\documentclass[twoside]{article} \usepackage{amsfonts,amsmath} \pagestyle{myheadings} \markboth{\hfil Nonlinear elliptic systems with indefinite terms \hfil EJDE--2002/83} {EJDE--2002/83\hfil Ahmed Bensedik \& Mohammed Bouchekif \hfil} \begin{document} \title{\vspace{-1in}\parbox{\linewidth}{\footnotesize\noindent {\sc Electronic Journal of Differential Equations}, Vol. {\bf 2002}(2002), No. 83, pp. 1--16. \newline ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu \newline ftp ejde.math.swt.edu (login: ftp)} \vspace{\bigskipamount} \\ % On certain nonlinear elliptic systems with indefinite terms % \thanks{ {\em Mathematics Subject Classifications:} 35J20, 35J25, 35J60, 35J65, 35J70. \hfil\break\indent {\em Key words:} Elliptic systems, p-Laplacian, variational methods, mountain-pass Lemma, \hfil\break\indent Palais-Smale condition, potential function, Moser iterative method. \hfil\break\indent \copyright 2002 Southwest Texas State University. \hfil\break\indent Work supported by research project B1301/02/2000. \hfil\break\indent Submitted April 2, 2002. Published October 2, 2002.} } \date{} % \author{Ahmed Bensedik \& Mohammed Bouchekif} \maketitle \begin{abstract} We consider an elliptic quasi linear system with indefinite term on a bounded domain. Under suitable conditions, existence and positivity results for solutions are given. \end{abstract} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \numberwithin{equation}{section} \section{Introduction} The purpose of this article is to find positive solutions to the system \begin{equation} \label{Spq} \begin{gathered} -\Delta_pu=m( x) \frac{\partial H}{\partial u}( u,v) \quad \text{in }\Omega \\ -\Delta_qv=m( x) \frac{\partial H}{\partial v}( u,v) \quad \text{in }\Omega \\ u=v=0 \quad \text{on }\partial \Omega \end{gathered} \end{equation} where $\Omega $ is a bounded regular domain of $\mathbb{R}^N$, with a smooth boundary $\partial \Omega $, $\Delta_pu:=\mathop{\rm div}(| \nabla u | ^{p-2}\nabla u) $ is the $p$-Laplacian with $10$, for all $x\in \Omega $, for all $ (u,v) \in D_3$ such that $0\leq H( x,u,v) \leq C( |u| ^{p'}+ | v| ^{q'})$ \item There exists $C'>0$, for all $x\in \Omega$, for all $( u,v) \in D_2$ such that $H( x,u,v) \leq C'$ \item There exists a positive function $a$ in $L^\infty ( \Omega )$, such that for each $x\in \Omega$ and $(u,v) \in D_1\cap \mathbb{R}_{+}^2$, $H( x,u,v)=a( x)u^{\alpha +1}v^{\beta +1}$, \end{itemize} where \begin{gather*} D_1=\big\{ ( u,v) \in \mathbb{R}_{}^2 : | u| \geq A\text{ or }| v| \geq A\big\} ,\\ D_2=\big\{ ( u,v) \in \mathbb{R}_{}^2\backslash D_{1} : |u| \geq \delta \text{ or }| v| \geq \delta \big\}, \end{gather*} and $D_3=\mathbb{R}^2\backslash (D_1\cup D_2)$ with $A>\delta >0$, $11 \quad\mbox{and}\quad \frac{\alpha +1}{p^{*}}+\frac{\beta +1}{q^{*}}<1 \] by using a suitable application of the variational method due to Ambrosetti-Rabinowitz \cite{AR}. M. Bouchekif \cite{Bo1} generalized the work of F. de Th\'elin and J.Velin \cite{TV} for the large class of functions of