\documentclass[twoside]{article} \usepackage{amssymb, amsmath} \pagestyle{myheadings} \markboth{\hfil Dirichlet problem for quasi-linear elliptic equations \hfil EJDE--2002/82} {EJDE--2002/82\hfil Azeddine Baalal \& Nedra BelHaj Rhouma \hfil} \begin{document} \title{\vspace{-1in}\parbox{\linewidth}{\footnotesize\noindent {\sc Electronic Journal of Differential Equations}, Vol. {\bf 2002}(2002), No. 82, pp. 1--18. \newline ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu \newline ftp ejde.math.swt.edu (login: ftp)} \vspace{\bigskipamount} \\ % Dirichlet problem for quasi-linear elliptic equations % \thanks{ {\em Mathematics Subject Classifications:} 31C15, 35B65, 35J60. \hfil\break\indent {\em Key words:} Supersolution, Dirichlet problem, obstacle problem, nonlinear potential theory. \hfil\break\indent \copyright 2002 Southwest Texas State University. \hfil\break\indent Submitted April 9, 2002. Published October 2, 2002. \hfil\break\indent Supported by Grant DGRST-E02/C15 from Tunisian Ministry of Higher Education.} } \date{} % \author{Azeddine Baalal \& Nedra BelHaj Rhouma} \maketitle \begin{abstract} We study the Dirichlet Problem associated to the quasilinear elliptic problem \begin{equation*} -\sum_{i=1}^{n}\frac{\partial }{\partial x_i}\mathcal{A}_i(x,u(x), \nabla u(x))+\mathcal{B}(x,u(x),\nabla u(x))=0. \end{equation*} Then we define a potential theory related to this problem and we show that the sheaf of continuous solutions satisfies the Bauer axiomatic theory. \end{abstract} \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{corollary}[theorem]{Corollary} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{remark}{Remark}[section] \section{Introduction} The objective of this paper is to study the weak solutions of the following quasi-linear elliptic equation in $\mathbb{R}^{d}$, ($d\geq 2$): \begin{equation} -\sum_{i=1}^{n}\frac{\partial }{\partial x_i}\mathcal{A}_i(x,u(x), \nabla u(x))+\mathcal{B}(x,u(x),\nabla u(x))=0\quad \label{eq1} \end{equation} where $\mathcal{A}_i:\mathbb{R}^{d}\times \mathbb{R}\times \mathbb{R} ^{d}\to \mathbb{R}$ and $\mathcal{B}:\mathbb{R}^{d}\times \mathbb{R}\times \mathbb{R}^{d}\to \mathbb{R}$ are given Carath\'{e}odory functions satisfying the conditions introduced in section 2. An example of equation (\ref{eq1}) is the perturbed $p$-Laplace equation \begin{equation} -\mathop{\rm div}(|\nabla u| ^{p-2}\nabla u)+\mathcal{B}(.,u,\nabla u)=0, \quad 10$, if $\xi \neq \xi '$. \item[(P3)] $ \mathcal{A}(x,\zeta,\xi )\xi \geq \alpha | \xi|^p-d_0(x) | \zeta | ^p-e(x)$ \item[(P4)] $ | \mathcal{B}(x,\zeta,\xi )| \leq k(x)+b(x)| \zeta | ^{\alpha }+c| \xi | ^{r}$, $0v\}$, $\Omega _{2}=\{ x\in \Omega :u\leq v\}$ and put $I=\int_{\Omega }\mathcal{A}(.,u\vee v,\nabla (u\vee v))\nabla \varphi =I_{1}+I_{2}$ where $$ I_{1}=\int_{\Omega _{1}}\mathcal{A}(.,u,\nabla u)\nabla \varphi \mbox{ \ and \ }I_{2}=\int_{\Omega _{2}}\mathcal{A}(.,v,\nabla v)\nabla \varphi . $$ Let $\rho _{n}:\mathbb{R}\to \mathbb{R}$ be such that $\rho _{n}\in \mathcal{C}^{1}(\mathbb{R})$, $$ \rho _{n}(t)=\begin{cases} 1 & \mbox{if } t \geq 1/n \\ 0 & \mbox{if } t \leq 0 \end{cases} $$ and $\rho _{n}'>0$ on $] 0,1/n[$. For each $x\in \Omega$ define $q_{n}(x)=\rho _{n}((u-v)(x))$. We see that $q_{n}\in W_{{\rm loc}}^{1,p}(\Omega )$, $q_{n}\to 1_{\Omega _{1}}$ and $\| q_{n}\|_{\infty }\leq 1$. It follows by Lebesgue's Theorem of dominated convergence that $I_{1}={\lim_{{n\to \infty }} }\int_{\Omega _{1}}q_{n} \mathcal{A}(.,u,\nabla u).\nabla \varphi $ and $I_{2}={\lim_{n\to \infty }} \int_{\Omega_{2}}(1-q_{n})\mathcal{A}(.,v,\nabla v).\nabla \varphi $. Hence \begin{eqnarray*} \int_{\Omega }q_{n}\mathcal{A}(.,u,\nabla u).\nabla \varphi &=&\int_{\Omega }\mathcal{A}(.,u,\nabla u)\nabla .(q_{n}\varphi )-\int_{\Omega }\mathcal{A}(.,u,\nabla u)\varphi .\nabla (q_{n}) \\ \ &\leq &-\int_{\Omega }\mathcal{B}(.,u,\nabla u)(q_{n}\varphi )-\int_{\Omega _{n}}\mathcal{A}(.,u,\nabla u)\varphi .\nabla (q_{n}), \end{eqnarray*} where $\Omega _{n}=\{ x\in \Omega :v0 $ and every supersolution (resp. subsolution) $u$ of (\ref{eq1}), the function $u+k$ (resp. $u-k$) is also a supersolution (resp. subsolution) of (\ref{eq1}) \begin{remark} \label{rm1.1} 1) Suppose that for each $u\in W_{{\rm loc}}^{1,p}(\Omega )$ and each $k>0$, \begin{equation} \int (\mathcal{A}(.,u+k,\nabla u)-\mathcal{A}(.,u,\nabla u)).