\documentclass[twoside]{article} \usepackage{amssymb, amsmath} % font used for R in Real numbers \pagestyle{myheadings} \markboth{\hfil Periodic solutions of a piecewise linear beam equation \hfil EJDE--2002/81} {EJDE--2002/81\hfil Yukun An \hfil} \begin{document} \title{\vspace{-1in}\parbox{\linewidth}{\footnotesize\noindent {\sc Electronic Journal of Differential Equations}, Vol. {\bf 2002}(2002), No. 81, pp. 1--12. \newline ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu \newline ftp ejde.math.swt.edu (login: ftp)} \vspace{\bigskipamount} \\ % Periodic solutions of a piecewise linear beam equation with damping and nonconstant load % \thanks{ {\em Mathematics Subject Classifications:} 35L30, 35B34. \hfil\break\indent {\em Key words:} Keywords Piecewise linear beam equation, Damping, Periodic solution, \hfil\break\indent Lyapunov-Schmidt reduction. \hfil\break\indent \copyright 2002 Southwest Texas State University. \hfil\break\indent Submitted October 02, 2001. Published September 29, 2002. \hfil\break\indent Partially supported by grant NWNU-KJCXGC-212.} } \date{} % \author{Yukun An } \maketitle \begin{abstract} Using the Lyapunov-Schmidt reduction method, the authors discuss the existence and multiplicity of periodic solutions for a piecewise linear beam equation with damping and nonconstant load when the nonlinearities cross the eigenvalues. The result answers partially an open question possed by Lazer and McKenna \cite{LM1}. \end{abstract} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \numberwithin{equation}{section} \section{Introduction} Choi and Jung \cite{CJ2} considered the piecewise linear one-dimensional beam equation \begin{equation}\label{q1} \begin{gathered} u_{tt}+u_{xxxx}+bu^{+}-au^{-}=h(x,t), \quad\text{in }(- {\frac \pi 2},{\frac \pi 2})\times \mathbb{R}, \\ u(\pm {\frac \pi 2},t)=u_{xx}(\pm {\frac \pi 2},t)=0, \quad t\in \mathbb{R} \end{gathered} \end{equation} with $u$ being $\pi$-periodic in $t$ and even in $x$ and $t$. The authors assumed that the upward and the downward restoring coefficients in the vibrating beam are constant and different. Let $h=s_1\phi_{00}+s_2\phi_{01}$, where $\phi_{00}=\cos x$ and $\phi_{01}=\cos{x}\cos{2t}$ are the eigenfunctions of $u_{tt}+u_{xxxx}$. In \cite {CJ2}, by using of Lyapunov-Schmidt reduction method, the authors transformed problem (\ref{q1}) into a $2$-dimensional problem on the subspace $V=\mathop{\rm span}\{\phi_{00},\phi_{01}\}$ and investigated the multiplicity of solutions for (\ref{q1}) with the nonlinearity $-(bu^{+}-au^{-})$ crossing finitely many eigenvalues. When $u_{tt}+u_{xxxx}$ is replaced by $u_{tt}-u_{xx}$ in (\ref{q1}), the problem is the piecewise linear wave equation, for which there is a large body of literature concerning the existence and multiplicity of