the form \[ H( u,v) =a| u| ^\gamma +c| v| ^\delta+b| u| ^{\alpha +1}| v| ^{\beta +1} \] where $\alpha $, $\beta \geq 0$; $\gamma $, $\delta >1$ and $a$, $b$ and $c$ are real numbers. The case where the system \eqref{Spq} is governed by a single operator $\Delta_p$ has been studied by Baghli \cite {Ba}. Our aim is to extend to the system \eqref{Spq} the results obtained in the scalar case (see \cite{Bo2}). Our existence results follow from modified quasilinear system in order to apply the Palais-Smale condition (P.S.) and then the Moser's Iterative Scheme as in T. \^{O}tani \cite{O} or in F. de Th\'elin and J. V\'elin \cite{TV}. We consider only weak solutions, and assume that $H$ satisfies the following hypothesis. \begin{enumerate} \item[(H1)] $H\in C^1( \mathbb{R}^{+}\times \mathbb{R}^{+}) $ \item[(H2)] $H(u,v)=o(u^p+v^q)$ as $(u,v)\to (0^{+},0^{+})$ \item[(H3)] There exists $R_0>0$ and $\mu$, $1<\mu <\min ( p^{*}/p,q^{*}/q)$, such that $$\frac up \frac{\partial H}{\partial u}(u,v)+\frac vq \frac{\partial H}{\partial v}(u,v)\geq \mu H(u,v)>0 \; \forall (u,v)\in \mathbb{R}_{+}^{*}\times \mathbb{R}_{+}^{*},\; u^p+v^q\geq R_0.$$ \end{enumerate} \section{Preliminaries and existence results} The values of $H( u,v) $ are irrelevant for $u\leq 0$ or $v\leq 0$. We set \[ I( u,v) =\frac 1p\int_\Omega | \nabla u| ^pdx+\frac 1q\int_\Omega | \nabla v| ^qdx-\int_\Omega m( x) H( u,v) dx \] defined on $E:=W_0^{1,p}( \Omega ) \times W_0^{1,q}( \Omega)$. The solutions of the system \eqref{Spq} are critical points of the functional $I$. Note that the functional $I$ does not satisfy in general the Palais-Smale condition since \[ B_\mu H( u,v) :=\frac up\frac{\partial H}{\partial u}( u,v) +\frac vq\frac{\partial H}{\partial v}( u,v) -\mu H( u,v) \] $\,\,$is not always bounded. In order to apply Ambrosetti-Rabinowitz Theorem \cite{AR}, we modify $H$ so that the corresponding $B_\mu H( u,v) $ becomes bounded. Let \[ A( R) =\max \Big\{ \frac{H( u,v) }{( u^p+v^q)^\mu } : R\leq u^p+v^q\leq R+1\Big\} \] and \begin{align*} C_R =\max &\Big\{ \sup_{u^p+v^q\leq R+1} \big| \frac{\partial H}{\partial u}( u,v) \big| +2p\mu A( R) ( R+1) ^{\mu +1-\frac 1p}\sup_{R\leq r\leq R+1}| \eta _R'( r) | ;\\ &\sup_{u^p+v^q\leq R+1}\big| \frac{\partial H}{\partial v}( u,v) \big| +2q\mu A( R)( R+1) ^{\mu +1-\frac 1q}\sup_{R\leq r\leq R+1} | \eta_R'( r) | \Big\} \end{align*} where $\eta_R\in C^1( \mathbb{R})$ is a cutting function defined by \[ \eta_R( r) \begin{cases} =1 & \text{if } r\leq R \\ < 0& \text{if } R1,$we have \begin{multline*} B_\nu H_R(u,v)\\ =( u^p+v^q) \eta_R'(u^p+v^q) [ H( u,v) -A( R) ( u^p+v^q) ^\mu ] +\eta_R( u^p+v^q) B_\nu H(u,v), \end{multline*} for $R_0\leq u^p+v^q\leq R$; \[ B_\nu H_R(u,v)=B_\nu H(u,v)\geq B_\mu H(u,v)\geq 0\quad \text{for }1<\nu \leq \mu \] for $R\leq $ $u^p+v^q\leq R+1$; \[ B_\nu H_R(u,v)\geq \eta_R( u^p+v^q) B_\nu H(u,v)\geq \eta _R( u^p+v^q) B_\mu H(u,v)\geq 0\text{ for }1<\nu \leq \mu ; \] finally for $u^p+v^q\geq R+1$, $B_\nu H_R(u,v)=0$ for any $\nu >1$. Thus (H3) holds for $H_R$. Conditions \eqref{2.1} and \eqref{2.2} result from straightforward computations. Using (H3), we have \begin{equation} H_R( u,v) \geq \frac{m_{R_0}}{R_0^\mu }( u^p+v^q) ^\mu \quad,\forall ( u,v) \in \mathbb{R}_{+}^{*}\times \mathbb{R}_{+}^{*}\text{ such that } u^p+v^q\geq R_0. \label{2.4} \end{equation} In fact, put $f(t):=H_R( t^{1/p}u,t^{\frac 1q}v) $ with $u^p+v^q\geq R_0$ then \begin{equation} \begin{aligned} f'(t)=&\frac 1t \Big[ \frac{t^{1/p}u}p\frac{\partial H_R}{ \partial u}( t^{1/p}u,t^{\frac 1q}v) +\frac{t^{\frac 1q}v}q \frac{\partial H_R}{\partial v}( t^{1/p}u,t^{\frac 1q}v) \Big] \\ \geq& \frac \mu tf( t) \quad \text{for all } t\geq t_0:=\frac{R_0}{u^p+v^q}( \leq 1) . \end{aligned} \label{2.5} \end{equation} Integrating \eqref{2.5} between $t_0$ and $t$, we obtain \begin{equation} \frac{f( t) }{f( t_0) }\geq \frac{t^\mu }{t_0^\mu } \quad\text{for all}\quad t\geq t_0 \label{2.6} \end{equation} and taking $t=1$ in \eqref{2.6}, we have \[ H_R( u,v) =f(1)\geq \frac{( u^p+v^q) ^\mu \,}{R_0^\mu }f( t_0) \] and $f( t_0) =H_R( u_1,v_1) =H( u_1,v_1)$, where $u_1=( \frac{R_0}{u^p+v^q}) ^{1/p}u$, and \break $v_1=( \frac{R_0}{u^p+v^q}) ^{1/q}v$. Consequently, \[ \min_{u^p+v^q\geq R_0} f( t_0( u,v) ) =\min_{u^p+v^q=R_0} H(u,v), \] hence \eqref{2.4} follows. Now, consider the modified system \begin{equation} \label{SpqH} \begin{gathered} -\Delta_pu=m( x) \frac{\partial H_R}{\partial u}( u,v) \quad \text{in }\Omega \\ -\Delta_qv=m( x) \frac{\partial H_R}{\partial v}(u,v) \quad \text{in }\Omega \\ u=v=0 \quad \text{on }\partial \Omega \end{gathered} \end{equation} which has an associated functional $I_R$ defined on $E$ as \[ I_R( u,v) =\frac 1p\int_\Omega | \nabla u| ^pdx+\frac 1q\int_\Omega | \nabla v| ^qdx-\int_\Omega m( x) H_R( u,v) dx. \] \begin{lemma} \label{lm3} Under the hypotheses (H1)-(H3), the functional $I_R$ satisfies the Palais-Smale condition. \end{lemma} \paragraph{Proof.} Let $( u_n,v_n)$ be an element of $E$ such that $I_R( u_n,v_n) $ is bounded and $I_R'(u_n,v_n) \to 0$ strongly in $W_0^{-1,p'}( \Omega ) \times W_0^{-1,q'}( \Omega )$ (dual space of $E$). \noindent Claim 1.\quad $(u_n,v_n) $ is bounded in $E$. In fact, for any $M$, we have \[ -M\leq \frac 1p\int_\Omega | \nabla u_n| ^pdx+\frac 1q\int_\Omega | \nabla v_n| ^qdx-\int_\Omega m( x) H_R( u_n,v_n) dx\leq M; \] and for $\varepsilon \in ( 0,1) $, we have again \begin{eqnarray*} -\varepsilon &\leq& \frac 1p\int_\Omega | \nabla u_n|^pdx +\frac 1q\int_\Omega | \nabla v_n|^qdx \\ &&-\int_\Omega m( x) \big[ \frac{u_n}p\frac{\partial H_R }{\partial u}( u_n,v_n) +\frac{v_n}q\frac{\partial H_R}{\partial v }( u_n,v_n) \big] dx\leq \varepsilon .\,\, \end{eqnarray*} Then we obtain \begin{eqnarray*} \frac{\mu -1}p\int_\Omega | \nabla u_n| ^pdx+\frac{\mu -1} q\int_\Omega | \nabla v_n| ^qdx &\leq &M\mu-\int_\Omega m( x) B_\mu H_R(u,v)dx \\ &\leq &M\mu +1+| m|_0M_R( \mathop{\rm meas}\Omega ) \end{eqnarray*} where $| m|_0:=\max_{x\in \stackrel{-}{\Omega }}( | m( x) | ) $. Hence $( u_n,v_n) $ is bounded in $E$. \noindent Claim 2.