\nabla \varphi +\int (\mathcal{B}(.,u+k,\nabla u)-\mathcal{B}(.,u,\nabla u))\varphi \geq 0 \label{SH} \end{equation} for every nonnegative function $\varphi \in W_{0}^{1,p}(\Omega )$. Then $\mathcal{L}$ satisfies the property ($\pm $). \noindent 2) Note that if $\mathcal{L}(u)=-\sum_{j}\frac{\partial}{\partial x_{j}}(\sum_ia_{ij}\frac{\partial u}{\partial x_i} +d_{j}u)+(\sum_ib_i\frac{\partial u}{\partial x_i}+cu)$ is a linear elliptic operator of second order satisfying the conditions of \cite{Her}, then (\ref{SH}) is equivalent to $(-\sum_{j}(d_{j})+c)\geq 0$ in the distributional sense. \noindent 3) Suppose that $\mathcal{A}(x,\zeta ,\xi )=\mathcal{A}(x,\xi )$ and for a.e. $x\in \Omega $ and $\xi \in \mathbb{R}^{d}$ the map: $\zeta \to \mathcal{B}(x,\zeta ,\xi )$ is increasing. Then the property ($\pm $) holds. \end{remark} \section{Comparison principle} \label{cp} In this section, we will give some conditions needed for the comparison principle. This principle makes it possible to solve the Dirichlet problem and to develop a potential theory in our case. We say that the \emph{comparison principle} holds for $\mathcal{L}$, if for every supersolution $u$ and every subsolution $v$ of (\ref{eq1}) on $\Omega $% , such that $$ \limsup_{x\to y} v(x)\leq \liminf_{x\to y} u(x) $$ for all $y\in \partial \Omega $ and both sides of the inequality are not simultaneously $+\infty $ or $-\infty $, we have $v\leq u$ \ a.e. in $\Omega $. \begin{theorem} \label{thm1} Suppose that the operator $\mathcal{L}$ satisfies either one of the property \emph{(}$\pm $\emph{)} and the following strict monotony condition (see \cite{Ne}): $$ (\mathcal{A}(x,\zeta ,\xi )-\mathcal{A}(x,\zeta ',\xi ')).(\xi -\xi ')+(\mathcal{B}(x,\zeta ,\xi )-\mathcal{B}(x,\zeta ',\xi '))(\zeta -\zeta ')>0 $$ for $(\zeta ,\xi )\neq (\zeta ',\xi ')$. Let $u$ be a supersolution and $v$ be a subsolution of \emph{(\ref{eq1})}, on $\Omega $, such that $$ {\limsup_{x\to y} }v(x)\leq { \liminf_{x\to y} }u(x) $$ for all $y\in \partial \Omega $ and both sides of the inequality are not simultaneously $+\infty $ or $-\infty $, then $v\leq u$ \ a.e. in $% \Omega .$ \end{theorem} \paragraph{Proof.} Let $\varepsilon >0$ and $K$ be a compact subset of $\Omega $ such that $% v-u\leq \varepsilon $ on $\Omega \backslash K$, then the function $% \varphi =(v-u-\varepsilon )^{+}$ $\in W_{0}^{1,p}(\Omega )$. Testing by $% \varphi $, we obtain that \begin{eqnarray*} 0 & \leq & \int_{ v>u+\varepsilon}(\mathcal{A} (.,u+\varepsilon ,\nabla u)-\mathcal{A}(.,v,\nabla v))\nabla (v-u-\varepsilon ) \\ && + \int_{v>u+\varepsilon} (\mathcal{B} (.,u+\varepsilon ,\nabla u)-\mathcal{B}(.,v,\nabla v))(v-u-\varepsilon ) \leq 0\,. \end{eqnarray*} Hence $\nabla (v-u-\varepsilon )^{+}=0$ and $(v-u-\varepsilon )^{+}$ $=0$ a.e. in $\Omega $. It follows that $v\leq u+\varepsilon $ a.e. in $\Omega $ and therefore $v\leq u$ a.e. in $\Omega $ \hfill$\square$ \begin{corollary} \label{cor1} we suppose that $\mathcal{A}(x,\zeta ,\xi )=\mathcal{A}(x,\xi )$ and $\mathcal{B}(x,\zeta ,\xi )=\mathcal{B}(\zeta )$ such that the map $% \zeta \to \mathcal{B}(x,\zeta )$ is increasing \ for a.e. $x$ in $% \Omega $. Then, the comparison principle holds. \end{corollary} \begin{theorem} Suppose that \begin{description} \item[i)] $[ \mathcal{A}(x,\zeta ,\xi )-\mathcal{A}(x,\zeta ',\xi ')].(\xi -\xi ')\geq \gamma | \xi -\xi '| ^p$ for all $\zeta ,\zeta '$ in $\mathbb{R}$, for all $\xi ,\xi '\in \mathbb{R}^{d}$, a.e. $x$ in $ \Omega $ and for some $\gamma>0$ . \item[ii)] For a.e. $x\in \Omega $ and for all $\xi \in \mathbb{R}^{d}$, the map $\zeta \to \mathcal{B}(x,\zeta ,\xi )$ is increasing, \item[iii)] $| (\mathcal{B}(x,\zeta ,\xi )-\mathcal{B}(x,\zeta ,\xi ')| \leq b(x,\zeta )| \xi -\xi '| ^{p-1}$ for a.e. $x\in \Omega $, for all $\zeta \in \mathbb{R}$ and for all $\xi ,\xi '\in \mathbb{R}^{d}$. Where $\sup_{| \zeta | \leq M}b(.,\zeta )\in L_{{\rm loc}}^{s}(\Omega )$, $s>d$, for all $M>0$. \end{description} Then the comparison principle holds. \end{theorem} \paragraph{Proof.} The main idea in this proof comes from Professor J. Maly'. Let $\rho >0$, $M=\sup (v-u)$ and put $w=v-u-\rho $. Take $w^{+}$ as test function . Then, we get $$ \int_{\Omega }\left[ \mathcal{A}(.,u,\nabla u)-\mathcal{A}(.,v,\nabla v)\right] .