\documentclass[twoside]{article} \usepackage{amsfonts, amsmath} % font used for R in Real numbers \pagestyle{myheadings} \markboth{\hfil Existence of global solutions \hfil EJDE--2002/91} {EJDE--2002/91\hfil Mohammed Aassila \& Abbes Benaissa \hfil} \begin{document} \title{\vspace{-1in}\parbox{\linewidth}{\footnotesize\noindent {\sc Electronic Journal of Differential Equations}, Vol. {\bf 2002}(2002), No. 91, pp. 1--22. \newline ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu \newline ftp ejde.math.swt.edu (login: ftp)} \vspace{\bigskipamount} \\ % Existence of global solutions to a quasilinear wave equation with general nonlinear damping % \thanks{ {\em Mathematics Subject Classifications:} 35B40, 35L70, 35B37. \hfil\break\indent {\em Key words:} Quasilinear wave equation, global existence, asymptotic behavior, \hfil\break\indent nonlinear dissipative term, multiplier method. \hfil\break\indent \copyright 2002 Southwest Texas State University. \hfil\break\indent Submitted July 02, 2002. Published October 26, 2002.} } \date{} % \author{Mohammed Aassila \& Abbes Benaissa} \maketitle \begin{abstract} In this paper we prove the existence of a global solution and study its decay for the solutions to a quasilinear wave equation with a general nonlinear dissipative term by constructing a stable set in $H^{2}\cap H_{0}^{1}$. \end{abstract} \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemme}[theorem]{Lemma} \newtheorem{remarque}[theorem]{Remark} \allowdisplaybreaks \section{Introduction} We consider the problem \begin{equation} \label{P} \begin{gathered} u''-\Phi(\|\nabla_{x}u\|_{2}^{2})\Delta_{x}u+g(u')+f(u)=0 \quad\hbox{in } \Omega\times [0, +\infty[,\\\ u=0 \quad \hbox{on } \Gamma\times [0, +\infty[,\\ u(x, 0)=u_{0}(x),\quad u'(x, 0)=u_{1}(x)\quad \hbox{ on }\Omega, \end{gathered} \end{equation} where $\Omega$ is a bounded domain in $\mathbb{R}^{n}$ with a smooth boundary $\partial\Omega=\Gamma$, $\Phi(s)$ is a $C^{1}$- class function on $[0, +\infty[$ satisfying $\Phi(s)\geq m_{0}>0$ for $s\geq 0$ with $m_{0}$ constant. For the problem \eqref{P}, when $\Phi(s)\equiv 1$ and $g(x)=\delta x\,\,(\delta >0)$, Ikehata and Suzuki \cite{iksu} investigated the dynamics, they have shown that for sufficiently small initial data $(u_{0}, u_{1})$, the trajectory $(u(t),u'(t))$ tends to $(0,0)$ in $H_{0}^{1}(\Omega)\times L^{2}(\Omega)$ as $t\to +\infty$. When $g(x)=\delta |x|^{m-1}x$ ($m\geq 1$) and $f(y)=-\beta |y|^{p-1}y$ ($\beta>0$, $p\geq 1$), Georgiev and Todorova {\cite{geto}} have shown that if the damping term dominates over the source, then a global solution exists for any initial data. Quite recently, Ikehata {\cite{ikeh}} proved that a global solution exists with no relation between $p$ and $m$, and Todorova {\cite{todo}} proved that the energy decay rate is $E(t)\leq (1+t)^{-2/(m-1)}$ for $t\geq 0$, she used a general method on the energy decay introduced by Nakao {\cite{naka}}. Unfortunately this method does not seem to be applicable to the case of more general functions $g$. Aassila \cite{aass1} proved the existence of a global decaying $H^{2}$ solution when $g(x)$ has not necessarily a polynomial growth near zero and a source term of the form $\beta |y|^{p-1}y$, but with small parameter $\beta$. The decay rate of the global solution depends on the polynomial growth near zero of $g(x)$ as it was proved in \cite{aass2,todo,komo}. When $\Phi(s)$ is not a constant function, $g(x)\equiv 0$ and $f(y)\equiv 0$ the equation is often called the wave equation of Kirchhoff type. This equation was introduced to study the nonlinear vibrations of an elastic strings by Kirchhoff {\cite{kirc}}, and the existence of global solutions was investigated by many authors \cite{poho, kaya, hiro}. In {\cite{ikma}}, the authors discussed the existence of a global decaying solution in the case $\Phi(s)=m_{0}+s^{\frac{(\gamma+2)}{2}}$, $\gamma\geq 0$, $g(v)=|v|^{r}v$, $0\leq r\leq 2/(n-2)$ ($0\leq r\leq \infty$ if $n=1, 2$), $f(u)=-|u|^{\alpha}u$, $0<\alpha\leq 4/(n-2)$ ($0<\alpha <\infty$ if $n=1, 2$) by use of a stable set method due to Sattinger {\cite{satt}}. But, then, the method in {\cite{ikma}} cannot be applied to the case $\alpha> 4/(n-2)$, which is caused by the construction of stable set in $H_{0}^{1}$. Quite recently, in {\cite{ikmn}} (see also {\cite{aass}}) Ikehata, Matsuyama and Nakao have constructed a stable set in $H_{0}^{1}\cap H^{2}$ to obtain a global decaying solution to the