\quad $( u_n,v_n) $ converges strongly in $E$. Since $( u_n,v_n) $ is bounded in $E$, there exists a subsequence denoted again by $( u_n,v_n) $ which converges weakly in $E$ and strongly in the space $L^\zeta ( \Omega ) \times L^\eta ( \Omega ) $ for any $\zeta $ and $\eta $ such that, $1<\zeta From the definition of $I_R'$, we write \begin{eqnarray*} \lefteqn{ \int_\Omega ( | \nabla u_n| ^{p-2}\nabla u_n-| \nabla u_l| ^{p-2}\nabla u_l) \nabla (u_n-u_l) dx}\\ &=&\langle I_R'( u_n,v_n)-I_R'( u_l,v_l) ,( u_n-u_l,0)\rangle \\ &&+\int_\Omega m(x) \Big[ \frac{\partial H_R}{\partial u}( u_n,v_n) -\frac{\partial H_R}{\partial u}( u_l,v_l) \Big] (u_n-u_l) dx. \end{eqnarray*} By assumptions on $I_R'$, $\langle I_R'( u_n,v_n)-I_R'( u_l,v_l) ,( u_n-u_l,0)\rangle $ converges to 0 as $n$ and $l$ tend to $+\infty $. In what follows, $C$ denotes a generic positive constant. Now, we prove that $$ C_{n,l}:=\int_\Omega m( x) [ \frac{\partial H_R}{ \partial u}( u_n,v_n) -\frac{\partial H_R}{\partial u}( u_l,v_l) ] ( u_n-u_l) dx $$ converges to 0 as $n$ and $l$ tend to $+\infty $. We have \[ | C_{n,l}| \leq | m|_0\int_\Omega [ | \frac{\partial H_R}{\partial u}( u_n,v_n) | +| \frac{\partial H_R}{\partial u}( u_l,v_l) | ] | u_n-u_l| dx \] and \begin{eqnarray*} \lefteqn{\int_\Omega | \frac{\partial H_R}{\partial u}( u_n,v_n) | | u_n-u_l| dx }\\ &\leq& \int_\Omega ( C_R+\mu pA( R) | u_n| ^{p-1}( | u_n| ^p+| v_n| ^q) ^{\mu -1}) |u_n-u_l| dx \\ & \leq& 2^{\mu -1}C_R\int_\Omega ( 1+| u_n| ^{\mu p-1}+| u_n| ^{p-1}| v_n| ^{q\mu -q})| u_n-u_l| dx\\ &\leq& 2^{\mu -1}C_R\Big[ \int_\Omega | u_n-u_l|dx +\int_\Omega | u_n| ^{\mu p-1}| u_n-u_l|dx\\ &&+\int_\Omega | u_n| ^{p-1}| v_n| ^{q\mu -q}| u_n-u_l| dx\Big] . \end{eqnarray*} Using H\"older's inequality and Sobolev's embeddings, we obtain \begin{eqnarray*} \lefteqn{ \int_\Omega \Big| \frac{\partial H_R}{\partial u}( u_n,v_n) \Big| | u_n-u_l| dx }\\ &\leq &2^{\mu -1}C_R( \mathop{\rm meas}\Omega ) ^{\frac{p-1}p}\Big[ \int_\Omega |u_n-u_l| ^pdx\Big] ^{1/p} \\ &&+2^{\mu -1}C_R\Big[ \int_\Omega | u_n| ^{\mu p}dx\Big] ^{\frac{\mu p-1}{\mu p}}\Big[ \int_\Omega | u_n-u_l| ^{\mu p}dx\Big] ^{\frac 1{\mu p}} \\ &&+2^{\mu -1}C_R\Big[ \int_\Omega | u_n| ^{\mu p}dx\Big] ^{\frac{p-1}{\mu p}}\Big[ \int_\Omega | v_n| ^{\mu q}dx\Big] ^{\frac{\mu -1}\mu }\Big[ \int_\Omega | u_n-u_l| ^{\mu p}dx\Big] ^{\frac 1{\mu p}}, \end{eqnarray*} (because $( u_n) \in W_0^{1,p}( \Omega ) $ and $\mu p0$. \item There exist $( \phi ,\theta )$ in $E$ such that $I_R( \phi ,\theta ) <0$. \end{enumerate} \end{proposition} \paragraph{Proof.