\nabla (w^{+})+\int_{\Omega }\left[ \mathcal{B}(.,u,\nabla u)-\mathcal{B}(.,v,\nabla v)\right] (w^{+})\geq 0 $$ and by consequence \begin{eqnarray*} \gamma \int_{\Omega }| \nabla w^{+}| ^p &\leq &\int_{\Omega }b(x,v)| \nabla w^{+}| ^{p-1}w^{+} \\ &\leq &C\Big[ \int_{\Omega }| \nabla w^{+}| ^p% \Big] ^{\frac{p-1}{p}}\Big[ \int_{\Omega }( w^{+}) ^{p^{\ast }}\Big] ^{\frac{1}{p^{\ast }}}| A_{\rho }| ^{\frac{s-d}{sd}} \\ &\leq &C\| \nabla w^{+}\| _{p}^p\, | A_{\rho }| ^{\frac{s-d}{sd}}. \end{eqnarray*} where $A_{\rho }=\{ \rho 0$. Thus, $v\leq u$ on $\Omega $ \hfill$\square$ \section{Dirichlet Problem} \subsection*{Existence of solutions for $0\leq \alpha \leq p-1$ and $0\leq r\leq p-1$} \paragraph{Definition} %def3.1 Let $g\in W^{1,p}(\Omega )$. We say that $u$ is a solution of problem $(P)$ if \begin{gather*} u-g\in W_{0}^{1,p}(\Omega ), \\ \int_{\Omega }\mathcal{A}(.,u,\nabla u).\nabla \varphi +\int_{\Omega }\mathcal{B}(.,u,\nabla u)\varphi =0\quad \forall \varphi \in W_{0}^{1,p}(\Omega ). \end{gather*} \begin{remark} %\label{rem1} Put $v=u-g$, then $u$ is a solution of the above problem $(P)$ if and only if $v$ is a solution of \begin{equation} \begin{gathered} u\in W_{0}^{1,p}(\Omega ) \\ \int_{\Omega}{\mathcal{A}_{g}}(.,u,\nabla u)\nabla \varphi +\int_{\Omega }{\mathcal{B}_{g}}(.,u,\nabla u)\varphi =0,\quad \forall \varphi \in W_{0}^{1,p}(\Omega ), \end{gathered} \label{P'} \end{equation} where ${\mathcal{A}_{g}}(.,u,\nabla u)=\mathcal{A}(.,u+g,\nabla (u+g))$ and ${\mathcal{B}_{g}}(.,u,\nabla u)=\mathcal{B}(.,u+g,\nabla (u+g))$. \end{remark} Let $T: W_{0}^{1,p}(\Omega ) \to W_{0}^{-1,p'}(\Omega )$ be the operator defined by $$ \langle T(u),v\rangle =\int {\mathcal{A}_{g}}(.,u,\nabla u)\nabla v +\int {\mathcal{B}_{g}}(.,u,\nabla u)v \quad \forall v\in W_{0}^{1,p}(\Omega). $$ Next we will establish the existence of solution of \eqref{P'} when $0\leq \alpha \leq p-1$ and $0\leq r\leq p-1$. Let $C=C(d,p)$ be a constant such that $\| u\|_{p*}\leq C \| u\|_{p}$ for every $u\in W_{0}^{1,p}(\Omega)$. Then, we get the following result. \begin{proposition} \label{prop0} Suppose that $0\leq \alpha \leq p-1$ and $0\leq r\leq p-1$. If $\Omega $ is small (i.e $\alpha >C(\| d_{0}\| _{n/p}+\| b\| _{n/p})$), then the operator $T$ is coercive. \end{proposition} \paragraph{Proof.} We have \begin{eqnarray*} \langle T(u),u\rangle & = & \int \mathcal{A}(u+g,\nabla (u+g))\nabla u+\int \mathcal{B}(u+g,\nabla (u+g))u \\ & \geq & \big(\alpha -C\| d_{0}\| _{d/p} -C\| b\| _{d/p}\big)\| \nabla u\| _{p}^p-H_{1} (\|u\| ,\| \nabla u\| ,\| g\| ,\| \nabla g\| ) \end{eqnarray*} where $C=C(d,p)$ and the growth of $H_{1}$ in $\| u\| $ and $\| \nabla u\| $ is less then $p-1$. So, let $\Omega $ be small enough such that $\alpha >C(\| d_{0}\|_{n/p}+\|b\| _{n/p})$. Hence, $\frac{\langle T(u),u\rangle }{\| \nabla u\| _{p}}\to +\infty $ as $\| \nabla u\| _{p}\to +\infty $ and therefore the operator $T$ is coercive. \hfill$\square$ \begin{proposition} \label{lem1} Suppose that $0\leq \alpha \leq p-1$ and $0\leq r\leq p-1$. Then, the operator $T$ is pseudomonotone and satisfies the well known property ($S_{+}$):\\ If $u_{n}\rightharpoonup u$ and $\limsup_{n\to \infty }\langle T(u_{n})-T(u),u_{n}-u\rangle \leq 0 $, then $ u_{n}\to u$. \end{proposition} The proof of this proposition is found in \cite{Ma}. \begin{theorem}\label{thmoo} Suppose that $T$ satisfies the coercive condition on $\Omega $. Then \eqref{P'} has at least one weak solution in $W_{0}^{1,p}(\Omega )$. \end{theorem} \paragraph{Proof.} The operator $T$ is pseudomonotone, bounded continuous and coercive. Hence, by \cite{Ne} $T$ is surjective. \hfill$\square$ \subsection*{Existence of solutions for $\alpha\geq 0$ and $p-1p^*{}'$ such that for all $\xi \in \mathbb{R}^{d}$ and all $\zeta$ with $ \varphi (x)\leq \zeta \leq \psi (x)$, $| \mathcal{B} (x,\zeta ,\xi )| \leq k(x)+c| \xi | ^{r}$ a.e.$x\in \Omega$. Then, \eqref{sD} has at least one solution $u\in W_{0}^{1,p}(\Omega )$ such that $\varphi \leq u\leq \psi $. \end{theorem} \begin{proposition} Suppose that \eqref{sD} admits a pair of bounded lower subsolution $u$ and upper supersolution $v$ such that $u\leq v$, then there exists a solution $w$ of \eqref {sD} such that $u\leq w\leq v$. \end{proposition} \paragraph{Proof.