\documentclass[twoside]{article} \usepackage{amsfonts,amsmath} \pagestyle{myheadings} \markboth{\hfil Kamanev-type oscillation criteria \hfil EJDE--2002/68} {EJDE--2002/68\hfil Samir H. Saker \hfil} \begin{document} \title{\vspace{-1in} \parbox{\linewidth}{\footnotesize\noindent {\sc Electronic Journal of Differential Equations}, Vol. {\bf 2002}(2002), No. 68, pp. 1--9. \newline ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu \newline ftp ejde.math.swt.edu (login: ftp)} \vspace{\bigskipamount} \\ % Kamenev-type oscillation criteria for forced Emden-Fowler superlinear difference equations % \thanks{\emph{Mathematics Subject Classifications:} 39A10. \hfil\break\indent {\em Key words:} Oscillation, Emden-Fowler difference equations. \hfil\break\indent \copyright 2002 Southwest Texas State University. \hfil\break\indent Submitted March 04, 2002. Published July 22, 2002.} } \date{} \author{Samir H. Saker} \maketitle \begin{abstract} Using Riccati transformation techniques, we establish oscillation criteria for forced second-order Emden-Fowler superlinear difference equations. Our criteria are discrete analogues of the criteria used for differential equations by Kamanev \cite{k1}. \end{abstract} \newtheorem{theorem}{Theorem}[section] \newtheorem{corollary}[theorem]{Corollary} \numberwithin{equation}{section} \section{Introduction} Consider the forced second-order nonlinear difference equation \begin{equation} \Delta ^{2}x_{n-1}+q_{n}x_{n}^{\gamma }=g_{n}, \label{1} \end{equation} where $\gamma $ is quotient of positive odd integers, $n$ is an integer in the set $\mathbb{N}=\{1,2\dots \}$, $\{q_{n}\}_{n=1}^{\infty }$ and $\{g_{n}\}_{n=1}^{\infty }$ are sequences of positive real numbers, $\Delta $ denotes the forward difference operator $\Delta x_{n}=x_{n+1}-x_{n}$ and $\Delta ^{2}x_{n}=\Delta (\Delta x_{n})$. In the case $\gamma >1$, Equation \eqref{1} is the prototype of a wide class of nonlinear difference equations called Emden-Fowler superlinear difference equations. In recent years there has been an increasing interest in the asymptotic behavior of second-order difference equations, see, e.g., the monographs \cite{a1,a2}. Following this trend, we study the oscillations of \eqref{1}. It is interesting to study \eqref{1} because, it is the discrete version of the second order Emden-Fowler differential equation that has several physical applications \cite{w1}. We consider only nontrivial solutions of \eqref{1}; i.e., solutions such that for every $i \in \mathbb{N}$, $\sup\{| x_{n}| : n\geq i\}>0$. A solution $\{x_{n}\}$ of \eqref{1} is said to be oscillatory if for every $n_{1}\geq 1$ there exists an $n\geq n_{1}$ such that $x_{n}x_{n+1}\leq 0$, otherwise it is non-oscillatory. The oscillation of forced second order difference equations has been the subject of many publications; see for example \cite{g1,h1,m1,p1,t1,w3,z1} and references therein. In [3], the authors considered the linear forced difference equation and given some sufficient conditions for oscillation. In \cite{p1,w3}, the authors considered the nonlinear forced difference equations and established some conditions for oscillation. Unfortunately, the oscillation criteria in \cite{g1,p1,w3} impose assumptions on the unknown solutions, which diminishes the applicability of the criteria. In \cite{z1}, the authors considered the forced nonlinear delay difference equation when $\{q_{n}\}_{n=0}^{\infty }$ is a nonnegative sequence with a positive subsequence, and there exists a sequence $\{G_{n}\}_{n=0}^{\infty }$ such that $\Delta ^{2}G_{n}=g_{n}$ to obtain sufficient conditions for oscillations. In the continuous case, the differential equation \begin{equation} x^{\prime\prime}(t)+q(t)f(x(t))=0,\quad t \geq t_{0} \label{2} \end{equation} has been studied by many authors; see the survey papers \cite{k2,w2} which give over 300 references. In Kamenev \cite{k1}, the average function \begin{equation} A_{\lambda }(t)=\frac{1}{t^{\lambda }}\int_{t_{0}}^{t}(t-s)^{\lambda }q(s)ds,\quad \lambda \geq 1 \label{3} \end{equation} plays a crucial role in the oscillation criteria for \eqref{2}. Philos \cite {p2} improved Kamenev's result by proving the following result: Suppose there exist continuous functions $H$ and $h$ defined from $D=\{(t,s):t\geq s\geq t_{0}\}$ to $\mathbb{R}$ such that:\newline (i) $H(t,t)=0,$ for $t\geq t_{0}$\newline (ii) $H(t,s)>0$ for $t>s\geq t_{0}$, and $H$ has a continuous and non-positive partial derivative on $D$ with respect to the second variable and satisfies \begin{equation} -\frac{\partial H(t,s)}{\partial s}=h(t,s)\sqrt{H(t,s)}\geq 0. \label{4} \end{equation} Further, suppose that \begin{equation} \lim_{t\to \infty }\frac{1}{H(t,t_{0})}\int_{t_{0}}^{t}[H(t,s)q(s)-\frac{1}{4% }h^{2}(t,s)]\,ds=\infty . \label{5} \end{equation} Then every solution of \eqref{2} oscillates. \smallskip Using Riccati transformation techniques, we establish some new oscillation criteria, for \eqref{1}, that are discrete analogues of \eqref{3} and % \eqref{5}. Our results generalized and extended the conditions \eqref{3} and % \eqref{5} to the discrete case and improve the results presented in \cite {g1,p1,w3,z1}. \section{Main Result} \begin{theorem} \label{thm1} Assume that there exists a positive sequence $\{\rho_{n}\}_{n=1}^{\infty }$ such that for every positive number $\lambda \geq 1$, \begin{equation} \lim_{m\to \infty }\sup \frac{1}{m^{\lambda }}\sum _{n=1}^{m-1}(m-n)^{\lambda }\Big[ \rho_{n}Q_{n}-\frac{\left( \rho _{n+1}\right) ^{2}}{4\rho_{n}}\Big( \frac{\Delta \rho_{n}}{\rho_{n+1}}- \frac{\lambda (m-n-1)^{\lambda -1}}{(m-n)^{\lambda }}\Big) ^{2}\Big] =\infty \label{6} \end{equation} where \begin{equation*} Q_{n}=\gamma \big( \frac{1}{\gamma -1}\big) ^{1-\frac{1}{\gamma }}\left( q_{n}\right) ^{\frac{1}{\gamma }}(g_{n})^{1-\frac{1}{\gamma }}. \end{equation*} Then every unbounded solution of \eqref{1} oscillates. \end{theorem} \paragraph{Proof} Suppose to the contrary that $\{x_{n}\}_{n=1}^{\infty }$ is an unbounded non-oscillatory solution of \eqref{1}. First, we may assume that $\left\{ x_{n}\right\} $ is a positive solution of \eqref{1} for $n\geq n_{1}\geq 1$. Define the sequence $\{w_{n}\}$ by \begin{equation} w_{n}=\rho _{n}\frac{\Delta x_{n-1}}{x_{n}}. \label{7} \end{equation} Then in view of \eqref{1}, we have \begin{equation*} \Delta w_{n}=-[q_{n}x_{n}^{\gamma -1}-\frac{g_{n}}{x_{n}}]+\frac{\Delta \rho _{n}}{\rho _{n+1}}w_{n+1}-\frac{\rho _{n}}{x_{n}x_{n+1}}. \end{equation*} Since $x_{n}$ is positive and unbounded, there exists $n_{2}\geq n_{1}$ such that $\Delta x_{n}\geq 0,$ for $n\geq n_{2}$, and $x_{n+1}\geq x_{n}$, so that \begin{equation} \Delta w_{n}\leq -[q_{n}x_{n}^{\gamma -1}-\frac{g_{n}}{x_{n}}]+\frac{\Delta \rho _{n}}{\rho _{n+1}}w_{n+1}-\frac{\rho _{n}}{(\rho _{n+1})^{2}}% w_{n+1}^{2}. \label{8} \end{equation} Set \begin{equation*} f(x)=q_{n}x^{\gamma -1}-\frac{g_{n}}{x}\,. \end{equation*} Using differential calculus, we see that \begin{equation*} f(x)\geq \gamma \big(\frac{1}{\gamma -1}\big)^{1-\frac{1}{\gamma }}(q_{n})^{% \frac{1}{\gamma }}(g_{n})^{1-\frac{1}{\gamma }}, \end{equation*} this and \eqref{8} imply \begin{equation} \Delta w_{n}\leq -Q_{n}+\frac{\Delta \rho _{n}}{\rho _{n+1}}w_{n+1}-\frac{% \rho _{n}}{\left( \rho _{n+1}\right) ^{2}}w_{n+1}^{2}. \label{9} \end{equation} Therefore, \begin{multline} \sum_{n=n_{2}}^{m-1}(m-n)^{\lambda }\rho _{n}Q_{n} \label{10} \\ \leq -\sum_{n=n_{2}}^{m-1}(m-n)^{\lambda }\Delta w_{n}+\sum_{n=n_{2}}^{m-1}(m-n)^{\lambda }\frac{\Delta \rho _{n}}{\rho _{n+1}% }w_{n+1}-\sum_{n=n_{2}}^{m-1}(m-n)^{\lambda }\frac{\rho _{n}}{\rho _{n+1}^{2}% }w_{n+1}^{2}, \end{multline} Now, after summing by parts, we have \begin{equation*} \sum_{n=n_{2}}^{m-1}(m-n)^{\lambda }\Delta w_{n}=-(m-n_{2})^{\lambda }w_{n_{2}}-\sum_{n=n_{2}}^{m-1}w_{n+1}\Delta _{2}(m-n)^{\lambda }, \end{equation*} where $\Delta _{2}(m-n)^{\lambda }=(m-n-1)^{\lambda }-(m-n)^{\lambda }$. Then \begin{equation*} \sum_{n=n_{2}}^{m-1}(m-n)^{\lambda }\Delta w_{n}=-(m-n_{2})^{\lambda }w_{n_{2}}+\sum_{n=n_{2}}^{m-1}w_{n+1}((m-n)^{\lambda }-(m-n-1)^{\lambda }). \end{equation*} Using the inequality, $x^{\beta }-y^{\beta }\geq \beta y^{\beta -1}(x-y)$ for all x$\geq y>0$ and $\beta \geq 1,$ we obtain \begin{equation*} \sum_{n=n_{2}}^{m-1}(m-n)^{\lambda }\Delta w_{n}\geq -(m-n_{2})^{\lambda }w_{n_{2}}+\sum_{n=n_{2}}^{m-1}\lambda w_{n+1}(m-n-1)^{\lambda -1}. \end{equation*} Substitute this expression in \eqref{10} to obtain \begin{align*} \sum_{n=n_{2}}^{m-1}(m-n)^{\lambda }\rho _{n}Q_{n} \leq &(m-n_{2})^{\lambda }w_{n_{2}}-\sum_{n=n_{2}}^{m-1}\lambda w_{n+1}(m-n-1)^{\lambda -1} \\ &+\sum_{n=n_{2}}^{m-1}(m-n)^{\lambda }\frac{\Delta \rho _{n}}{\rho _{n+1}}% w_{n+1}-\sum_{n=n_{2}}^{m-1}(m-n)^{\lambda }\frac{\rho _{n}}{\rho _{n+1}^{2}}% w_{n+1}^{2}. \end{align*} Then \begin{eqnarray*} \lefteqn{\frac{1}{m^{\lambda }}\sum_{n=n_{2}}^{m-1}(m-n)^{\lambda }\rho _{n}Q_{n}} \\ &\leq &(\frac{m-n_{2}}{m})^{\lambda }w_{n_{2}} \\ &&-\frac{1}{m^{\lambda }}\sum_{n=n_{2}}^{m-1}(m-n)^{\lambda }\Big[\frac{\rho _{n}}{\rho _{n+1}^{2}}w_{n+1}^{2}-\big(\frac{\Delta \rho _{n}}{\rho _{n+1}}-% \frac{\lambda (m-n-1)^{\lambda -1}}{(m-n)^{\lambda }}\big)w_{n+1}\Big] \\ &=&(\frac{m-n_{2}}{m})^{\lambda }w_{n_{2}} \\ &&-\frac{1}{m^{\lambda }}\sum_{n=n_{2}}^{m-1}(m-n)^{\lambda }\Big[\frac{% \sqrt{\rho _{n}}}{\rho _{n+1}}w_{n+1}-\frac{\rho _{n+1}}{2\sqrt{\rho _{n}}}% \big(\frac{\Delta \rho _{n}}{\rho _{n+1}}-\frac{\lambda (m-n-1)^{\lambda -1}% }{(m-n)^{\lambda }}\big)\Big]^{2} \\ &&+\frac{1}{m^{\lambda }}\sum_{n=n_{2}}^{m-1}(m-n)^{\lambda }\frac{\left( \rho _{n+1}\right) ^{2}}{4\rho _{n}}\big(\frac{\Delta \rho _{n}}{\rho _{n+1}}% -\frac{\lambda (m-n-1)^{\lambda -1}}{(m-n)^{\lambda }}\big)^{2}, \end{eqnarray*} which implies \begin{multline*} \frac{1}{m^{\lambda }}\sum_{n=n_{2}}^{m-1}\kappa (m-n)^{\lambda }\rho _{n}Q_{n} \\ <(\frac{m-n_{2}}{m})^{\lambda }w_{n_{2}}+\frac{1}{m^{\lambda }}% \sum_{n=n_{2}}^{m-1}(m-n)^{\lambda }\frac{(\rho _{n+1})^{2}}{4\rho _{n}}\big(% \frac{\Delta \rho _{n}}{\rho _{n+1}}-\frac{\lambda (m-n-1)^{\lambda -1}}{% (m-n)^{\lambda }}\big)^{2}\,. \end{multline*} Then \begin{multline*} \frac{1}{m^{\lambda }}\sum_{n=n_{2}}^{m-1}(m-n)^{\lambda }\Big[\rho _{n}Q_{n}-\frac{\left( \rho _{n+1}\right) ^{2}}{4\rho _{n}}\left( \frac{% \Delta \rho _{n}}{\rho _{n+1}}-\frac{\lambda (m-n-1)^{\lambda -1}}{% (m-n)^{\lambda }}\right) ^{2}\Big] \\ <(\frac{m-n_{2}}{m})^{\lambda }w_{n_{2}}, \end{multline*} which yields \begin{equation*} \lim_{m\rightarrow \infty }\frac{1}{m^{\lambda }}\sum_{n=n_{2}}^{m-1}(m-n)^{% \lambda }\Big[\rho _{n}Q_{n}-\frac{\left( \rho _{n+1}\right) ^{2}}{4\rho _{n}% }\left( \frac{\Delta \rho _{n}}{\rho _{n+1}}-\frac{\lambda (m-n-1)^{\lambda -1}}{(m-n)^{\lambda }}\right) ^{2}\Big]<\infty , \end{equation*} which contradicts \eqref{6}. Next, we consider the case when $x_{n}<0$ for $n\geq n_{1}$. We use the transformation $y_{n}=-x_{n}$ is a positive solution of the equation $\Delta ^{2}y_{n-1}+q_{n}y_{n}^{\gamma }=-g_{n}$. Define the sequence $\{w_{n}\}$ by \begin{equation} w_{n}=\rho _{n}\frac{\Delta y_{n-1}}{x_{n}}. \label{11} \end{equation} then, $w_{n}>0$ and satisfies \begin{equation} \Delta w_{n}\leq -[q_{n}x_{n}^{\gamma -1}+\frac{g_{n}}{x_{n}}]+\frac{\Delta \rho _{n}}{\rho _{n+1}}w_{n+1}-\frac{\rho _{n}}{(\rho _{n+1})^{2}}% w_{n+1}^{2}. \label{12} \end{equation} Set \begin{equation*} F(x)=q_{n}x^{\gamma -1}+\frac{g_{n}}{x}. \end{equation*} Using differential calculus, we see that \begin{equation*} F(x)\geq \gamma \big(\frac{1}{\gamma -1}\big)^{1-\frac{1}{\gamma }}(q_{n})^{% \frac{1}{\gamma }}(g_{n})^{1-\frac{1}{\gamma }}. \end{equation*} and then \eqref{9} holds. The remainder of the proof is similar to that of the proof of the first part and hence is omitted. The proof is complete \hfill $\diamondsuit $ \begin{corollary} \label{coro1} Assume that all assumptions in Theorem \ref{thm1} hold, except the condition \eqref{6} which is replaced by \begin{equation*} \lim_{m\to \infty }\sup \frac{1}{m^{\lambda }}\sum _{n=1}^{m-1}(m-n)^{\lambda }\rho_{n}Q_{n}=\infty , \end{equation*} and \begin{equation*} \lim_{m\to \infty }\frac{1}{m^{\lambda }}\sum_{n=1}^{m-1}(m-n)% \frac{\left( \rho_{n+1}\right) ^{2}}{\rho_{n}}\big( \frac{\Delta \rho_{n}% }{\rho_{n+1}}-\frac{\lambda (m-n-1)^{\lambda -1}}{(m-n)^{\lambda }}\big) ^{2}<\infty\,. \end{equation*} Then every unbounded solution of \eqref{1} oscillates. \end{corollary} \begin{theorem} \label{thm2} Assume that there exists a positive sequence $\{\rho_{n}\}_{n=1}^{\infty }$. Furthermore, we assume that there exists a double sequence $\{H_{m,n}:m\geq n\geq 0\}$\ such that (i) $H_{m,m}=0$ for $m\geq 0$ (ii) $H_{m,n}>0$ for $m>n\geq 0$, (iii) $\Delta_{2}H_{m,n}=H_{m,n+1}-H_{m,n}\leq 0$ for $m\geq n\geq 0$. If \begin{equation} \limsup_{m\to \infty }\frac{1}{H_{m,0}}\sum_{n=1}^{m-1}\Big[ H_{m,n}\rho_{n}Q_{n}-\frac{\rho_{n+1}^{2}}{4\rho_{n}}\big( h_{m,n} -\frac{\Delta \rho_{n}}{\rho_{n+1}}\sqrt{H_{m,n}}\big) ^{2}\Big] =\infty , \label{13} \end{equation} where \begin{equation*} h_{m,n}=-\frac{\Delta_{2}H_{m,n}}{\sqrt{H_{m,n}}},\quad m>n\geq 0, \end{equation*} then every unbounded solution of \eqref{1} oscillates. \end{theorem} \paragraph{Proof} We proceed as in the proof of Theorem \ref{thm1}, we may assume that % \eqref{1} has an unbounded non-oscillatory solution $\{x_{n}\}_{n=1}^{\infty }$ such that $x_{n}>0$ for $n\geq n_{1}$. Define $\{w_{n}\}$ by \eqref{7} as before, then $w_{n}>0$ and satisfies \eqref{9} for all $n\geq n_{2}$. Therefore, \begin{multline*} \sum_{n=n_{2}}^{m-1}H_{m,n}\rho _{n}Q_{n} \\ \leq -\sum_{n=n_{2}}^{m-1}H_{m,n}\Delta w_{n}+\sum_{n=n_{2}}^{m-1}H_{m,n}% \frac{\Delta \rho _{n}}{\rho _{n+1}}w_{n+1}-\sum_{n=n_{2}}^{m-1}H_{m,n}\frac{% \rho _{n}}{\rho _{n+1}^{2}}w_{n+1}^{2}, \end{multline*} which yields, after summing by parts, \begin{eqnarray*} \lefteqn{\sum_{n=n_{2}}^{m-1}H_{m,n}\rho _{n}Q_{n}} \\ &\leq &H_{m,n_{2}}w_{n_{2}}+\sum_{n=n_{2}}^{m-1}w_{n+1}\Delta _{2}H_{m,n}+\sum_{n=n_{2}}^{m-1}H_{m,n}\frac{\Delta \rho _{n}}{\rho _{n+1}} w_{n+1}\\ &&-\sum_{n=n_{2}}^{m-1}H_{m,n}\frac{\rho _{n}}{\rho _{n+1}^{2}} w_{n+1}^{2} \\ &=&H_{m,n_{2}}w_{n_{2}}-\sum_{n=n_{2}}^{m-1}h_{m,n}\sqrt{H_{m,n}}% w_{n+1}+\sum_{n=n_{2}}^{m-1}H_{m,n}\frac{\Delta \rho _{n}}{\rho _{n+1}} w_{n+1}\\ &&-\sum_{n=n_{2}}^{m-1}H_{m,n}\frac{\rho _{n}}{\rho _{n+1}^{2}} w_{n+1}^{2} \\ &=&H_{m,n_{2}}w_{n_{2}} \\ &&-\sum_{n=n_{2}}^{m-1}\Big[\frac{\sqrt{H_{m,n}\rho _{n}}}{\rho _{n+1}}% w_{n+1}+\frac{\rho _{n+1}}{2\sqrt{H_{m,n}\rho _{n}}}\Big(h_{m,n}\sqrt{H_{m,n}% }-\frac{\Delta \rho _{n}}{\rho _{n+1}}H_{m,n}\Big)\Big]^{2} \\ &&+\frac{1}{4}\sum_{n=n_{2}}^{m-1}\frac{\left( \rho _{n+1}\right) ^{2}}{\bar{% \rho}_{n}}\big(h_{m,n}-\frac{\Delta \rho _{n}}{\rho _{n+1}}\sqrt{H_{m,n}}% \big)^{2}. \end{eqnarray*} Then \begin{equation*} \sum_{n=n_{2}}^{m-1}\Big[H_{m,n}\rho _{n}Q_{n}-\frac{\rho _{n+1}^{2}}{4\rho _{n}}\big(h_{m,n}-\frac{\Delta \rho _{n}}{\rho _{n+1}}\sqrt{H_{m,n}}\big)^{2}% \Big]0$ and $\Delta_{2}H_{m,n}\leq 0$ for $m>n\geq 0$. Hence we have the following result. \begin{corollary} \label{coro3} Assume that the assumptions in Theorem \ref{thm2} hold, except the condition \eqref{12} which is replaced by \begin{equation} \limsup_{m\to \infty }\frac{1}{\ln ^{\lambda }(m+1)} \sum_{n=0}^{m-1}\Big[ \Big( \ln \frac{m+1}{n+1}\Big) ^{\lambda }\rho_{n}Q_{n}-B_{m,n}\Big] =\infty \label{14} \end{equation} where \begin{equation*} B_{m,n}=\frac{\rho_{n+1}^{2}}{4\rho_{n}}\Big( \frac{\lambda }{n+1}\big( \ln \frac{m+1}{n+1}\big) ^{\frac{\lambda -2}{2}}-\frac{\Delta \rho_{n}}{ \rho_{n+1}}\sqrt{\big( \ln \frac{m+1}{n+1}\big) ^{\lambda }}\Big) ^{2} \end{equation*} for every positive number $\lambda \geq 1$. Then every unbounded solution of \eqref{1} oscillates. \end{corollary} Another choice for a sequence is \begin{equation*} H_{m,n}=\phi (m-n),\quad m\geq n\geq 0, \end{equation*} where $\phi :[0,\infty )\to \lbrack 0,\infty )$ is a continuously differentiable function which satisfies $\phi (0)=0$, $\phi (u)>0$, and $\phi^{\prime }(u)\geq 0$ for $u>0$. Yet another choice for a sequence is \begin{equation*} H_{m,n}=(m-n)^{(\lambda )}\quad \lambda >2,\;m\geq n\geq 0, \end{equation*} where $(m-n)^{(\lambda)}=(m-n)(m-n+1)\dots (m-n+\lambda -1)$ and \begin{equation*} \Delta_{2}(m-n)^{(\lambda )}=(m-n-1)^{(\lambda )}-(m-n)^{(\lambda )}=-\lambda (m-n)^{(\lambda -1)}. \end{equation*} For these two sequences we can state corollaries similar to the one above. Note that our results can be extended to the equation \begin{equation*} \Delta (a_{n}\Delta x_{n})+q_{n}x_{n}^{\gamma }=g_{n} \end{equation*} where \{$a_{n}\}_{n=1}^{\infty }$ is a sequence of positive real numbers. However, our results can not be applied in the case when $\gamma =1$ and also it remains an open problem to give sufficient conditions for the oscillation of all bounded solutions in this case. \begin{thebibliography}{99} \frenchspacing \bibitem{a1} R. P. Agarwal, \textit{Difference Equations and Inequalities, Theory, Methods and Applications, Second Edition, Revised and Expanded}, Marcel Dekker, New York, 2000. \bibitem{a2} R. P. Agarwal and P. J. Y. Wong, \textit{Advanced Topics in Difference Equations}, Kluwer Academic Publishers, 1997. \bibitem{g1} S. R. Grace and H. A. El-Morshedy, \textit{Oscillation and nonoscillation theorems for certain second-order difference equations with forcing term}, J. Math. Anal. Appl. 216 (1997), 614-625. \bibitem{h1} H. F. Huo