} From (H2) and taking into account that $H_R( u,v) =H( u,v) $ for $u^p+v^q\leq R$, we can write \[ \forall \varepsilon >0,\exists \delta_\varepsilon >0:u^p+v^q\leq \delta_\varepsilon \Longrightarrow H_R( u,v) \leq \varepsilon ( u^p+v^q) , \] and since $H_R( u,v) /( u^p+v^q) ^\mu $ is uniformly bounded as $u^p+v^q$ tends to $+\infty $ \[ \exists M( \varepsilon ,R) >0:u^p+v^q\geq \delta _\varepsilon \Longrightarrow H_R( u,v) \leq M(u^p+v^q) ^\mu . \] Then for every $( u,v) $ in $\mathbb{R}^{+}\times \mathbb{R}^{+}$ we have \[ H_R( u,v) \leq \varepsilon ( u^p+v^q) +M(u^p+v^q) ^\mu . \] Hence \begin{eqnarray*} \lefteqn{\int_\Omega m( x) H_R( u,v) dx }\\ &\leq& |m|_0\Big[ \varepsilon \int_\Omega ( u^p+v^q) dx+M\int_\Omega ( u^p+v^q) ^\mu dx\Big] \\ &\leq& | m|_0\Big[ \int_\Omega ( \varepsilon u^p+2^{\mu -1}Mu^{p\mu }) dx+\int_\Omega ( \varepsilon v^q+2^{\mu -1}Mv^{q\mu }) dx\Big]\\ &\leq& C| m|_0\big[ \varepsilon ( \| u\| _{1,p}^p+\| v\|_{1,q}^q) +M( \| u\| _{1,p}^{\mu p}+\| v\|_{1,q}^{\mu q}) \big] . \end{eqnarray*} For $I_R(u,v)$, we obtain \begin{eqnarray*} I_R( u,v) &\geq &\| u\|_{1,p}^p\big[ \frac 1p-C| m|_0( \varepsilon +M\| u\| _{1,p}^{\mu p-p}) \big] \\ &&+\| v\|_{1,q}^q\big[ \frac 1q-C| m|_0( \varepsilon +M\| v\|_{1,q}^{\mu q-q})\big] \geq \sigma >0, \end{eqnarray*} for every $( u,v) $ in the sphere $S( 0,\rho ) $ of $E$ where $\rho $ is such that $0<\rho <\min ( \rho_1,\rho _2) $ with \[ \rho_1=\big[ \frac 1{pMC| m|_0}-\frac \varepsilon M\big] ^{\frac 1{\mu p-p}}\quad\text{and}\quad \rho_2=\big[ \frac 1{qMC|m|_0}-\frac \varepsilon M\big] ^{\frac 1{\mu q-q}} \] with $\varepsilon $ sufficiently small. \noindent 2.\quad Choose $( \phi ,\theta )\in E$ such that: $\phi >0$, $\theta >0$, \[ \mathop{\rm supp}\phi \subset \Omega ^{+}, \quad \mathop{\rm supp}\theta \subset \Omega ^{+}, \] where $\Omega ^{+}=\{ x\in \Omega ; m( x) >0\}$. Hence, for $t$ sufficiently large, \begin{eqnarray*} I_R( t^{1/p}\phi ,t^{1/q}\theta ) &=& \frac tp\| \phi\|_{1,p}^p+\frac tq\| \theta \| _{1,q}^q-\int_\Omega m( x) H_R( t^{1/p}\phi,t^{1/q}\theta ) dx\\ &\leq& t\big[ \frac{\| \phi \|_{1,p}^p}p+\frac{\| \theta \|_{1,q}^q}q\big] -t^\mu \frac{m_{R_0}}{R_0^\mu }\int_\Omega m( x) ( \phi ^p+\theta ^q) ^\mu dx \end{eqnarray*} and so $\lim_{t\to +\infty }I_R( t^{1/p}\phi ,t^{1/q}\theta ) =-\infty$, (because $\mu>1$). By continuity of $I_R$ on $E$, there exists $( \phi ,\theta ) $ in $E\setminus B( 0,\rho ) $ such that $I_R( \phi ,\theta ) <0$. By the usual Mountain-Pass Theorem, we know that there exists a critical point of $I_R$ which we denote by $( u_R,v_R) $, and corresponding to a critical value $c_R\geq \sigma $. Since $( u_R^{+},v_R^{+}) $, where $u_R^{+}:=\max ( u_R,0) $, is also solution for the system $( S_{p,q}^{H_R}) $, we assume $u_R\geq 0$ and $v_R\geq 0$. Positivity of $u_R$ and $v_R$ follows from Harnack's inequality (see J. Serrin \cite{Se}). We prove now that, under some conditions, $( u_R,v_R) $ is also solution of the system \eqref{SpqH}. \section{Existence results} We adapt the Moser iteration used in \cite{O,TV} to construct two strictly unbounded sequences $( \lambda_k) _{k\in \mathbb{N}}$ and $( \mu_k)_{k\in \mathbb{N}}$ such that $( u_R,v_R) $ satisfies \[ \text{if }\left\{\begin{array}{c} u_R\in L^{\lambda_k}( \Omega ) \\ v_R\in L^{\mu_k}( \Omega )\end{array}\right\}\quad\text{then}\quad \left\{\begin{array}{c} u_R\in L^{\lambda_{k+1}}( \Omega ) \\ v_R\in L^{\mu_{k+1}}( \Omega ) . \end{array} \right\} \] \subsection*{Bootstrap