} Let $M$ be a positive real such that $\| u\| _{\infty},\| v\| _{\infty },\| g\| _{\infty }\leq M$. Then, for each $\zeta $ such that $u(x)-g(x)\leq \zeta \leq v(x)-g(x)$, we have $| \mathcal{B}(x,\zeta ,\xi )| \leq k(x)+b(x)M^{\alpha}+2^{r}c| \nabla g| ^{r} +c| \xi | ^{r}$ for a.e. $x\in \Omega $. In addition, $u$ (resp. $v$) is a lower subsolution (resp. upper supersolution) of (\ref{sD}). Hence by the last Theorem, there exists a solution $w$ of (\ref{sD}) such that $u\leq w\leq v$. \hfill$\square$ \begin{corollary} Suppose that all positive constants are supersolutions and all negative constants are subsolutions. Then for each $g\in W^{1,p}(\overline{\Omega }% )\cap L^{\infty }(\Omega )$, there exists a bounded solution $w$ of (\ref{sD}) such that $\| w\| _{\infty }\leq \| g\| _{\infty }$. \end{corollary} \paragraph{Proof.} We see that $v=\| g\| _{\infty }$ is an upper supersolution and $u=-\| g\| _{\infty }$ is a lower subsolution. Hence by the Proposition given above, we get a solution $u\leq w\leq v$ \hfill$\square$ \subsection{Dirichlet Problem}\label{sDP} In this section, we assume that $\mathcal{A}(.,0,0)=0$ and $\mathcal{B}(.,0,0)=0$ a.e. in $\Omega $, that the property ($\pm $) is satisfied, and that the comparison principle holds. Suppose that the open set $\Omega $ is regular ($p-$regular) \cite{Ma,Hei}. Then it is known that if $u$ is a solution of (\ref{eq1}) in $\Omega $ satisfying $u-f\in W_{0}^{1,p}(\Omega )$ with $f\in W^{1,p}(\Omega )\cap C(\overline{\Omega })$, then $$ \lim_{x\to z} u(x)=f(z) \quad \forall z\in \partial \Omega . $$ \paragraph{Definition} %def3.1 Let $f$ be a continuous function on $\partial \Omega $. We say that $u$ $\in C(\overline{\Omega })\cap $ $W_{{\rm loc}}^{1,p}(\Omega )$ solves the Dirichlet problem with boundary value $f$ if $u$ is a solution of \eqref{eq1} such that $\lim_{x\to z}u(x)=f(z)$, for all $z\in \partial \Omega $. \begin{theorem} \label{thDP} For each $f\in C(\partial \Omega )$, there exists $u$ in $C(\overline{\Omega })\cap $ $W_{{\rm loc}}^{1,p}(\Omega )$ solving the Dirichlet problem with boundary value $f$. \end{theorem} \paragraph{Proof} By the Tieze's extension Theorem, we can assume that $f\in C_{c}^{\infty }(\mathbb{R}^{d})$. Let $(f_{n})_{n}$ be a sequence of mollifiers of $f$ such that $\| f_{n}-f\| \leq 1/2^n$ on $\overline{\Omega}$ . let $u_{n}$ denote the continuous solution of \begin{equation} \begin{gathered} u_{n}-f_{n}\in W_{0}^{1,p}(\Omega ), \\ \int_{\Omega}\mathcal{A}(.,u_{n},\nabla u_{n})\nabla \varphi +\int_{\Omega }\mathcal{B}(.,u_{n},\nabla u_{n})\varphi =0, \quad \forall \varphi \in W_{0}^{1,p}(\Omega ). \end{gathered} \label{En} \end{equation} So, by the comparison principle, $|u_{n}-u_{m}| \leq \frac{1}{2^{n}}+\frac{1}{2^{m}}$. Hence, the sequence $(u_{n})_{n}$ converges uniformly on $\overline{\Omega }$ to a continuous function $u$. Let $M$ be a positive real such that for all $n$: $| f_{n}|+| f| \leq M$ and $| u_{n}| +| u|\leq M$ on $\Omega $. Let $G\subset \overline{G}\subset \Omega $ , take $\varphi $ as a test function in (\ref{En}) such that $\varphi =\eta ^pu_{n},\eta \in C_{c}^{\infty }(\Omega ),0\leq \eta \leq 1$ and $\eta =1$ on $G$. Then \begin{multline*} \int_{\Omega}\mathcal{A}(.,u_{n},\nabla u_{n})\eta ^p\nabla(u_{n})\\ =-p\int_{\Omega }\mathcal{A}(.,u_{n},\nabla u_{n})u_{n}\eta ^{p-1}\nabla (\eta )-\int_{\Omega }\mathcal{B}(.,u_{n},\nabla u_{n})u_{n}\eta ^p \end{multline*} Using the assumptions on $\mathcal{A}$ and $\mathcal{B}$, we get \begin{eqnarray*} \lefteqn{\alpha \int_{\Omega }\eta ^p| \nabla (u_{n})|^p }\\ &\leq &pM\int_{\Omega }k_{0}| \nabla \eta | +pM^p\int_{\Omega }b_{0}| \nabla \eta | + pM\int_{\Omega }a| \nabla u_{n}| ^{p-1}\eta ^{p-1}| \nabla \eta | \\ &&\ +cM\int_{\Omega }| \nabla u_{n}| ^{r}\eta ^p+\int_{\Omega }(M^pd_{0}+Mk+M^{\alpha +1}b+e) \\ &\leq & a(p-1)^{-1}M\varepsilon ^{\frac{p}{p-1}}(\int_{\Omega }| \nabla u_{n}| ^p\eta ^p)+crp^{-1}M\varepsilon ^{\frac{p}{r}} (\int_{\Omega }| \nabla u_{n}| ^p\eta ^p)\\ &&+C(M,\Omega ,\eta ,\nabla \eta ). \end{eqnarray*} Thus, for $\varepsilon $ small enough, we obtain $$ \int_{G}| \nabla (u_{n})| ^p\leq C(M,\Omega ,\eta ,\nabla \eta ,\varepsilon ). $$ So $(\nabla u_{n})_{n}$ is bounded in $L^p(G)$ and therefore $(\nabla u_{n})_{n}$ converges weakly to $\nabla u$ in $(L^p(G))^{d}$. Fix $D$ an open subset of $G$ and let $\eta \in C_{0}^{\infty }(G)$ such that $0\leq \eta \leq 1$ and $\eta =1$ on $D$. Take $\psi =\eta (u_{n}-u)$ as test function, then \begin{eqnarray*} \lefteqn{-\int_{\Omega }\eta \mathcal{A}(.,u_{n},\nabla u_{n}).