initial boundary value problem for quasilinear visco-elastic wave equations. Our purpose in this paper is to give a global solvability in the class $H_{0}^{1}\cap H^{2}$ and energy decay estimates of the solutions to problem \eqref{P} for a general non-linear damping $g$. We use some new techniques introduced in {\cite{aass1}} to derive a decay rate of the solution. So we use the argument combining the method in {\cite{aass1}} with the concept of stable set in $H_{0}^{1}\cap H^{2}$. We also use some ideas from {\cite{mart}} introduced in the study of the decay rates of solutions to the wave equation $u_{tt}-\Delta u+g(u_t)=0$ in $\Omega\times \mathbb{R}^+$. We conclude this section by stating our plan and giving some notations. In section $2$ we shall prepare some lemmas needed for our arguments. Section $3$ is devoted to the proof of the global existence and decay estimates to the problem \eqref{P}. Section $4$ is devoted to the proof of the global existence and decay estimates to the problem \eqref{P} in the case $\alpha=0$, i.e., $f(u)=-u$. In this case the smallness of $|\Omega|$ (the volume of $\Omega$) will play an essential role in our argument. In the last section we shall treat the case $\Phi\equiv 1$, we prove only the global decaying $H_{0}^{1}$ solution, but we obtain more results than the case when $\Phi\not\equiv 1$. The condition that $\beta$\ ($k_{1}$ in our paper) is small is removed here, also we extend some results obtained by Ono {\cite{ono}} and Martinez {\cite{mart}}. Throughout this paper the functions considered are all real valued. We omit the space variable $x$ of $u(t, x)$, $u_{t}(t, x)$ and simply denote $u(t, x)$, $u_{t}(t, x)$ by $u(t)$, $u'(t)$, respectively, when no confusion arises. Let $l$ be a number with $2\leq l\leq \infty$. We denote by $\|\ .\ \|_{l}$ the $L^{l}$ norm over $\Omega$. In particular, $L^{2}$ norm is denoted $\|\ .\ \|_{2}$. $(\ .\ )$ denotes the usual $L^{2}$ inner product. We use familiar function spaces $H_{0}^{1}$, $H^{2}$. \section{Preliminaries} Let us state the precise hypotheses on $\Phi$, $g$ and $f$. \begin{enumerate} \item[(H1)] $\Phi$ is a $C^{1}$-class function on $\mathbb{R}^{+}$ and satisfies \begin{equation} \Phi(s)\geq m_{0} \quad\hbox{and}\quad |\Phi'(s)|\leq m_{1}s^{\gamma/2} \quad \hbox{for } 0\leq s<\infty \label{e1} \end{equation} for some constants $m_{0}> 0$, $m_{1}\geq 0$, and $\gamma\geq 0$. \item[(H2)] $g$ is a $C^{1}$ odd increasing function and $$ c_{2}|x|\leq |g(x)|\leq c_{3}|x|^{q}\quad\hbox{if}\quad |x|\geq 1 \quad\hbox{with}\quad 1\leq q\leq \frac{N+2}{(N-2)^{+}}, $$ where $c_{1},\,c_{2}$ and $c_{3}$ are positive constants. \item[(H3)] $f(.)$ is a $C^{1}(\mathbb{R})$ satisfying \begin{equation} |f(u)|\leq k_{2}|u|^{\alpha+1}\quad\hbox{and}\quad |f'(u)|\leq k_{2}|u|^{\alpha}\quad \hbox{for all} u\in \mathbb{R} \label{e2} \end{equation} with some constant $k_{2}> 0$, and \begin{equation} 0<\alpha<\frac{2}{(N-4)^{+}}, \label{e3} \end{equation} where $(N-4)^{+}=\max\{N-4, 0\}$. A typical example of these functions is $f(u)=-|u|^{\alpha}u$. \end{enumerate} We first state three well known lemmas, and then we prove two other lemmas that will be needed later. \begin{lemme} [Sobolev-Poincar\'e inequality] Let $q$ be a number with $2\leq q<+\infty\,\,(n=1,2)$ or $2\leq q\leq 2n/(n-2)\,\,(n\geq 3)$, then there is a constant $c_{*}=c(\Omega, q)$ such that $$ \| u\|_{q}\leq c_{*}\|\nabla u\|_2\quad \hbox{ for }\quad u\in H_0^1(\Omega). $$ \label{l1} \end{lemme} \begin{lemme} [Gagliardo-Nirenberg] Let $1\leq r< q\leq +\infty$ and $p\leq q$. Then, the inequality $$ \|u\|_{W^{m, q}}\leq C \|u\|_{W^{m, p}}^{\theta}\|u\|_{r}^{1-\theta} \quad \hbox{ for }\quad u\in W^{m, p}\cap L^{r} $$ holds with some $C> 0$ and $$ \theta=\big(\frac{k}{n}+\frac{1}{r}-\frac{1}{q}\big) \big(\frac{m}{n}+\frac{1}{r}-\frac{1}{p}\big)^{-1} $$ provided that $0<\theta\leq 1$\ (we assume $0<\theta< 1$ if $q=+\infty$). \label{l2} \end{lemme} \begin{lemme}[{\cite{komo}}] Let $E: {\mathbb{R}}_+\to {\mathbb{R}}_+$ be a non-increasing function and assume that there are two constants $p\geq 1$ and $A>0$ such that $$ \int_{S}^{+\infty}E^{\frac{p+1}{2}}(t)\,dt\leq AE(S),\quad 0\leq S<+\infty. $$ Then \begin{gather*} E(t)\leq cE(0)(1+t)^{\frac{-2}{p-1}}\quad \forall t\geq 0, \quad\hbox{if}\quad p>1\,,\\ E(t)\leq cE(0)e^{-\omega t}\quad \forall t\geq 0,\quad\hbox{if}\quad p=1, \end{gather*} where $c$ and $\omega$ are positive constants independent of