argument} \begin{proposition} \label{prop5} Under the assumptions of Theorem \ref{thm1}, there exist two sequences $( \lambda_k)_k$ and $( \mu_k)_k$ such that \begin{enumerate} \item For each $k$, $u_R$ and $v_R$ belong to $L^{\lambda_k}( \Omega ) $ and $L^{\mu_k}( \Omega ) $ respectively \item There exist two positive constants $C_p$ and $C_q$ such that \[ \| u_R\|_\infty \leq \limsup_{k\to +\infty }\| u_R\|_{L^{\lambda_k}} \leq C_p,\quad\text{and}\quad \|v_R\|_\infty \leq \limsup_{k\to +\infty }\| v_R\|_{L^{\mu_k}}\leq C_q. \] \end{enumerate} \end{proposition} \begin{lemma} \label{lm6} Let $( a_k)_{k\in \mathbb{N}}$ and $( b_k)_{k\in \mathbb{N}}$ be two positive sequences satisfying, for each integer $k$, the relations \begin{equation} \frac{p+a_k}{\lambda_k}+\frac{q( \mu -1) }{\mu_k}=1,\quad\text{and} \quad \frac{q+b_k}{\mu_k}+\frac{p( \mu -1) }{\lambda_k}=1. \label{3.1} \end{equation} If $u_R$ and $v_R$ are in $L^{\lambda_k}( \Omega ) $ and $L^{\mu_k}( \Omega )$ respectively, $\lambda_{k+1}\leq (1+\frac{a_k}p) \pi_p$, $\mu_{k+1}\leq ( 1+\frac{b_k}q) \pi_q$ with $1<\pi_p1$, $1<\mu p\widehat{C}0$. The sequences $% ( \lambda_k)_k$ and $( \mu_k)_k$ are defined by $\lambda_k=pf_k$ and $\mu_k=qf_k$, where \[ f_k=\frac C{C-1}[ \delta C^{k-1}+( \mu -1) ] . \] We remark that the three last sequences are strictly increasing and unbounded. Furthermore $( f_k) $ satisfies the relation $f_{k+1}=C[ f_k-( \mu -1) ]$. \paragraph{Proof of Proposition 2.} 1. We show by induction that for all integer $k$, $u_R\in L^{\lambda_k}( \Omega )$ and $v_R\in L^{\mu_k}( \Omega )$. For $k=0$, \[ \lambda_0=pf_0=\frac{pC}{C-1}\big[ \frac \delta C+( \mu-1)\big] =p\frac Np\big[ \frac pN\mu \widehat{C}^{k_0}\big] =\widehat{\lambda }_{k_0}, \] and similarly, $\mu_0=\widehat{\mu }_{k_0}$. By Lemma 4, $u_R\in L^{\lambda_0}( \Omega )$ and $v_R\in L^{\mu_0}( \Omega )$. Suppose that $( u_R,v_R) \in L^{\lambda_k}( \Omega ) \times L^{\mu_k}( \Omega ) $. First we establish that $\lambda_k=a_k+p\mu$. By condition \eqref{3.1}, \[ 1=\frac{p+a_k}{\lambda_k}+q\frac{\mu -1}{\mu_k}=\frac p{\lambda_k}-\frac q{\mu_k}+\frac{a_k}{\lambda_k}+\mu \frac q{\mu_k}, \] thus \[ \frac{a_k}{pf_k}+\frac \mu {f_k}=1 \] which implies $a_k=p( f_k-\mu ) =\lambda_k-p\mu$, and similarly $\mu_k=b_k+q\mu =q( f_k-\mu )$. Now when we take $\pi_p=Cp$ and $\pi_q=Cq$, we then have \[ \big[ 1+\frac{a_k}p\big] \pi_p=( 1+f_k-\mu )Cp=pf_{k+1}=\lambda_{k+1}. \] and similarly $[ 1+\frac{b_k}q] \pi_q=\mu_{k+1}$. Since $( u_R,v_R) \in L^{\lambda_k}( \Omega ) \times L^{\mu_k}( \Omega ) $, we conclude, according to Lemma 3, that \[ ( u_R,v_R) \in L^{\lambda_{k+1}}( \Omega ) \times L^{\mu_{k+1}}( \Omega ) . \] So $u_R\in L^{\lambda_k}( \Omega ) $, and $v_R\in L^{\mu_k}( \Omega ) $, for all integer $k$. \noindent 2. Now we prove that $u_R$ and $v_R$ are bounded. By Lemma 3, we have \begin{gather*} \| u_R\|_{\lambda_{k+1}}^{\lambda_{k+1}}\leq K_p\Big\{ \theta_p\big[ 1+\frac{a_k}p\big] \big\{ C_R| m|_0( \| u_R\|_{\lambda_k}^{\lambda_k}+\| v_R\|_{\mu_k}^{\mu_k}) \big\} ^{1/p}\Big\} ^{\frac{\lambda_{k+1}}{1+\frac{a_k}p}}, \\ \| v_R\|_{\mu_{k+1}}^{\mu_{k+1}}\leq K_q\Big\{ \theta_q\big[ 1+\frac{b_k}q\big] \big\{ C_R| m| _0( \| u_R\|_{\lambda_k}^{\lambda_k}+\| v_R\|_{\mu_k}^{\mu_k}) \big\} ^{\frac 1q}\Big\} ^{\frac{\mu_{k+1}}{1+\frac{b_k}q}}. \end{gather*} We remark that \[ \frac{\lambda_{k+1}}{1+\frac{a_k}p}=pC\quad\text{and}\quad \frac{\mu_{k+1}}{1+\frac{b_k}q}=qC. \] Consequently, \begin{gather*} \| u_R\|_{\lambda_{k+1}}^{\lambda_{k+1}}\leq 2^CK_p\theta_p^{pC}\big[ 1+\frac{a_k}p\big]_\infty ^{pC}( | m|_0^{}C_R^{}) ^C\max \big( \| u_R\| _{\lambda_k}^{\lambda_kC},\| v_R\|_{\mu_k}^{\mu_kC}\big), \\ \| v_R\|_{\mu_{k+1}}^{\mu_{k+1}}\leq 2^CK_q\theta _q^{qC}\big[ 1+\frac{b_k}q\big] ^{qC}( | m| _0^{}C_R^{}) ^C\max \big( \| u_R\|_{\lambda _k}^{\lambda_kC},\| v_R\|_{\mu_k}^{\mu_kC}\big) . \end{gather*} We have \[ 1+\frac{a_k}p=1+\frac{b_k}q=1+f_k-\mu <\frac C{C-1} \big[ \frac \delta C+\mu-1\big] C^k. \] Take \[ A:=\frac C{C-1}\big[ \frac \delta C+\mu -1\big] [ K_p+K_q] \] and $\theta :=2| m|_0\max ( \theta_p^p,\theta_q^q)$, then we can write \[ \max \Big( \| u_R\|_{\lambda_{k+1}}^{\lambda _{k+1}},\| v_R\|_{\mu_{k+1}}^{\mu_{k+1}}\Big) \leq ( A^q\theta ) ^CC^{kqC}C_R^C\max \Big( \| u_R\| _{\lambda_k}^{C\lambda_k},\| v_R\|_{\mu_k}^{C\mu_k}\Big) . \] We construct an iterative relation \[ E_{k+1}\leq r_k+CE_k \] where $E_k=\ln \max ( \| u_R\|_{\lambda_k}^{\lambda_k}, \|v_R\|_{\mu_k}^{\mu_k}) $, and $r_k=ak+b$, with $a=\ln C^{qC}$ and $b=\ln [ A^q\theta C_R] ^C$. Proceeding step by step, we find \begin{eqnarray*} E_{k+1} &\leq &r_k+Cr_{k-1}+C^2r_{k-2}+\cdots +C^kr_0+C^{k+1}E_{0,} \\ E_{k+1} &\leq &C^{k+1}E_0+\sum_{i=0}^kC^ir_{k-i}. \end{eqnarray*} Let us evaluate \[ \sigma_k:=\sum_{i=0}^kC^ir_{k-i}. \] We have $r_{k-i}=a( k-i) +b=ak+b-ai$, then \begin{eqnarray*} \sigma_k&=&( ak+b) \sum_{i=0}^kC^i-a\sum_{i=0}^kiC^i\\ &=& \frac{bC^{k+2}+( a-b) C^{k+1}+( 1-C) ak-[ C( a+b) -b] }{( C-1) ^2}. \end{eqnarray*} Since $C>1$, and $a$, $b$ are positive, we have \[ \sigma_k\leq \frac{bC^{k+2}+( a-b) C^{k+1}}{( C-1)^2} \] then \[ E_{k+1}\leq \frac{bC^{k+2}}{( C-1) ^2}+C^{k+1} \big[ \frac{a-b}{( C-1) ^2}+E_0\big] . \] By an appropriate choice for the constants $K_p$ and $K_q$, we ensure that \[ \frac{b-a}{( C-1) ^2}\geq E_0. \] Recall that \[ b-a=C\ln \frac{A^q\theta C_R}{C^q}\quad\text{with}\quad A=\frac C{C-1}\big[ \frac \delta C+\mu -1\big] [K_p+K_q] ; \] hence $E_{k+1}\leq bC^{k+2}/ ( C-1) ^2$. By the definition of $E_{k+1}$ and the last inequality, we obtain \[ \lambda_{k+1}\ln \| u_R\|_{\lambda_{k+1}}\leq E_{k+1}\leq \frac{bC^{k+2}}{( C-1) ^2}, \] thus \[ \ln \| u_R\|_{\lambda_{k+1}}\leq \frac{bC^{k+2}}{\lambda_{k+1}( C-1) ^2}. \] Letting $k\to +\infty $, we find \[ \ln \| u_R\|_\infty \leq \frac{bC}{p\delta (C-1) }, \quad\text{or}\quad \ln \| u_R\|_\infty \leq \frac N{\delta p^2}b. \] Similarly \[ \ln \| v_R\|_\infty \leq \frac N{\delta q^2}b. \] We deduce the existence of constants $C_p$ and $C_q$ such that: \[ \| u_R\|_\infty \leq C_p\quad \text{and}\quad \| v_R\|_\infty \leq C_q. \] Take \[ C_p=\exp \frac N{\delta p^2}b,\quad\text{and}\quad C_q=\exp \frac N{\delta q^2}b. \] Then $C_p$ and $C_q$, are greater than $1$, which is compatible with the remark noted at the beginning of the proof of Lemma 3. This completes the proof of proposition 1. \paragraph{Proof of Theorem \ref{thm1}.