\nabla (u_{n}-u)}\\ &=&\int_{\Omega }(u_{n}-u)\mathcal{A}(.,u_{n},\nabla u_{n}).\nabla \eta + \int_{\Omega }\mathcal{B}(.,u_{n},\nabla u_{n})(u_{n}-u)\eta \end{eqnarray*} Since $\mathcal{A}(.,u_{n},\nabla u_{n})$ is bounded in $L^{p'}(G)$ and $\mathcal{B}(.,u_{n},\nabla u_{n})$ is bounded in $L^{q}(G)$, \begin{gather*} {\lim_{n\to \infty } }\int_{G}\mathcal{A} (.,u_{n},\nabla u_{n})(u_{n}-u)\nabla \eta =0,\\ \lim_{n\to \infty } \int_{G}\mathcal{B} (.,u_{n},\nabla u_{n})(u_{n}-u) \eta =0. \end{gather*} Consequently, $\lim_{n\to \infty } \int_{G}\mathcal{A}(.,u_{n},\nabla u_{n})\eta\nabla (u_{n}-u)=0$ and $$ \lim_{n\to \infty } \int_{G} (\mathcal{A}(.,u_{n},\nabla u_{n}) -\mathcal{A}(.,u_{n},\nabla u))\nabla (u_{n}-u)=0. $$ To complete the proof, we need to prove that $(\nabla u_{n})_{n}$ converges to $\nabla u$ a.e. in $\Omega $. That is the aim of the following lemma. \begin{lemma} \label{lweak} Let $G\subset \Omega $ and suppose that the sequence $(\nabla u_{n})_{n}$ is bounded in $L^p(G)$ and $$ {\lim_{n\to \infty } }\int_{G}\left[ \mathcal{A} (.,u_{n},\nabla u_{n})-\mathcal{A}(.,u,\nabla u)\right] .\nabla (u_{n}-u)=0. $$ Then $ \mathcal{A}(.,u_{n},\nabla u_{n})\to \mathcal{A}(.,u,\nabla u)$ weakly in $L^{p'}(G)$. \end{lemma} \paragraph{Proof.} Put $v_{n}=\left[ \mathcal{A}(.,u_{n},\nabla u_{n})-\mathcal{A}% (.,u_{n},\nabla u)\right] .\nabla (u_{n}-u)$. Since \begin{eqnarray*} \int_{G}v_{n} &=&\int_{G}\left[ \mathcal{A}(.,u_{n},\nabla u_{n})-\mathcal{A}(.,u,\nabla u)\right] .\nabla (u_{n}-u) \\ &&-\int_{G}\left[ \mathcal{A}(.,u_{n},\nabla u)-\mathcal{A}% (.,u,\nabla u)\right] .\nabla (u_{n}-u), \end{eqnarray*} for a subsequence we get $$ {\lim_{n\to \infty } }\left[ \mathcal{A}(.,u_{n},\nabla u_{n})-\mathcal{A}(.,u_{n},\nabla u)\right] .\nabla (u_{n}-u)=0 $$ a.e. $x\in G\setminus N$ with $| N| =0$. Let $x\in G\setminus N$. By the assumptions on $\mathcal{A}$ we have $$ v_n(x)\geq \alpha | \nabla u_n(x)| ^p-F(| \nabla u_n(x)| ^{p-1},| \nabla u(x)| ^{p-1}). $$ Consequently, $(\nabla u_{n}(x))_{n}$ is bounded and converges to some $\xi \in\mathbb{R}^{d}$. It follows that $[\mathcal{A}(.,u,\xi )-\mathcal{A}(.,u,\nabla u)].(\xi -\nabla u)=0$ and hence $\xi =\nabla u$. Finally we conclude that $\mathcal{A}(.,u_{n},\nabla u_{n})\to \mathcal{A}(.,u,\nabla u)$ a.e. in $G$ and $\mathcal{A}(.,u_{n},\nabla u_{n})$ converge weakly to $\mathcal{A}(.,u,\nabla u)$ in $L^{p'}(G)$. \hfill$\square$ Now we go back to the proof of Theorem \ref{thDP}. Using Lemma \ref{lweak}, we conclude that $\nabla u_{n}\to \nabla u$ a.e. in $\Omega $ and $\mathcal{A}(.,u_{n},\nabla u_{n})\rightharpoonup \mathcal{A}(.,u,\nabla u)$ in $L^{p'}(D)$. Hence, $$ \int_{D}\mathcal{A}(.,u,\nabla u)\nabla \varphi +\int_{D}% \mathcal{B}(.,u,\nabla u)\varphi =0 \quad \forall \varphi \in C_{0}^{\infty }(\Omega ). $$ Moreover, using the fact that $$ -\frac{1}{2^{n}}-\frac{1}{2^{m}}\leq u_{m}-u_{n}\leq \frac{1}{2^{n}% }+\frac{1}{2^{m}}\quad\forall n, m $$ we obtain $$ -\frac{1}{2^{n}}+u_{n}\leq u\leq \frac{1}{2^{n}}+u_{n},\quad\forall n. $$ So, we deduce that for all $n$ and all $z\in \partial \Omega $, $$ -\frac{1}{2^{n}}+f_{n}(z)\leq \liminf_{x\in \Omega, x\to z}u(z)\leq \limsup_{x\in \Omega,x\to z }u(z)\leq \frac{1}{2^{n}}+f_{n}(z) $$ which implies ${\lim_{x\to z} u(x)}=f(z)$ and completes the proof of Theorem \ref{thDP}. \hfill$\square$ \begin{remark} \label{remsup} \rm Using the same techniques as in the proof of Theorem \ref{thDP} we can show that every increasing and locally bounded sequence $(u_{n})_{n}$ of supersolutions of \eqref{eq1} in $\Omega $ is locally bounded in $W^{1,p}(\Omega )$ and that $u=\lim_{n}u_{n}$ is a supersolution of \eqref{eq1} in $\Omega $. \end{remark} \section{Sheaf property for Superharmonic functions} \subsection*{The obstacle Problem} \paragraph{Definition} Let $f$, $h\in W^{1,p}(\Omega )$ and let $$ K_{f,h}=\big\{ u\in W^{1,p}(\Omega ):h\leq u\mbox{ a.e. in } \Omega , u-f\in W_{0}^{1,p}(\Omega )\big\}. $$ If $f=h$, we denote $K_{f,h}=K_{f}$. We say that a function $u\in K_{f,h}$ is a solution to the obstacle problem in $K_{f,h}$ if $$ \int_{\Omega }\mathcal{A}(.,u,\nabla u).