periodic solutions; see for example \cite{CJ3,CJ4,LM6,Wi1} and references therein. Problem (\ref{q1}) originates from a simple mathematical model of the suspension bridge presented by Lazer and McKenna in \cite{LM1}: \begin{equation}\label{q2} \begin{gathered} u_{tt}+u_{xxxx}+\delta u_t+ku^{+}=W(x)+\epsilon h(x,t), \quad\text{in } (0,L)\times \mathbb{R}, \\ u(0,t)=u(L,t)=u_{xx}(0,t)=u_{xx}(L,t)=0, \quad t\in \mathbb{R}, \end{gathered} \end{equation} where $u(x,t)$ denotes the displacement of the road bed in downward direction at position $x$ and $t$, $W(x)$ is the weight per unit length at $x$, and $\epsilon h(x,t)$ is an external forcing term. The constant $k$ represents the restoring force of the cables, and $\delta $ is the viscous damping. For (\ref{q2}), in an earlier paper, McKenna and Walter \cite{MW1} investigated the simplified situation \begin{equation} \label{q3} \begin{gathered} u_{tt}+u_{xxxx}+ku^{+}=1+\epsilon h(x,t), \quad\text{in } (- {\frac \pi 2},{\frac \pi 2})\times \mathbb{R}, \\ u(\pm {\frac \pi 2},t)=u_{xx}(\pm {\frac \pi 2},t)=0, \quad t\in \mathbb{R}, \end{gathered} \end{equation} where $u$ is $\pi$-periodic in $t$ and even in $x$ and $t$. Using degree theory, they proved that (\ref{q3}) has at least two solutions when $31+\frac{1}{2}\delta ^2>a, \end{equation} then we have $$ \frac{(b-3)^2+4\delta^2}{(b+1)^2}<1 \quad \text{and} \quad \frac{(a-3)^2+4\delta^2}{(a+1)^2}>1.% $$ Denote \begin{gather*} C_4=C_1 \backslash \overline {\Theta_1}, \quad C_5=\overline {\Theta _2} \backslash C_2, \\ D_4=D_1 \backslash \overline {\Omega_1}, \quad D_5=\overline{\Omega_2} \backslash D_2. \end{gather*} By Lemma \ref{lm4}, we have that $v\geq 0$ for all $v\in D_4$ and $v$ changes sign for every $v\in D_5$. \begin{lemma} \label{lm6} \begin{gather*} F(C_1)=\Theta_1 , \quad F(C_2)=\Theta_2 , \quad C_4\subset \Theta_3\subset F(C_3), \\ \Phi (D_1)=\Omega_1 , \quad \Phi (D_2)=\Omega_2 , \quad D_4\subset \Omega _3\subset \Phi (D_3). \end{gather*} \end{lemma} \paragraph{Proof.} Suppose $(s_1,s_2,s_3)\in C_1$, then $v=s_1\phi_1+s_2\phi_2+ s_3\phi_3 \in D_1 $. By Lemmas \ref{lm2} and \ref{lm4}, we know $v\geq 0$ and $\theta(v)=0$. At the same time, we obtain \begin{eqnarray*} A_\delta v+P_3k(v+\theta (v))^+ &=& A_\delta (s_1\phi_1+s_2\phi_2+ s_3\phi_3) +k(s_1\phi_1+s_2\phi_2+ s_3\phi_3) \\ &=& (\phi_1,\phi_2,\phi_3) \begin{pmatrix} b+1 & 0 & 0 \\ 0 & b-3 & 2\delta \\ 0 & -2\delta & b-3 \end{pmatrix} \begin{pmatrix} s_1 \\ s_2 \\ s_3 \\ \end{pmatrix}; \end{eqnarray*} therefore, for all $(s_1,s_2,s_3)\in C_1$, $$ F(s_1,s_2,s_3) =\begin{pmatrix} b+1 & 0 & 0 \\ 0 & b-3 & 2\delta \\ 0 & -2\delta & b-3 \end{pmatrix} \begin{pmatrix} s_1 \\ s_2 \\ s_3 \end{pmatrix}. $$ Assuming that $(s_1,s_2,s_3)\in C_2$, in the same way, we obtain \begin{eqnarray*} A_\delta v+P_3k(v+\theta (v))^+ &=& A_\delta (s_1\phi_1+s_2\phi_2+ s_3\phi_3) \\ &=& (\phi_1,\phi_2,\phi_3) \begin{pmatrix} a+1 & 0 & 0 \\ 0 & a-3 & 2\delta \\ 0 & -2\delta & a-3 \\ \end{pmatrix} \begin{pmatrix} s_1 \\ s_2 \\ s_3 \\ \end{pmatrix}. \end{eqnarray*} Therefore, for all $(s_1,s_2,s_3)\in C_1$, $$ F(s_1,s_2,s_3) = \begin{pmatrix} a+1 & 0 & 0 \\ 0 & a-3 & 2\delta \\ 0 & -2\delta & a-3 \end{pmatrix} \begin{pmatrix} s_1 \\ s_2 \\ s_3 \end{pmatrix}. $$ It follows that $F(C_1)=\Theta_1,\ F(C_2)=\Theta_2$ and $\Phi (D_1)=\Omega_1,\ \ \Phi (D_2)=\Omega_2$ . Moreover, By Lemma \ref{lm3} and the continuity of $F$, we have $$ \Theta_3\subset F(C_3),\quad \Omega_3\subset \Phi (D_3). $$ The proof of this Lemma is complete. \hfill$\square$\smallskip Now, combining Lemmas \ref{lm2}, \ref{lm4}, \ref{lm5}, and \ref{lm6}, we obtain the following result. \begin{theorem} \label{thm2} Let $h(x,t)=\alpha \cos x+\beta \cos {2t}\cos {x}+\gamma \sin {2t}\cos {x}$. Suppose that $\delta ,a,b$ satisfy $\delta>0$, (\ref{q8}) and (\ref{q15}), then equation (\ref{q6}), and hence problem (\ref{q5}) has a solution satisfying: \begin{enumerate} \item If $\alpha >0$ and $$ \beta ^2+\gamma ^2\leq \frac{(b-3)^2+4\delta^2}{(b+1)^2}\alpha ^2, $$ then $h>0$ and the corresponding solution is positive. \item If $\alpha >0$ and $$ \frac{(b-3)^2+4\delta^2}{(b+1)^2}\alpha ^2 <\beta ^2+\gamma ^2< \alpha ^2, $$ then $h>0$ but the corresponding solution changes sign. \item If $\alpha <0$ and $$ \alpha ^2<\beta ^2+\gamma ^2 \leq \frac{(a-3)^2+4\delta^2}{(a+1)^2}\alpha^2,% $$ then $h$ changes sign but the corresponding solution is negative. \item If $\alpha <0$ and $\beta ^2+\gamma ^2\leq \alpha ^2$, then $h<0$ and the corresponding solution is negative. \item Elsewhere, the function $h$ changes sign and the corresponding solution changes sign. \end{enumerate} \end{theorem} \paragraph{Remark.} By Theorem \ref{thm2}, if $a=0$, $b=k\rightarrow 3$, and $\delta \rightarrow 0$, then for almost every $h>0$, problem (\ref{q5}) has sign-changing periodic solution. If the damping $\delta $ is large enough such that $\delta ^2>2k-2$ and condition (\ref{q8}) is satisfied, then when $$ \alpha ^2<\beta ^2+\gamma ^2 \leq \frac{(k-3)^2+4\delta^2}{(k+1)^2}\alpha ^2, $$ the corresponding solution is positive though $h$ changes sign. This result answers partially the problem mentioned in section 1. \section{The nonlinearity crosses two eigenvalues} In this section, we consider equation (\ref{q6}) under condition (\ref{q9}). In addition, we suppose \begin{equation} \label{q16}b>1+\frac{1}{2}\delta ^2. \end{equation} As in section 4, we first investigate the image of the cones $C_1 , C_2$ and $C_3$ under $F$ and the image of the cones $D_1,D_2$ and $D_3$ under $\Phi $. Set \begin{align*} & \Theta_1=\big\{(t_1,t_2,t_3)\in \mathbb{R}^3 : t_1\geq 0,t_2^2+t_3^2 \leq \frac{(b-3)^2+4\delta^2}{(b+1)^2}t_1^2 \big\}, \\ & \Theta_6=\big\{(t_1,t_2,t_3)\in \mathbb{R}^3 : t_1\geq 0,t_2^2+t_3^2 \leq \frac{(a-3)^2+4\delta^2}{(a+1)^2}t_1^2 \big\}, \\ & \Theta_7=\overline{\Theta_6}\backslash \overline{\Theta_1}. \end{align*} and \begin{align*} & \Omega_1=\{v=t_1\phi_1+t_2\phi_2+t_3\phi_3 : (t_1,t_2,t_3)\in \Theta_1 \},\\ & \Omega_6=\{v=t_1\phi_1+t_2\phi_2+t_3\phi_3 : (t_1,t_2,t_3)\in \Theta_6 \},\\ & \Omega_7=\overline{\Omega_6} \backslash \overline{\Omega_1}. \end{align*} \begin{lemma} \label{lm7} For every $v=s_1\phi_1+s_2\phi_2+s_3\phi_3 \in V_3 $, there exists a constant $d>0$ such that $(\Phi (v),\phi_1)\geq d|s_2+s_3|$. \end{lemma} \paragraph{Proof.} Note that $$ bu^+-au^-+u=(b+1)u^+-(a+1)u^-\geq \min{\{b+1, -(a+1)\}}|u|=c|u| $$ and $$ \phi_1\geq \frac{1}{\sqrt{2}}|\phi_2+\phi_3|. $$ Let $v=s_1\phi_1+s_2\phi_2+s_3\phi_3 $. Then we have \begin{align*} (\Phi (v),\phi_1) = & (A_\delta (s_1\phi_1+s_2\phi_2+s_3\phi_3 ) +P_3(b(v+\theta (v))^+-a(v+\theta (v))^-), \phi_1) \\ = & (\phi_1, v+\theta (v)+b(v+\theta (v))^+-a(v+\theta (v))^-) \\ \geq & (\phi_1, c|v+\theta (v)|) \\ = & c\int_{\Omega}\phi_1|s_1\phi_1+s_2\phi_2+s_3\phi_3+\theta (v)|dtdx \\ \geq & \frac{c}{\sqrt{2}}\int_{\Omega} |\phi_2+\phi_3||s_1\phi_1+s_2\phi_2+s_3\phi_3+\theta (v)|dtdx \\ \geq & \frac{c_1}{\sqrt{2}}|s_2+s_3|. \end{align*} Taking $d=c_1/\sqrt{2}$, the conclusion follows. \hfill$\square$ Note that Lemma \ref{lm7} implies $t_1\geq 0$ for every $v=s_1\phi_1+s_2\phi_2+ s_3\phi_3 \in V_3 $ and $\Phi (v)=t_1\phi_1+t_2\phi_2+t_3\phi_3 $. \begin{lemma} \label{lm8} \begin{gather*} F(C_1)=\Theta_1 , \quad F(C_2)=\Theta_6 , \quad \Theta_7\subset F(C_3),\\ \Phi (D_1)=\Omega_1 , \quad \Phi (D_2)=\Omega_6 , \quad \Omega_7\subset \Phi (D_3). \end{gather*} \end{lemma} The proof of this lemma follows by similar calculations as in Lemma \ref{lm6} with $a<-1$. Now we can obtain the main result in this section. \begin{theorem} \label{thm3} Let $h(x,t)=\alpha \cos x+\beta \cos{2t}\cos{x} +\gamma \sin{2t}\cos{x}$. Suppose that $\delta , a, b$ satisfy $\delta>0$, (\ref{q9}) and (\ref{q16}), then we have: \begin{enumerate} \item If $h\in \overline{\Omega_1}$, (\ref{q6}) has a positive solution, and a negative solution. \item If $h$ belongs to interior of $\Omega_7$, (\ref{q6}) has a negative solution and at least one sign-changing solution. \item If $h\in \partial \Omega_6$, (\ref{q6}) has a negative solution. \end{enumerate} \end{theorem} \begin{thebibliography}{99} \frenchspacing \bibitem{AH} N. U. Ahmed and H. Harbi, \textit{Mathematical analysis of dynamic models of suspension bridge}, SIAM. J. Appl. Math. 58(1998), 853-874. \bibitem{AZ} Y. K. An and C. K. Zhong, \textit{Periodic Solutions of A Nonlinear Suspension Bridge Equation with