and W. T. Li, \textit{Oscillation of certain two-dimensional nonlinear difference equations}, preprint. \bibitem{k1} I. V. Kamenev, \textit{Integral criterion for oscillation of linear differential equations of second order}, Math. Zemetki (1978), 249-251 (in Russian). \bibitem{k2} A. G. Kartsatos, \textit{Recent results on oscillation of solutions of forced and perturbed nonlinear differential equations of even order}. In stability of dynamical systems. Theory and Applications, Lecture Notes in Pure and Applied Mathematics, Marcel Dekker 28 (1977), 17-72. \bibitem{m1} M. Migda, \textit{Asymptotic behavior of solutions of nonlinear delay difference equations}, Fasc. Math. 31 (2001), 57-62. \bibitem{p1} M. Peng, Q. Xu, L. Huang and W. Ge, \textit{Asymptotic and oscillatory behavior of solutions of certain second-order nonlinear difference equations}, Comp. Math. Appl. 37 (1999), 9-18. \bibitem{p2} Ch. G. Philos, \textit{Oscillation theorems for linear differential equation of second order}, Arch. Math., 53(1989), 483-492. \bibitem{t1} E. Thandapani and K. Ravi, \textit{Bounded and monotone properties of solutions of second-order quasilinear forced difference equations}, Comp. Math. Appl. 38 (1999), 113-121. \bibitem{w1} J. S. W. Wong, \textit{On the generalized Emden-Fowler equation% }, Siam Review, 17 (1975), 339-360. \bibitem{w2} J. S. W. Wong, \textit{On second order nonlinear oscillations}, Funk. Ekv. 11 (1968), 207-234. \bibitem{w3} P. J. Y. Wong and R. P.. Agarwal, \textit{Oscillation theorems for certain second order nonlinear difference equations}, J. Math. Anal. Appl. 204 (1996), 813-829. \bibitem{z1} G. Zhang and S. S. Cheng, \textit{Forced oscillation of a nonlinear recurrence relation}, preprint. \end{thebibliography} \noindent \textsc{Samir H. Saker}\newline Department of Mathematics, Faculty of Science,\newline Mansoura University, Mansoura, 35516, Egypt\newline e-mail shsaker@mum.mans.edu.eg\newline Faculty of Mathematics and Computer Science, \newline Adam Mickiewicz University, \newline Matejki 48/49, 60-769 Poznan, Poland \newline e-mail shsaker@amu.edu.pl \bigskip {\bf Addendum posted by a managing editor on June 13, 2012.} \medskip A reader informed us of two inaccuracies in this article: In the proof of Theorem 2.1, the statement \begin{quote} Since $x_n$ is positive and unbounded, there exists $n_2\geq n_1$ such that $\Delta x_n\geq 0$ for $n\geq n_2$ \end{quote} is incorrect. The sequence $x_n=n+(-1){n+1}$ provides a counterexample. Also in the same proof, the statement \begin{equation*} f(x)\geq \gamma \big(\frac{1}{\gamma -1}\big)^{1-\frac{1}{\gamma }} (q_{n})^{\frac{1}{\gamma }}(g_{n})^{1-\frac{1}{\gamma }} \end{equation*} is incorrect. Regarding these inaccuracies, Prof. Saker informed us that the results in this paper have been corrected and improved in later publications, by the same author. \end{document}