\nabla (v-u)+\int_{\Omega }\mathcal{B}(.,u,\nabla u)(v-u)\geq 0 $$ whenever $v\in $ $K_{f,h}$. This function $u$ is called solution of the problem with obstacle $h$ and boundary value $f$. \begin{remark} \label{rm4.1} \rm Since $u+\varphi \in K_{f,h}$ for all nonnegative $\varphi \in W_{0}^{1,p}(\Omega )$, the solution $u$ to the obstacle problem is always a supersolution of \emph{(\ref{eq1})} in $\Omega $. Conversely, a supersolution of \emph{(\ref{eq1})} is always a solution to the obstacle problem in $K_{u}(D)$ for all open $D\subset \overline{D}\subset \Omega$. \end{remark} \begin{theorem} \label{thop} Let $h$ and $f\ $ be in $W^{1,p}(\Omega )\cap L^{\infty }(\Omega)$. If $v$ is an upper bounded supersolution of \eqref{sD} with boundary value $f$ such that $v\geq h$, then there exists a solution $u$ to the obstacle problem in $K_{f,h}$ with $u\leq v$. \end{theorem} \paragraph{Proof.} As in \cite{Leo}, we introduce the function $$ g(x,\zeta ,\xi )=\begin{cases} \widetilde{\mathcal{B}}(x,\zeta ,\xi ) & \mbox{if } \zeta \leq v(x)\\ \widetilde{\mathcal{B}}(x,v,\nabla v) & \mbox{if } \zeta >v(x). \end{cases} $$ As in \cite{Hes}, we define the function $$ \mbox{\bf {a}}(x,\zeta ,\xi )=\begin{cases} \mathcal{A}(x,\zeta ,\xi ) & \mbox{if } \zeta \leq v(x)\\ \mathcal{A}(x,v,\nabla v) & \mbox{if } \zeta>v(x). \end{cases} $$ Note that $\bf {a}$ satisfies the conditions (P1), (P2), and (P3). A Lemma in \cite[p.52]{Deu} proves that the map $u\to g(x,u,\nabla u) $ from $W^{1,p}(\Omega )$ to $L^{p'}(\Omega )$ is bounded and continuous. Without loss of generality we can assume that $r\geq p-1$. Let $l=\max \{ q',\frac{p}{p-r}\} -1$, and define the following penalty term $$ \gamma (x,s)=[(s-v(x))^{+}]^l \quad \forall x\in \Omega , s\in\mathbb{R}. $$ Let $M>0$ and consider the map $T:K_{0,h}$ $\to W^{-1,p'}(\Omega )$ defined by $$ \langle T(u),w\rangle =\int_{\Omega }\mbox{\bf{a}}(.,u,\nabla u)\nabla w+\int_{\Omega }g(.,u,\nabla u)w+M\int_{\Omega }\gamma (.,u)w. $$ Then for any $u,w\in K_{0,h}$, we have \begin{gather*} | \int_{\Omega }g(x,u,\nabla u)w| \leq c_{1}\| w\| _{l+1}+c_{2}\| \nabla u\|_{p}^{r}\| w\| _{l+1}, \\ | \int_{\Omega}\gamma (x,u)w| \leq c_{3}\| w\|_{l+1} +c_{4}\| u\| _{l+1}^{l}\| w\| _{l+1}, \end{gather*} and for each $u\in K_{f,h}-f$ , we have $$ \int_{\Omega}\gamma (.,u)u\geq c_{5}\| u\| _{l+1}^{l+1}-c_{6}. $$ An easy computation shows that for $\varepsilon >0$, \begin{eqnarray*} (T(u),u) &\geq &(\alpha -c_{2}\varepsilon )\| \nabla u\| _{p}^p-(c\| u\| _{p}^p+c_{1}\| u\| _{l+1}^{l+1}+c_{2}c(\varepsilon )\| u\| _{l+1}^{l+1}) \\ &&+Mc_{5}\| u\| _{l+1}^{l+1}-Mc_{6}-c_{1}c_{7}. \end{eqnarray*} where $c(\varepsilon )$ is a constant which depends on $\varepsilon $ and $c>0$. Now, we choose $M$ large to get the operator $T$ coercive. Since $T$ is bounded , pseudomonotone and continuous, then by a Theorem in \cite{Ne}, there exists $w\in $ $K_{0,h}$ such that $(T(w),u-w)\geq 0$ for all $ u\in K_{0,h}$. Next, we show that $w\leq v$. Since $w-((w-v)\vee 0)\in K_{0,h}$ and since $v$ is a supersolution of (\ref{sD}), it follows that $$ \int_{\{ w>v\} }[\mathcal{A}(.,w,\nabla w)- \mathcal{A}(.,v,\nabla v)]\nabla (w-v) \leq M\int_{\{ w>v\} }\gamma (.,w)(v-w). $$ Thus by (P2), $(w-v)^{+}=0$ a.e. in $\Omega $ and hence, $w\leq v$ on $\Omega $. Finally, if we take $w_{1}=w+f$, we obtain a supersolution of the obstacle problem $K_{f,h}$. \hfill$\square$ \subsection*{Nonlinear Harmonic Space} \paragraph{Definition} Let $V$ be a regular set. For every $f\in C(\partial V)$, we denote by $H_{V}f$ the solution of the Dirichlet problem with the boundary data $f$. \begin{proposition} Let $f$ and $g$ in $C(\partial V)$ be such that $f\leq g$. Then \begin{description} \item[i)] $H_{V}f\leq H_{V}g$ \item[ii)] For every $k\geq 0$, we have $H_{V}(k+f)\leq H_{V}(f)+k$ and $H_{V}(f)-k\leq H_{V}(f-k)$. \end{description} \end{proposition} \paragraph{Definition} Let $U$ be an open set. We denote by $\mathcal{U}(U)$ the set of all open, regular subsets of $U$ which are relatively compact in $U$. We say that a