} If $\| u_R\|_\infty ^p+\| v_R\|_\infty^q\frac{N^2}{pq}\mu =\frac{p^{*}q^{*}}{( p^{*}-p) ( q^{*}-q) }\text{ }\mu \] and we can take $C_R<\frac{R^{\frac{p^{*}q^{*}}{( p^{*}-p) ( q^{*}-q) }\text{ }\mu }}{2^{\frac{\delta p}{CN}}\theta A^q}.\;$% Then $( u_R,v_R) $ is solution of system \eqref{Spq} if \[ C_R=o\Big( R^{\frac{p^*q^*}{( p^*-p) (q^*-q)}\mu }\Big) \] for $R$ sufficiently large. \subsection*{Examples} Now, we present functions satisfying the hypotheses in our main result. For $1<\gamma <\min ( \frac{p^{*}}p,\frac{q^{*}}q) $, let \[ H( u,v) =( u^p+v^q) ^\gamma \] be defined on $\mathbb{R}_{+}^2$. Then $H$ satisfies the hypotheses of Theorem \ref{thm1}. For $\alpha ,\beta \geq 0$, $\frac{\alpha +1}p+\frac{\beta +1}q>1$ and $\frac{\alpha +1}{p^{*}}+\frac{\beta +1}{q^{*}}<1$, let \[ H( u,v) =u^{\alpha +1}v^{\beta +1}\,. \] be defined on $\mathbb{R}_{+}^2$. Then $H$ satisfies the hypotheses of Theorem \ref{thm1}. \begin{thebibliography}{0} \frenchspacing \bibitem{A} Adams, R. A., Sobolev spaces, Academic press, New York, 1975.\thinspace \thinspace \thinspace \bibitem{AR} Ambrosetti, A. P.H. Rabinowitz, Dual variational methods in critical point theory and application, J. of Funct. Anal., 14 (1973), 349-381. \bibitem{Ba} Baghli, S., R\'esultats d'existence de solutions non n\'egatives de classe de syst\`emes elliptiques contenant le p-Laplacien, Th\`ese de Magister, n$^{\text{o}}$445 (1998), Universit\'e de Tlemcen, Alg\'erie. \bibitem{Bo1} Bouchekif, M., Some Existence results for a class of quasilinear elliptic systems, Richerche di Matematica, vol. XLVI, fas. 1 (1997), 203-219. \bibitem{Bo2} Bouchekif, M., On certain quasilinear elliptic equations with indefinite terms, Funkcialaj Ekvacioj, 41 (1998), 309-316. \bibitem{O} \^Otani, T., Existence and nonexistence of nontrivial solutions of some nonlinear degenerate elliptic equations, J. Funct. Anal., 76 (1988), 1083-1141. \bibitem{Se} Serrin, J., Local behaviour of solutions of quasilinear equations, Acta. Math., 113 (1964), 302-347. \bibitem{Si} Simon, J.,\ R\'egularit\'e de la solution d'une equation non lin\'eaire dans $\mathbb{R}^N$, Ph. Benilian and J. Robert eds. Lecture notes in math. 665, Springer Verlag, Berlin, (1978), 205-227. \bibitem{TV} De Th\'elin, F. and J.V\'elin, Existence and nonexistence of nontrivial solutions for some nonlinear elliptic systems, Revista Matematica, 6 (1993), 153-193. \end{thebibliography} \noindent\textsc{Ahmed Bensedik} (e-mail: ahmed\_benseddik2002@yahoo.fr)\\ \textsc{Mohammed Bouchekif} (e-mail: m\_bouchekif@mail.univ-tlemcen.dz)\\[3pt] D\'epartement de Math\'ematiques, Universit\'e de Tlemcen \\ B. P. 119, 13000 Tlemcen, Alg\'erie. \end{document}