the initial energy $E(0)$. \label{l3} \end{lemme} \begin{lemme}[\cite{mart}] Let $E: {\mathbb{R}}_+\to {\mathbb{R}}_+$ be a non increasing function and $\phi:{\mathbb{R}}_+\to {\mathbb{R}}_+$ an increasing $C^2$ function such that $$ \phi (0)=0\quad\hbox{and}\quad \phi (t)\to +\infty\quad \hbox{as } t\to +\infty. $$ Assume that there exist $p\geq 1$ and $A>0$ such that $$ \int_S^{+\infty} E(t)^{\frac{p+1}{2}}(t)\phi'(t)\,dt\leq AE(S). \quad 0\leq S<+\infty, $$ Then \begin{gather*} E(t)\leq cE(0)(1+\phi (t))^{-2/(p-1)}\quad\forall t\geq 0, \quad\hbox{if}\quad p>1,\\ E(t)\leq cE(0)e^{-\omega \phi(t)}\quad \forall t\geq 0, \quad\hbox{if}\quad p=1, \end{gather*} where $c$ and $\omega$ are positive constants independent of the initial energy $E(0)$. \label{l4} \end{lemme} \paragraph{Proof} Let $f: {\mathbb{R}}_+\to {\mathbb{R}}_+$ be defined by $f(x):=E(\phi^{-1}(x))$, (we remark that $\phi^{-1}$ has a sense by the hypotheses assumed on $\phi$). $f$ is non-increasing, $f(0)=E(0)$ and if we set $x:=\phi (t)$ we obtain \begin{align*} \int_{\phi (S)}^{\phi (T)}f(x)^{\frac{p+1}{2}}\,dx =& \int_{\phi (S)}^{\phi (T)}E(\phi^{-1}(x))^{(p+1)/2}\,dx\\ =& \int_{S}^{T}E(t)^{\frac{p+1}{2}}\phi'(t)\,dt\\ \leq& AE(S)= Af(\phi (S))\quad 0\leq S0$, there exists a number $\varepsilon_{0}\equiv \varepsilon_{0}(K)>0$ such that if $\|\Delta_{x}u\|\leq K$ and $\|\nabla_{x}u\|\leq \varepsilon_{0}$, we have \begin{equation} J(u)\geq \frac{m_{0}}{4}\|\nabla_{x}u\|_{2}^{2}\quad \hbox{and}\quad {\tilde J}(u)\geq \frac{m_{0}}{2}\|\nabla_{x}u\|_{2}^{2}. \label{e4} \end{equation} \label{l6} \end{lemme} \paragraph{Proof:} We see from the Gagliardo-Nirenberg inequality that \begin{equation} \|u\|_{\alpha+2}^{\alpha+2}\leq C\|u\|_{\frac{2N}{(N-2)}}^{(\alpha+2)(1-\theta)} \|\Delta_{x}u\|_{2}^{(\alpha+2)\theta} \leq C \|\nabla_{x}u\|_{2}^{(\alpha+2)(1-\theta)} \|\Delta_{x}u\|_{2}^{(\alpha+2)\theta} \label{e5} \end{equation} with \begin{equation} \theta=\Big(\frac{N-2}{2N}-\frac{1}{\alpha+2}\Big)^{+} \Big(\frac{2}{N}+\frac{N-2}{2N}-\frac{1}{2}\Big)^{-1} =\frac{((N-2)\alpha-4)^{+}}{2(\alpha+2)}\;(\leq 1). \label{e6} \end{equation} Here, we note that \begin{equation} (\alpha+2)(1-\theta)-2=\begin{cases} \alpha & \hbox{if } 0<\alpha\leq \frac{4}{N-2}\\ &(0<\alpha<\infty \hbox{ for } N=1, 2),\\ \frac{(4-N)\alpha+4}{2} & \hbox{if } \frac{4}{N-2}<\alpha< \frac{4}{N-4}\\ &(\frac{4}{N-2}<\alpha< \infty \hbox{ for } N=3, 4). \end{cases} \label{e7} \end{equation} Hence, if $\|\Delta_{x}u\|_{2}\leq K$, we have \begin{equation} \begin{aligned} J(u)&\geq \frac{m_{0}}{2}\|\nabla_{x}u\|_{2}^{2}- \frac{k_{2}}{\alpha+2}\|u\|_{\alpha+2}^{\alpha+2}\\ &\geq \frac{m_{0}}{2}\|\nabla_{x}u\|_{2}^{2}- C\|\nabla_{x}u\|_{2}^{(\alpha+2)(1-\theta)} \|\Delta_{x}u\|_{2}^{(\alpha+2)\theta}\\ &\geq \big\{\frac{m_{0}}{2}-CK^{(\alpha+2)\theta} \|\nabla_{x}u\|_{2}^{(\alpha+2)(1-\theta)-2} \big\} \|\nabla_{x}u\|_{2}^{2}.\end{aligned} \label{e8} \end{equation} Using (\ref{e7}), we define $\varepsilon_{0}\equiv \varepsilon_{0}(K)$ by $$ C K^{(\alpha+2)\theta}\varepsilon_{0}^{(\alpha+2)(1-\theta)-2}= \frac{m_{0}}{4}. $$ Thus, we obtain \begin{equation} J(u)\geq \frac{m_{0}}{4}\|\nabla_{x}u\|_{2}^{2} \label{e9} \end{equation} if $\|\nabla_{x}u\|_{2}\leq \varepsilon_{0}$. It is clear that (\ref{e9}) is valid for ${\tilde J}(u)$. \hfill $\square$ \smallskip Let us define a stable in $H_{0}^{1}\cap H^{2}$ as follows: For some $K>0$, \begin{align*} {\cal W}_{K}\equiv&\Big\{(u, v)\in (H_{0}^{1}\cap H^{2})\times H_{0}^{1}: \|\Delta_{x}u\|_20$. Then we have $$ E(t)\leq cE(0)\Big(G^{-1}\big(\frac{1}{t}\big)\Big)^2\quad\hbox{ on } [0, T[, $$ where $c$ is a positive constant independent of the initial energy $E(0)$ and $G(x)=xg(x)$. Furthermore, if $x\mapsto g(x)/x$ is non-decreasing on $[0,\eta]$ for some $\eta>0$, then $$ E(t)\leq cE(0)\Big(g^{-1}\big(\frac{1}{t}\big)\Big)^2\quad\hbox{on } [0, T[, $$ where $c$ is a positive constant independent of the initial energy $E(0)$. \label{l7} \end{lemme} \paragraph{Proof of lemma \ref{l7}} For the rest of this article, we denote by $c$ various positive constants which may be different at different occurences. We multiply the first equation of \eqref{P} by $E\phi' u$, where $\phi$ is a function satisfying all the hypotheses of lemma \ref{l5}, we obtain \begin{align*} 0=&\int_{S}^{T} E\phi'\int_{\Omega} u(u''-\Phi(\|\nabla_{x}u\|_{2}^{2}) \Delta u +g(u')+f(u))\,dx\, dt\\ =&\Big[E\phi'\int_{\Omega} uu'\,dx\Big]_{S}^{T}-\int_{S}^{T}(E'\phi'+E\phi'') \int_{\Omega} uu'\,dx\,dt-2\int_{S}^{T} E\phi'\int_{\Omega} u'^2\,dx\,dt\\ &+\int_{S}^{T} E\phi'\int_{\Omega}\left(u'^2+\Phi(\|\nabla_{x}u\|_{2}^{2})|\nabla u|^2 +f(u)u\right)\,dx\,dt\\ &+\int_{S}^{T} E\phi'\int_{\Omega} ug(u')\,dx\,dt\,. \end{align*} Under the assumption $(u(t), u'(t))\in {\cal W}_{K}$, the functionals $J(u(t))$ and ${\tilde J}(u(t))$ are both equivalent to $\|\nabla_{x}u(t)\|_{2}^{2}$, by lemma \ref{l6}. So we deduce that \begin{align*} \int_{S}^{T}E^2\phi'\,dt\leq& -\Big[E\phi'\int_{\Omega} uu'\,dx\Big]_{S}^{T} +\int_{S}^{T}(E'\phi'+E\phi'')\int_{\Omega} uu'\,dx\,dt\\ &+2\int_{S}^{T}E\phi'\int_{\Omega} u'^2\,dx\,dt-\int_{S}^{T}E\phi'\int_{\Omega} ug(u')\,dx\,dt\\ \leq& -\Big[E\phi'\int_{\Omega} uu'\,dx\Big]_{S}^{T}+\int_{S}^{T}(E'\phi' +E\phi'')\int_{\Omega} uu'\,dx\,dt\\ &+2\int_{S}^{T}E\phi'\int_{\Omega} u'^2\,dx\,dt+c(\varepsilon) \int_{S}^{T}E\phi'\int_{|u'|\leq 1} g(u')^2\,dx\,dt\\ &+\varepsilon\int_{S}^{T}E\phi'\int_{|u'|\leq 1} u^2\,dx\,dt -\int_{S}^{T}E\phi'\int_{|u'|> 1} ug(u')\,dx\,dt \end{align*} for all $\varepsilon >0$. Choosing $\varepsilon$ small enough, we deduce that \begin{align*} &\int_{S}^{T}E^2\phi'\,dt\\ &\leq -\Big[E\phi'\int_{\Omega} uu'\,dx\Big]_{S}^{T}+\int_{S}^{T}(E'\phi'+E\phi'') \int_{\Omega} uu'\,dx\,dt +c\int_{S}^{T}E\phi'\int_{\Omega} u'^2\,dx\,dt\\ &\leq cE(S)-\int_{S}^{T}E\phi'\int_{|u'|> 1} ug(u')\,dx\,dt+ c\int_{S}^{T}E\phi'\int_{\Omega} u'^2\,dx\,dt. \end{align*} Also, we have \begin{align*} \int_{S}^{T}&E\phi'\int_{|u'|> 1} ug(u')\,dx\,dt\\ \leq &\int_{S}^{T}E\phi'\Big(\int_{\Omega}|u|^{q}\, dx\Big)^{1/(q+1)} \Big(\int_{|u'|> 1}|g(u')|^{\frac{(q+1)}{q}}\, dx\Big)^{q/(q+1)}\\ \leq &c \int_{S}^{T}E^{3/2}\phi' \Big(\int_{|u'|> 1}u'g(u')\, dx\Big)^{q/(q+1)} \leq \int_{S}^{T}\phi' E^{3/2}(-E')^{\frac{q}{(q+1)}} \\ \leq & c\int_{S}^{T}\phi' (E^{\frac{3}{2}-\frac{q}{q+1}}) \left((-E')^{\frac{q}{(q+1)}}E^{\frac{q}{q+1}}\right) \\ \leq &c(\varepsilon')\int_{S}^{T}\phi'(-E'E)\, dt+\varepsilon' \int_{S}^{T}\phi'E^{(q+1)(\frac{3}{2}-\frac{q}{(q+1)})}\, dt\\ \leq & c(\varepsilon')E(S)^{2}+\varepsilon' E(0)^{(q-1)/2} \int_{S}^{T}\phi'E^{2}\, dt \end{align*} for every $\varepsilon' >0$. Choosing $\varepsilon'$ small enough, we obtain $$ \int_{S}^{T}E^2\phi'\,dt \leq cE(S)+ c\int_{S}^{T}E\phi'\int_{\Omega} u'^2\,dx\,dt $$ We want to majorize the last term of the above inequality, we have \begin{align*} \int_{S}^{T}E\phi'\int_{\Omega} u'^2\,dx\,dt =&\int_{S}^{T}E\phi'\int_{\Omega_{1}}u'^2\,dx\,dt+ \int_{S}^{T}E\phi'\int_{\Omega_{2}}u'^2\,dx\,dt \\ &+\int_{S}^{T}E\phi'\int_{\Omega_{3}} u'^2\,dx\,dt, \end{align*} where, for $t\geq 1$, \begin{gather*} \Omega_{1}:=\{x\in\Omega: |u'|\leq h(t)\},\quad \Omega_{2}:=\{x\in\Omega: h(t)<|u'|\leq h(1)\},\\ \Omega_{3}:=\{x\in\Omega: |u'|>h(1)\}, \end{gather*} and $h(t):=g^{-1}(\phi'(t))$, which is a positive non-increasing function and satisfies $h(t)\to 0$ as $t\to +\infty$. Because \begin{align*} \int_{S}^{T}E\phi'\int_{\Omega_{1}}u'^{2}\,dx\,dt \leq & c\int_{S}^{T}E(t)\phi'(t)\Big(\int_{\Omega_{1}}h(t)^{2}\,ds\Big)\,dt\\ \leq & cE(S)\int_{S}^{T}\phi'(t)(g^{-1}(\phi'(t)))^{2}\,dt \leq cE(S), \end{align*} we have the following: Since $g$ is non-decreasing, for $x\in \Omega_{2}$ we have $\phi'(t)=g(h(t))\leq |g(u')|$, and hence \begin{align*} \int_{S}^{T}E\phi'\int_{\Omega_{2}}u'^{2}\,dx\,dt \leq & \int_{S}^{T}E\int_{\Omega_{2}}|g(u')|u'^{2}\,dx\,dt\\ \leq & h(1)\int_{S}^{T}E\int_{\Omega_{2}} u'g(u')\,dx\,dt \leq \frac{h(1)}{2}E(S)^{2}\,; \end{align*} and since $g(x)\geq cx$ for $x\geq h(1)$, we have \begin{align*} \int_{S}^{T}E\phi'\int_{\Omega_{3}}u'^{2}\,dx\,dt \leq & c\int_{S}^{T}E\phi'\int_{\Omega} u'g(u')\,dx\,dt \\ \leq &c\int_{S}^{T} E (-E')\,dx\,dt \leq cE(S)^{2}. \end{align*} Then we deduce that $$ \int_{S}^{T}E^{2}\phi'\,dt\leq cE(S), $$ and thanks to Lemma \ref{l5}, we obtain $$ E(t)\leq \frac{c\ E(0)}{\phi(t)},\qquad\forall t\geq 1. $$ Let $s_{0}$ be such that $g(1/s_{0})\leq 1$, since $g$ is non-decreasing we have $$ \psi (s)\leq 1+(s-1)\frac{1}{g(1/s)}\leq s\frac{1}{g(1/s)} =\frac{1}{G(1/s)}\quad\forall s\geq s_{0}, $$ hence $s\leq \phi\big(1/G(1/s)\big)$ and $$ \frac{1}{\phi (t)}\leq \frac{1}{s}\quad\hbox{with}\quad t:=\frac{1}{G(1/s)}. $$ Thus $$ \frac{1}{\phi(t)}\leq G^{-1}(1/t). $$ Now define $H(x):=g(x)/x$, $H$ is non-decreasing, $H(0)=0$, then we use the function $h(t):=H^{-1}(\phi'(t))$. On $\Omega_{2}$ it holds that $$ \phi'(t)(u')^2\leq |H(u')|(u')^2=u'g(u'). $$ The same calculations as above with $$ \phi^{-1}(t)=1+\int_{1}^{t}\frac{1}{H(1/s)}\, ds $$ yield $E(t)\leq c\ E(0)\big(g^{-1}(1/t)\big)^{2}$. \hfill $\square$ \begin{lemme} Let $u(t)$ be a strong solution satisfying $(u(t), u'(t))\in {\cal W}_{K}$ on $[0, T[$ for some $K>0$. Assume that $$ \int_0^{+\infty}\left(g^{-1}(1/t)\right)^{\min\{\gamma+1, \alpha(1-\theta_{0}) \}}\,dt<+\infty. $$ Then we have $$ \|\nabla u'(t)\|_2^2+\|\Delta u(t)\|_2^2\leq Q_{1}^{2}(I_0,I_1,K), $$ with $\lim_{I_0\to 0}Q_{1}^{2}(I_{0},I_{1},K)=I_{1}^{2}$ and where we set $$ I_{0}^{2}=E(0)=\frac{1}{2}\|u_{1}\|_{2}^{2}+J(u_{0}),\quad I_{1}^{2}=\|\nabla u_{1}\|_{2}^{2}+\Phi(\|\nabla_{x}u_{0}\|_{2}^{2}) \|\Delta u_0\|_{2}^{2} $$ \label{l8} \end{lemme} \paragraph{Proof} Multiplying the first equation of \eqref{P} by $-\Delta u'(t)$ and integrating over $\Omega$, we obtain \begin{multline*} \frac{1}{2}\frac{d}{dt}\Bigl[\|\nabla u'(t)\|_2^2+ \Phi(\|\nabla_{x}u\|_{2}^{2})\|\Delta u(t)\|_2^2\Bigr]+ \Bigl(\nabla g(u'(t)),\nabla u'(t)\Bigr) \\ =-\int_{\Omega} f'(u) \nabla u.\nabla u'(t)\, dx\Bigr) +\Phi'(\|\nabla_{x}u\|_{2}^{2})(\nabla u'(t), \nabla u(t))\|\Delta_{x} u\|_{2}^{2}. \end{multline*} We set $$ E_{1}(t)\equiv \|\nabla_{x}u'\|_{2}^{2}+\Phi(\|\nabla_{x}u\|_{2}^{2}) \|\Delta_{x}u\|_{2}^{2} $$ Using the assumptions on $\Phi$, $g$ et $f$, we have \begin{equation} \begin{aligned} \frac{d}{dt}E_{1}(t)\leq & C\|\nabla_{x}u\|_{2}^{\gamma+1} \|\nabla_{x}u'\|_{2}\|\Delta_{x}u\|_{2}^{2}+ 2k_{2}\int_{\Omega}|u|^{\alpha}|\nabla_{x}u||\nabla_{x}u'|\, dx\\ \leq & C\Big\{E(t)^{(\gamma+1)/2}K^{3}+\Big(\int_{\Omega}|u|^{2\alpha} |\nabla_{x}u|^{2}\, dx \Big)^{1/2} \Big(\int_{\Omega}|\nabla_{x}u'|\, dx\Big)^{1/2}\Big\} \end{aligned}\label{e10} \end{equation} Here, we see from the Gagliardo-Nirenberg inequality that \begin{equation} \begin{aligned} \Big(\int_{\Omega}|u|^{2\alpha}|\nabla_{x}u|^{2}\, dx\Big)^{1/2} &\leq \|u(t)\|_{N\alpha}^{\alpha}\|\nabla_{x}u(t)\|_{\frac{2N}{(N-2)}} \\ &\leq C \|u(t)\|_{\frac{2N}{(N-2)}}^{\alpha(1-\theta_{0})} \|\Delta_{x}u(t)\|_{2}^{\alpha\theta_{0}}\|\Delta_{x}u(t)\|_{2} \\ &\leq C \|\nabla_{x}u(t)\|_{2}^{\alpha(1-\theta_{0})} \|\Delta_{x}u(t)\|_{2}^{\alpha\theta_{0}+1}\\ &\leq C E(t)^{\alpha(1-\theta_{0})}K^{\alpha\theta_{0}+1} \end{aligned}\label{e11} \end{equation} with $$ \theta_{0}=\Big(\frac{N-2}{2}-\frac{1}{\alpha}\Big)^{+}= \frac{((N-2)\alpha-2)^{+}}{2\alpha}\quad (\leq 1). $$ Hence, it follows from (\ref{e10}) and (\ref{e11}) that \begin{equation} \frac{d}{dt}E_{1}(t)\leq C\left\{E(t)^{\frac{(\gamma+1)}{2}}K^{3} +E(t)^{\frac{\alpha(1-\theta_{0})}{2}}K^{\alpha\theta_{0}+2}\right\}. \label{e12} \end{equation} we conclude that \begin{align*} &\|\Delta_{x}u(t)\|_{2}^{2}+\|\nabla_{x}u'(t)\|_{2}^{2}\\ &\leq \frac{1}{\min\{1, m_{0}\}} \Big\{I_{1}^{2}+C K^{3}\int_{0}^{\infty}\! E(t)^{(\gamma+1)/2}\, dt +C K^{\alpha\theta_{0}+2}\int_{0}^{\infty} \!E(t)^{\alpha(1-\theta_{0})/2}\,dt \Big\} \end{align*} \paragraph{Example} Let $g(x)$ be the inverse function of $$ M(0)=0 \quad\hbox{and}\quad M(x)=\frac{x^{\sigma}}{(\log(-\log x))^{\beta}} \quad\hbox{for } 0< x< x_{0}, \quad (\beta, \sigma> 0). $$ The function $g$ exists and satisfies the hypothesis (H2), when $0< \sigma< 1$ (see Appendix). So $$ g^{-1}(1/t)=\frac{1}{t^{\sigma}(\log (\log t))^{\beta}} $$ the conditions in the Lemma \ref{l8} give \begin{gather} \int_{t_{0}}^{\infty} \frac{1}{t^{\sigma(\gamma+1)}(\log(\log t))^{\beta(\gamma+1)}} \, dt< \infty, \label{B1} \\ \int_{t_{0}}^{\infty} \frac{1}{t^{\sigma\alpha(1-\theta_{0})}(\log(\log t)) ^{\beta\alpha(1-\theta_{0})}}\, dt< \infty, \label{B2} \end{gather} which are similar to Bertrand integrals. So, when $\gamma=0$, the first integral \eqref{B1} is not finite, we obtain the following cases: if $\sigma(\gamma+1)> 1$, the integral is finite, if $\sigma(\gamma+1)= 1$, and $\beta(\gamma+1)> 1$, also the integral is finite. The second integral \eqref{B2}, is fine under the following conditions: $$ \sigma^{-1}< \alpha\leq \frac{2}{(N-2)^{+}}\quad \hbox{for } N=1, 2, 3 $$ or $$ \alpha> \frac{2(1-\sigma)}{\sigma} \quad\hbox{for } N=3 $$ or $$ \alpha=\sigma^{-1}\quad\mbox{and}\quad \beta^{-1}< \alpha\leq \frac{2}{(N-2)^{+}}\quad\hbox{for } N=1, 2, 3 $$ or $$ \alpha=\frac{2(1-\sigma)}{\sigma}\quad\mbox{and}\quad \alpha> \frac{2(1-\beta)}{\beta}\quad \hbox{for } N=3. $$ Hence, we must restrict ourselves to $1\leq N\leq 3$. \begin{remarque} \rm When $\Phi\equiv 1$, $g(x)=|x|^{p-1}x,\,p\geq 1$, and $f(y)=-|y|^{q-1}y$ with $q\geq 1$, we obtain \begin{gather*} E(t)\leq cE(0)e^{-\omega t}\quad\forall t\geq 0, \; c>0,\;\omega>0,\quad\hbox{if } p=1\\ E(t)\leq \frac{cE(0)}{(1+t)^{2/(p-1)}}\quad\forall t\geq 0,\; c>0\quad\hbox{if } p>1. \end{gather*} Also $$ Q_{1}^{2}(I_{0},I_{1},K) = I_{1}^{2}+cK^{2} I_{0}^{q-1},\quad Q_{2}^{2}(I_{0},I_{1},K) = I_{1}^{2}+cK^{(q-1)\theta+2} I_0^{(q-1)(1-\theta)}. $$ When $g(x)=|x|^{p-1}x$, $p\geq 1$, $f(y)\equiv 0$, and $p<\gamma+2$, we obtain the same above results (see {\cite{aass}}). \label{r3} \end{remarque} \begin{theorem} Under the hypotheses of lemma \ref{l7} and \ref{l8} there exists an open set $S_{1}\subset (H^2(\Omega)\cap H_{0}^{1}(\Omega)) \times H_{0}^{1}(\Omega)$, which includes $(0, 0)$ such that if $(u_{0},u_{1})\in S_{1}$, the problem \eqref{P} has a unique global solution $u$ satisfying $$ u\in L^{\infty}([0, \infty[; H^{2}(\Omega)\cap H_{0}^{1}(\Omega)) \cap W^{1,\infty}([0, \infty[; H_{0}^{1}(\Omega)) \cap W^{2, \infty}([0, \infty[; L^{2}(\Omega)), $$ furthermore we have the decay estimate \begin{equation} E(t)\leq c\ E(0)\left(g^{-1}(1/t)\right)^2\quad\forall t>0. \label{e13} \end{equation} \label{t1} \end{theorem} \subsection*{Proof of theorem \protect{\ref{t1}}} Let $K>0$. Put $$ S_{K}\equiv \{(u_{0}, u_{1})\in {\cal W}_{K}|\, Q_{1}(I_{0}, I_{1}, K)0}S_{K}\,. $$ Note that if $E_{0}$, $E_{1}$ are sufficiently small, then $S_{K}$ is not empty. If $(u_{0}, u_{1})\in S_{K}$ for some $K> 0$, then an assumed strong solution $u(t)$ exist globally and satisfies $(u(t), u'(t))\in {\cal W}_{K}$ for all $t\geq 0$. Let $\{w_{j}\}_{j=1}^{\infty}$ be the basis of $H_{0}^{1}$ consisted by the eigenfunction of $-\Delta$ with Dirichlet condition. We define the approximation solution $u_{m}$\ (m=1, 2, \ldots) in the form $$ u_{m}=\sum_{j=1}^{m}g_{jm}w_{j} $$ where $g_{jm}(t)$ are determined by \begin{equation} \begin{aligned} (u''_{m}(t), w_{j})+\Phi(\|\nabla_{x}u_{m}(t)\|_{2}^{2})(\nabla_{x}u_{m}(t), \nabla_{x}w_{m}) &\\ +(g(u'_{m}(t)), w_{j})+(f(u_{m}(t)), w_{j})&=0 \end{aligned}\label{e14} \end{equation} for $j\in\{1, 2, \ldots, m\}$ with the initial data where $u_{m}(0)$ and $u'_{m}(0)$ are determined in such a way that \begin{gather*} u_{m}(0)=u_{0m}=\sum_{j=1}^{m}(u_{0}, w_{j})w_{j}\to u_{0} \hbox{ strongly in } H_{0}^{1}\cap H^{2}\hbox{ as } m\to \infty,\\ u'_{m}(0)=u_{1m}=\sum_{j=1}^{m}(u_{1}, w_{j})w_{j}\to u_{1} \hbox{ strongly in } H_{0}^{1} \hbox{ as } m\to \infty. \end{gather*} By the theory of ordinary differential equations, (\ref{e14}) has a unique solution $u_{m}(t)$. Suppose that $(u_{0}, u_{1})\in S_{K}$ for $K>0$. Then, $(u_{m}(0), u'_{m}(0))\in S_{K}$ for large $m$. It is clear that all the estimates obtained above are valid for $u_{m}(t)$ and, in particular, $u_{m}(t)$ exists on $[0, \infty[$. Thus, we conclude that $(u_{m}(t), u'_{m}(t))\in {\cal W}_{K}$ for all $t\geq 0$ and all the estimates are valid for $u_{m}(t)$ for all $t\geq 0$. Thus, $u_{m}(t)$ converges along a subsequence to $u(t)$ in the following way: \begin{gather*} u_{m}(.)\to u(.) \hbox{ weakly * } \hbox{ in } L_{\rm loc}^{\infty} ([0, \infty); H_{0}^{1}\cap H^{2}), \\ u'_{m}(.)\to u_{t}(.) \hbox{ weakly * } \hbox{ in } L_{\rm loc}^{\infty} ([0, \infty); H_{0}^{1}), \\ u_{m}(.)\to u_{tt}(.) \hbox{ weakly * } \hbox{ in } L_{\rm loc}^{\infty} ([0, \infty); L^{2}), \end{gather*} and hence, \begin{gather*} \Phi(\|\nabla_{x}u_{m}(.)\|_{2}^{2})\nabla_{x} u_{m}(.)\to \Phi(\|\nabla_{x}u(.)\|_{2}^{2})\nabla_{x} u(.) \hbox{ weakly * } \hbox{ in } L_{\rm loc}^{\infty}([0, \infty); H_{0}^{1}),\\ g(u_{m}(.))\to g(u(.)) \hbox{ weakly * } \hbox{ in } L_{\rm loc}^{\infty}([0, \infty); H_{0}^{1}), \end{gather*} Therefore, the limit function $u(t)$ is a desired solution belonging to $$ L^{\infty}([0, \infty[; H_{0}^{1}\cap H^{2})\cap W^{1, \infty}([0, \infty[; H_{0}^{1})\cap W^{2, \infty}([0, \infty[; L^{2}) $$ The uniqueness can be proved by use of the monotonicity of $g$, $n\alpha<2n/(n-4)$ and $\sup_{0\leq t\leq T}(\|u(t)\|_{H^{2}}+\|u'(t)\|_{H_{0}^{1}})\leq C(T)< \infty$ (see {\cite{aass1}}). \hfill $\square$ \section{The case $\alpha=0$} In this section we shall discuss the existence of a global solution to the problem \eqref{P} with $f(u)\equiv -u$. More precisely, we impose an assumption on $f(u)$ instead of (H3) as follows: \begin{itemize} \item[(H.3)'] $f(.)