function $u$ is harmonic on $U$, if $u\in C(U)$ and $u$ is a solution of (\ref{eq1}). We denote by $\mathcal{H}(U)\ $the set of all harmonic functions on $U$. Then, $$ \mathcal{H}(U)=\big\{ u\in C(U):H_{V}u=u\mbox{ for every }V\in \mathcal{U} (U)\big\}. $$ A lower semicontinuous function $u$ is said to be hyperharmonic on $U$, if \begin{itemize} \item $-\infty 0$. Choose a regular open set $V\subset \overline{V}\subset U$ such that $x\in V$ and $v0$, since $u-\varepsilon \leq u_{n}\leq u$ $+\varepsilon $ , we get $H_{V}(u)-\varepsilon \leq u_{n}\leq H_{V}(u)+\varepsilon $ and therefore $H_{V}(u)=u$ \hfill$\square$ \begin{theorem} Suppose that the conditions in subsection \ref{sDP} are satisfied, $k_{0}=e=k=0$ and $\alpha \geq p-1$. Then $(\mathbb{R}^{d},\mathcal{H})$ is a nonlinear Bauer harmonic space. \end{theorem} \paragraph{Proof.} It is clear that $\mathcal{H}$ is a sheaf of continuous functions and by Theorem \ref{thDP} there exists a basis of regular sets stable by intersection. The Bauer convergence property is fulfilled by Theorem \ref {thcB}. Since $k_{0}=e=k=0$ and $\alpha \geq p-1$, we have the following form of the Harnack inequality (e.g. \cite{Ma},\cite{Tr} or \cite{Ser}): For every non empty open set $U$ in $\mathbb{R}^{d}$, for every constant $M>0$ and every compact $K$ in $U$, there exists a constant $C=C(K,M)$ such hat $$ \sup_{K}u\leq C\inf_{K}u $$ for every $u\in \mathcal{H}^{+}(U)$ with $u\leq M$. It follows that the sheaf $\mathcal{H}$ is non degenerate. \hfill$\square$ \begin{theorem} Suppose that the condition of strict monotony holds. Let $u$ $\in $ $% \mathcal{H}^{\ast }(\Omega )\cap L^{\infty }(\Omega )$. Then $u$ is a supersolution on $U.$ \end{theorem} \paragraph{Proof.} Let $V\subset \overline{V}\subset \Omega $. Let $(\varphi _i)_i$ be an increasing sequence in $C_{c}^{\infty }(\Omega )$ such that $\ u={\sup_i} \varphi _i$ on $\overline{V}$. Let $$ K_{\varphi _i}=\big\{ w\in W_{{\rm loc}}^{1,p}(\Omega ):\varphi _i\leq w% \mbox{, \ }w-\varphi _i\in W_{0}^{1,p}(V)\big\} . $$ We know by Theorem \ref{thop} that there exists a solution $u_i$ to the obstacle problem $K_{\varphi _i}$ such that $\|u_i\|_{\infty }\leq \| \varphi _i\| _{\infty }$. We claim that $(u_i)_i$ is increasing. In fact $u_i\wedge u_{i+1}\in K_{\varphi _i}$, then \begin{eqnarray*} \int_{\{ u_i>u_{i+1}\} }(\mathcal{A}(.,u_i,\nabla u_i)-\mathcal{A}(.,u_{i+1},\nabla u_{i+1}))\nabla (u_{i+1}-u_i) & \\ +\int_{\{ u_i>u_{i+1}\} }(\mathcal{B}(.,u_i,\nabla u_i)-\mathcal{B}(.,u_{i+1},\nabla u_{i+1}))(u_{i+1}-u_i) & \geq 0. \end{eqnarray*} Hence $\nabla (u_{i+1}-u_i)^{+}=0$ a.e. which yields that $u_i\leq u_{i+1}$ a.e. in $V$ . On the other hand, for each $i$ the function $u_i$ is a solution of (\ref {eq1}) in $D_i:=\{ \varphi _i0$ such that $\varepsilon \| \psi \| \leq \inf_{\overline{W}}(u_i-\varphi _i)$. Then, we get $% u_i+\varepsilon \psi \in K_{\varphi _i}$ and $$ \int_{W }\mathcal{A}(.,u_i,\nabla u_i).\nabla \psi +\int_{W }\mathcal{B}(.,u_i,\nabla u_i)\psi =0. $$ Since $$ \lim \inf_{x\to y} u(x)\geq u(y)\geq \varphi _i(y)={\lim_{x\to y} }u_i(x) $$ for all $y\in \partial D_i$, it yields, by the comparison principle, that $u\geq u_i$ in $D_i$. Hence $u\geq u_i$ in $D$. Thus $u={\lim_{i\to \infty } }\varphi _i\leq \lim_{i\to \infty } u_i\leq u$. Finally, using Remark \ref{remsup} we complete the proof. \hfill$\square$ \begin{theorem} \label{thm4.45} Suppose that the condition of strict monotonicity holds. Then $^{\ast }\mathcal{H}$ is a sheaf. \end{theorem} The proof of this theorem is the same as in \cite[Theorem 4.2]{BB}. \begin{thebibliography}{00} \bibitem{Baa} A. Baalal, \emph{Th\'{e}orie du Potentiel pour des Op\'{e}rateurs Elliptiques Non Lin\'{e}aires du Second Ordre \`{a} Coefficients Discontinus}. Potential Analysis. 