}^{r}u(x,t)=D_{t}u(x,t)$, $t=2,3,4,\ldots$, SIAM J. Math. Anal. 13 (1982), 640-650. \bibitem {LEB}N. N. Lebedev, \emph{Special Functions and their Applications}, Prentice-Hall, 1965. \bibitem {LO}C. Y. Lo, \emph{Polynomial expansions of solutions of }% $u_{xx}+\varepsilon^{2}u_{tt}=u_{t}$, Z. Reine Angew. Math. 253 (1972), 88-103. \bibitem {PED1}P. Pedersen, \emph{Analytic solutions for a class of pde's with constant coefficients}, J. Differential Integral Equations 3, No. 4 (1990), 721-732. \bibitem {PED2}P. Pedersen, \emph{A basis for polynomial solutions to systems of linear constant coefficient pde's}, Advances in Math. 117, No. 1 (1996), 157-163. \bibitem {PED3}P. Pedersen, \emph{A function theory for finding a basis for all polynomial solutions to linear constant coefficient pde's of homogeneous order}, Complex Variables 24 (1993), 79-87. \bibitem {RW}P. C. Rosenbloom and D. V. Widder, \emph{Expansions in terms of heat polynomials and associated functions}, Trans. Amer. Math. Soc. 92 (1959), 220-266. \bibitem {SM}S. P. Smith, \emph{Polynomial solutions to constant coefficient differential equations}, Trans. Amer. Math. Soc. 329, No. 2 (1992), 551-569. \bibitem {WW}E. T. Whittaker and G. N. Watson, \emph{A Course of Modern Analysis}, third edition, Cambridge University Press, 1920. \bibitem {WID1}D. V. Widder, \emph{Series expansions of solutions of the heat equation in n dimensions}, Ann. Mat. Pura Appl. 55 (1961), 389-410. \bibitem {WID2}D. V. Widder, \emph{Expansions in series of homogeneous temperature functions of the first and second kinds}, Duke Math. J. 36 (1969), 495-510. \bibitem {WID3}D. V. Widder, \emph{The Heat Equation}, Academic Press, New York, San Francisco, London, 1975. \end{thebibliography} \end{document}