$ satisfies $f(u)=-k_{3} u$ for $u\in \mathbb{R}$ %\label{e15} with $k_{3}C(\Omega)< m_{0}$, $k_{3}>0$, where $C(\Omega)$ is a quantity such that \begin{equation} C(\Omega)=\sup_{u\in H_{0}^{1}\backslash\{0\}}\frac{\|u\|_{2}}{\|\nabla_{x}u\|_{2}} \label{e16} \end{equation} \end{itemize} \begin{remarque} \rm The condition $k_{3}C(\Omega)< m_{0}$ implies that $|\Omega|$ is small in some sense. On the other hand, if $f(u)=u$, we need not take $C(\Omega)$ into consideration. \label{r4} \end{remarque} Our result reads as follows. \begin{theorem} Under the hypotheses of Lemma \ref{l7} (we replace {\rm (H.3)} by {\rm (H.3)'}) and \ref{l8} , there exists an open unbounded set $S_{2}$ in $(H^{2}\cap H_{0}^{1})\times H_{0}^{1}$, which includes $(0, 0)$, such that if $(u_{0}, u_{1})\in S_{2}$, the problem \eqref{P} has a unique solution u in the sense of theorem \ref{t1} which satisfies the decay estimate (\ref{e13}). \label{t2} \end{theorem} \subsection*{Proof of theorem \protect{\ref{t2}}} This proof is also given in parallel way to the proof of theorem \ref{t1} so se just sketch the outline. First, let $k_{3}C(\Omega) 0$, then as in lemma \ref{l7}, we derive the decay estimate \begin{equation} E(t)\leq c\left(g^{-1}(1/t)\right)^{2}\,. \label{e18} \end{equation} Multiplying the equation by $-\Delta_{x}u'$, we see \begin{equation} \begin{gathered} \frac{1}{2}\frac{d}{dt}E_{1}(t)\leq |\Phi'(\|\nabla_{x}u(t)\|_{2}^{2})|(\nabla_{x}u(t), \nabla_{x}u'(t)) \|\Delta_{x}u(t)\|_{2}^{2}+\frac{k_{3}}{2}\frac{d}{dt} \|\nabla_{x}u(t)\|_{2}^{2}\\ \leq C K^{3} E(t)^{(\gamma+1)/2}+\frac{k_{3}}{2} \frac{d}{dt}\|\nabla_{x}u(t)\|_{2}^{2} \end{gathered}\label{e19} \end{equation} where we set $$ E_{1}(t)=\Phi(\|\nabla_{x}u(t)\|_{2}^{2})\|\Delta_{x}u(t)\|_{2}^{2} +\|\nabla_{x}u'(t)\|_{2}^{2}. $$ we integrate (\ref{e19}) to obtain \begin{align*} &\|\Delta_{x}u(t)\|_{2}^{2}+\|\nabla_{x}u(t)\|_{2}^{2}\hfill\cr &\leq \frac{1}{\min\{1,m_{0}\}}\Big\{I_{1}^{2}+ CK^{3}\int_{0}^{\infty}E(t)^{\frac{(\gamma+1)}{2}}\, dt+ k_{3}\|\nabla_{x}u(t)\|_{2}^{2}-k_{3}\|\nabla_{x}u_{0}\|_{2}^{2}\Big\} \\ &\leq \frac{1}{\min\{1,m_{0}\}}\Big\{I_{1}^{2}+CI_{0}^{2}+ C\ I_{0}^{\gamma+1}\ K^{3}\int_{0}^{\infty} \left(g^{-1}(1/t)\right)^{(\gamma+1)}\, dt\Big\}\\ &\equiv Q_{2}^{2}(I_{0}, I_{1}, K) \quad \hbox{on } [0, T[. \end{align*} Defining $$ S_{K}\equiv \{(u_{0}, u_{1})\in H_{0}^{1}\cap H^{2}: Q_{2}(I_{0}, I_{1}, K) < K\}, \quad S_{2}\equiv \bigcup_{K> 0} S_{K} $$ we conclude that if $(u_{0}, u_{1})\in S_{2}$, the corresponding solution to the problem \eqref{P} exists globally and satisfies the estimate $$ E(t)\leq c\left(g^{-1}(1/t)\right)^{2}\quad \hbox{and}\quad \|\Delta_{x}u(t)\|_{2}^{2}+\|\nabla_{x}u'(t)\|_{2}^{2} 0$. The proof of theorem \ref{t2} is complete. \section{The case $\Phi\equiv 1$} Usually, we study global existence for Kirchhoff equation (i.e. when $\Phi\not\equiv 1$) in the class $H^{2}\cap H_{0}^{1}$ (also when $f\equiv g\equiv 0$). Thus the condition in Lemma \ref{l8} excludes some functions $g$ which verify (H2), for example $g(x)=e^{-1/x}$ or $g(x)=e^{-e^{1/x}}$ or the example above. We consider the case $\Phi\equiv 1$ (or a constant function) and we prove a global $H_{0}^{1}$ solution that decays. Here we do not need the condition of Lemma \ref{l8} and we will take only $\alpha\leq 4/(n-2)^{+}$ because we work only in $H_{0}^{1}(\Omega)$. Now, we consider the initial boundary-value problem \begin{equation} \begin{gathered} u''-\Delta_{x}u+g(u')+f(u)=0 \quad \hbox{in } \Omega\times [0, +\infty[,\\ u=0 \quad\hbox{on } \Gamma\times [0, +\infty[,\\ u(x, 0)=u_{0}(x),\quad u'(x, 0)=u_{1}(x)\quad \hbox{on }\Omega, \end{gathered}\label{P'} \end{equation} First, we shall construct a stable set in $H_{0}^{1}$. For this, we need define the following functionals: \begin{gather*} J(u)\equiv \frac{1}{2}\|\nabla_{x}u\|_{2}^{2}+ \int_{\Omega}\int_{0}^{u}f(\eta)\, d\eta\, dx \quad \hbox{for } u\in H_{0}^{1},\\ {\tilde J}(u)\equiv \|\nabla_{x}u\|_{2}^{2}+ \int_{\Omega}f(u)u\, dx \quad \hbox{ for } u\in H_{0}^{1},\\ E(u, v)\equiv\frac{1}{2}\|v\|_{2}^{2}+J(u)\quad \hbox{for } (u, v)\in H_{0}^{1}\times L^{2}. \end{gather*} Then we can define the stable set $$ {\cal W}=\{u\in H_{0}^{1}(\Omega): \|\nabla_{x}u\|_{2}^{2}- k_{1} \|u\|_{\alpha+2}^{\alpha+2}> 0 \}\cup \{0\} $$ \begin{lemme} {\bf (i)} If $\alpha< 4/[n-2]^{+}$, then ${\cal W}$ is an open neighborhood of $0$ in $H_{0}^{1}(\Omega)$. \\ %\label{e20} {\bf (ii)} If $u\in {\cal W}$, then \begin{equation} \|\nabla_{x} u\|_{2}^{2}\leq d_{*} J(u)\quad\mbox{with}\quad d_{*}=\frac{2(\alpha+2)}{\alpha}. \label{e21} \end{equation} \label{l10} \end{lemme} \paragraph{Proof.