15, no 3, (2001) 255-271. \bibitem{BB} A. Baalal and A. Boukricha, \emph{Potential Theory of Perturbed Degenerate Elliptic Equations}, Electron. J. Differ. Equ. no 31, (2001) 1-20. \bibitem{BBM} N. Belhaj Rhouma, A. Boukricha and M. Mosbah, \emph{% Perturbations et Espaces Harmoniques Non Lin\'{e}aires}. Ann. Acad. Sci. Fenn. Math., no. 23, (1998) 33-58. \bibitem{Bou}A. Boukricha, \emph{Harnack Inequality for Nonlinear Harmonic Spaces}, Math. Ann, (317), no 3, (2000) 567-583. \bibitem{Car} S. Carl and H. Diedrich, \emph{The weak upper and lower solution method for quasilinear elliptic equations with generalized subdifferentiable perturbations}, Appl. Anal. 56 (1995) 263-278. \bibitem{Dan} E. N. Dancer and G. Sweers, \emph{On the existence of a maximal weak solution for a semilinear elliptic equation }, Differential Integral Equations 2 (1989) 533-540. \bibitem{Deu} J. Deuel and P. Hess, \emph{A Criterion for the Existence of Solutions of Nonlinear Elliptic Boundary Value Problems}, Proc. Roy. Soc of Edinburg Sect. A 74 (3), (1974/1975) 49-54. \bibitem{Deu1} J. Deuel and P. Hess, \emph{Nonlinear parabolic boundary value problems with upper and lower solutions}, Isra. J. Math. 29 (1978) 92-104. \bibitem{FdL} D. Feyel and A. De La Pradelle, \emph{Sur Certaines Perturbations Non Lin\'{e}aires du Laplacian}, J. Math. Pures et Appl., no. 67 (1988) 397-404. \bibitem{Lak} S. Heikkil\"{a} and V. Lakshmikantham, \emph{Extension of the method of upper and lower solutions for discontinuous differential equations}, Differential Equations Dynam. Systems. 1 (1993) 73-85. \bibitem{Hei} J. Heinonen, T. Kilpel\"{a}inen, O. Martio, \emph{% Nonlinear Potential Theory of Degenerate Elliptic Equations}, Clarenden Press, Oxford New York Tokyo, (1993). \bibitem{Her} R. M Herv\'{e} and M. Herv\'{e}, \emph{Les Fonctions Surharmoniques Associ\'{e}es \`{a} un Op\'{e}rateur Elliptique du Second Ordre \`{a} Coefficients Discontinus}, Ann. Ins. Fourier, 19(1), (1968) 305-359. \bibitem{Hes} P. Hess, \emph{ On a Second Order Nonlinear Elliptic Problem}, Nonlinear Analysis (ed. by L. Cesari, R Kannanand HF. Weinberger), Academic Press, New York (1978), 99-107. \bibitem{Kra} M. Krasnoselskij, \emph{Topological Methods in the Theory of Nonlinear Integral Equations}, Pergamon, New York, (1964). \bibitem{Kur} T. Kura, \emph{The weak supersolution-subsolution method for second order quasilinear elliptic equations}, Hiroshima Math. J. 19 (1989)1-36. \bibitem{La} I. Laine, \emph{Introduction to Quasi-linear Potential Theory of Degenerate Elliptic Equations}, Ann. Acad. Sci. Fenn. Math., no. 10, (1986) 339-348. \bibitem{Le} V. K. Le, \emph{ Subsolution-supersolution method in variational inequalities}, Nonlinear anlysis. 45 (2001) 775-800. \bibitem{Leo} M. C. Leon, \emph{Existence Results for Quasi-linear Problems via Ordered Sub and Supersolutions}, Annales de la Facult\'{e} des Sciences de Toulouse, Mathematica, S\'{e}rie 6 Volume VI. Fascicule 4, (1997). \bibitem{LeS} V. K. Le and K. Schmitt, \emph{ On boundary value problems for degenerate quasilinear elliptic equations and inequalities}, J. Differential equations 144 (1998) 170-218. \bibitem{Li} J. L. Lions, \emph{Quelques M\'{e}thodes de R\'{e}solution des Probl\`{e}mes aux Limites Nonlin\'{e}aires}, Dunod Gautheire-Villans, (1969). \bibitem{Ma} J. Maly, W. P. Ziemer, \emph{Fine Regularity of Solutions of Elliptic Partial Differential Equations}, Mathematical Surveys and monographs, no. 51, American Mathematical Society, (1997). \bibitem{Ne} J. Ne\v{c}as, \emph{Introduction to the Theory of Nonlinear Elliptic Equation}, John Wiley \& Sons, (1983). \bibitem{Pap} N. Papageorgiou, \emph{On the existence of solutions for nonlinear parabolic problems with nonmonotonous discontinuities}, J. Math. Anal. Appl. 205 (1997) 434-453. \bibitem{Ser} J. Serrin, \emph{Local behavior of Solutions of Quasi-linear Equations}, Acta Mathematica, no. 111, (1964) 247-302. \bibitem{ST} G. Stampacchia, \emph{Le Probl\`{e}me de Dirichlet pour les Equations Elliptiques du Second Ordre \`{a} Coefficients Discontinus}, Ann. Ins. Four, no. 15(1), (1965) 189-258. \bibitem{Tr} N. S. Trudinger, \emph{On Harnack type Inequalities and their Application to Quasilinear Elliptic Equations}, Comm. Pure Appl. Math., no. 20, (1967) 721-747. \end{thebibliography} \noindent\textsc{Azeddine Baalal}\\ D\'{e}partement de Math\'{e}matiques et d'Informatique,\\ Facult\'{e} des Sciences A\"{i}n Chock, \\ Km 8 Route El Jadida BP 5366 M\^{a}arif, Casablanca, Maroc.\\ E-mail: baalal@facsc-achok.ac.ma \medskip \noindent\textsc{Nedra BelHaj Rhouma}\\ Institut Pr\'{e}paratoire aux Etudes d'Ing\'{e}nieurs de Tunis,\\ 2 Rue Jawaher Lel Nehru, 1008 Montfleury, Tunis, Tunisie.\\ E-mail: Nedra.BelHajRhouma@ipeit.rnu.tn \end{document}