Damping and Nonconstant Load}, J. Math. Anal. Appl. in press. \bibitem{CJ1} Q. H. Choi and T. Jung , \textit{A nonlinear suspension bridge equation with nonconstant load}, Nonlinear. Anal. 35(1999), 649-668. \bibitem{CJ2} Q. H. Choi and T. Jung, \textit{A nonlinear beam equation with nonconstant load}, Nonlinear. Anal. 30(1997), 5515-5525. \bibitem{CJ3} Q. H. Choi and T. Jung, \textit{Multiplicity of solutions of nonlinear wave equations with nonlinearities crossing eigenvalues}, Hokkaido Math. J. 24(1995), 53-62. \bibitem{CJ4} Q. H. Choi and T. Jung, \textit{An application of variational reduction method to a nonlinear wave equation}, J. Diff. Equ., 117(1995), 390-410. \bibitem{CJM} Q. H. Choi, T. Jung and P. J. McKenna, \textit{The study of a nonlinear suspension bridge equation by a variational reduction method}, Appl. Anal. 50(1995), 71-90. \bibitem{CM1} Y. Chen and P. J. McKenna, \textit{Traveling waves in a nonlinearly suspended beam: Theoretical results and numerical observations}, J. Diff. Equ. 136(1997), 325-355. \bibitem{Fe} M. Feckan, \textit{Free vibrations of beam on bearing with nonlinear elastic responses}, J. Diff. Equ. 154(1999), 55-72. \bibitem{H} L. D. Humphreys, \textit{Numerical Mountain Pass solutions of a suspension bridge equation}, Nonlinear. Anal. 28(1997), 1811-1826. \bibitem{K} Wan Se Kim , \textit{Multiplicity result for semilinear dissipative hyperbolic equations}, J. Math. Anal. Appl. 231(1999), 34-46. \bibitem{LM1} A. C. Lazer and P. J. McKenna, \textit{Large-amplitude periodic oscillations in suspension bridge: some new connections with nonlinear analysis}, SIAM Rev. 32(1990), 537-578. \bibitem{LM2} A. C. Lazer and P. J. McKenna, \textit{Global bifurcation and a theorem of Tarantello}, J. Math. Anal. Appl. 181(1994), 648-655. \bibitem{LM6} A. C. Lazer and P. J. McKenna, \textit{Critical point theory and boundary value problems with nonlinearities crossing multiple eigenvalues 2}, Commu. Part. Diff. Equ. 11(1986), 1653-1676. \bibitem{LM7} A. C. Lazer and P. J. McKenna, \textit{Large scale oscillatory behavior in loaded asymmetric systems}, Anal. Nonli. I. H. P. 4(1987), 243-274. \bibitem{MW1} P. J. McKenna and W. Walter, \textit{Nonlinear oscillation in a suspension bridge}, Arch. Rational Mech. Anal. 98(1987), 167-177. \bibitem{T} K. Tanaka, \textit{On the range of wave operators}, Tokyo J. Math. 8(1985), 377-387. \bibitem{Wi1} M. Willem, \textit{Periodic solutions of wave equations with jumping nonlinearities}, J. Diff. Equ. 36(1980), 20-27. \end{thebibliography} \noindent\textsc{Yukun An}\\ College of Mathematics and Information Science\\ Northwest Normal University\\ Lanzhou, 730070, Gansu, China \\ and \\ Department of Mathematics, Suzhou University\\ Suzhou, 215006, Jiangsu, China\\ e-mail:anyk@nwnu.edu.cn \end{document}