} ${\bf (i)}$ From the Sobolev-Poincar\'e inequality (see lemma \ref{l1}) we have \begin{equation} k_{1}\|u\|_{\alpha+2}^{\alpha+2}\leq A k_{1} \|\nabla_{x} u\|_{2}^{\alpha} \|\nabla_{x} u\|_{2}^{2} \label{e22} \end{equation} where $A=c_{*}^{\alpha+2}$. Let $$ U(0)\equiv \big\{u\in H_{0}^{1}(\Omega): \|\nabla_{x} u\|_{2}^{\alpha}< \frac{1}{A k_{1}} \big\}. $$ Then, for any $u\in U(0)\backslash \{0\}$, we deduce from (\ref{e22}) that $$ k_{1}\|u\|_{\alpha+2}^{\alpha+2}< \|\nabla_{x} u\|_{2}^{2}, $$ that is, $K(u)> 0$. This implies $U(0)\subset {\cal W}$. \noindent {\bf (ii)} By the definition of $K(u)$ and $J(u)$ we have the inequality $$ J(u)\geq \frac{1}{2}\|\nabla_{x} u\|_{2}^{2}-\frac{k_{1}}{\alpha+2} \|u\|_{\alpha+2}^{\alpha+2} \geq \frac{\alpha}{2(\alpha+2)}\|\nabla_{x} u\|_{2}^{2} $$ \hfill $\square$ \begin{lemme} Let $u(t)$ be a strong solution of \eqref{P'}. Suppose that \begin{equation} u(t)\in {\overline{\cal W}}\ \hbox{ and } {\tilde J}(u(t))\geq \frac{1}{2}\|\nabla_{x}u(t)\|_{2}^{2} \label{e23} \end{equation} for $0\leq t< T$. Then we have $$ E(t)\leq cE(0)\left(G^{-1}(1/t)\right)^2\quad\hbox{on } [0, T[, $$ where $c$ is a positive constant independent of the initial energy $E(0)$ and $G(x)=xg(x)$. Furthermore, if $x\mapsto g(x)/x$ is non-decreasing on $[0,\eta]$ for some $\eta>0$, then we have $$ E(t)\leq cE(0)\left(g^{-1}(1/t)\right)^2\quad\hbox{on } [0, T[, $$ where $c$ is a positive constant independent of the initial energy $E(0)$. \label{l9} \end{lemme} \paragraph{Examples} \begin{itemize} \item[1)] If $g(x)=e^{-1/x^p}$ for $00$, then $E(t)\leq c/(\ln t)^{2/p}$. \item[2)] If $g(x)=e^{-e^{1/x}}$ for $00\,. \label{e26} \end{equation} \label{t3} \end{theorem} \subsection*{Proof of Theorem \protect{\ref{t1}}} Since $u_{0}\in {\cal W}$ and ${\cal W}$ is an open set, putting $$ T_{1}=\sup\{t\in [0, +\infty): u(s)\in {\cal W} \hbox{ for } 0\leq s\leq t\}, $$ we see that $T_{1}> 0$ and $u(t)\in {\cal W}$ for $0\leq t< T_{1}$. If $T_{1}< T_{\max}<\infty$, where $T_{\max}$ is the lifespan of the solution, then $u(T_{1})\in \partial {\cal W}$; that is \begin{equation} K(u(T_{1}))=0 \hbox{ and } u(T_{1})\not =0. \label{e27} \end{equation} We see from lemma \ref{l2} and lemma \ref{l10} that \begin{equation} k_{1}\|u(t)\|_{\alpha+2}^{\alpha+2}\leq \frac{1}{2} B(t) \|\nabla_{x}u(t)\|_{2}^{2} \label{e28} \end{equation} for $0\leq t\leq T_{1}$, where we set \begin{equation} B(t)=C_{4} E(0)^{\alpha/2} \label{e29} \end{equation} with $C_{4}=2 k_{1}c_{*}^{\alpha+2} d_{*}^{\alpha/2}$. Next, we put $$ T_{2}\equiv \sup\{t\in [0, +\infty): B(s)< 1 \hbox{ for } 0\leq s< t\}, $$ and then we see that $T_{2}> 0$ and $T_{2}=T_{1}$ because $B(t)< 1$ by (\ref{e25}). Then \begin{equation} K(u(t))\geq \|\nabla_{x}u(t)\|_{2}^{2}-\frac{1}{2}B(t) \|\nabla_{x}u(t)\|_{2}^{2} \geq \frac{1}{2}\|\nabla_{x}u(t)\|_{2}^{2} \label{e30} \end{equation} for $0\leq t\leq T_{1}$. Moreover, (\ref{e27}) and (\ref{e30}) imply $$ K(u(T_{1}))\geq \frac{1}{2}\|\nabla_{x}u(T_{1})\|_{2}^{2}> 0 $$ which is a contradiction, and hence, it might be $T_{1}=T_{\max}$. Therefore, (\ref{e26}) hold true for $0\leq T\leq T_{\max}$, and such estimate give the desired a priori estimate; that is, the local solution u can be extended globally \ (i.e., $T_{\max}=\infty$). The proof of theorem \ref{t3} is now complete. \hfill $\square$ \paragraph{Remarks:} ${\bf a)}$ By a similar argument as the proof of Theorem \ref{t2}, we can extend Theorem \ref{t3} to the case $\alpha=0$. \noindent ${\bf b)}$ It seems to be interesting to study a global decaying $H^{2}$ solution for Kirchhoff equation with nonlinear source and boundary damping terms or with nonlinear boundary damping and source terms, also in the case of polynomial damping term i.e. the following problems \begin{gather*} u''-\Phi(\|\nabla_{x}u\|_{2}^{2})\Delta_{x}u+f(u)=0 \quad \hbox{in } \Omega\times [0, +\infty[,\\ u=0 \quad \hbox{on } \Gamma_{0}\times [0, +\infty[,\\ \frac{\partial u}{\partial \nu}=-Q(x)g(u') \quad\hbox{on } \Gamma_{1}\times [0, +\infty[,\\ u(x, 0)=u_{0}(x),\quad u'(x, 0)=u_{1}(x)\quad\hbox{on }\Omega, \end{gather*} and \begin{gather*} u''-\Phi(\|\nabla_{x}u\|_{2}^{2})\Delta_{x}u=0 \quad\hbox{in } \Omega\times [0, +\infty[,\\ u=0 \quad\hbox{on } \Gamma_{0}\times [0, +\infty[,\\ \frac{\partial u}{\partial \nu}=-Q(x)g(u')+f(u) \quad\hbox{on } \Gamma_{1}\times [0, +\infty[,\\ u(x, 0)=u_{0}(x),\quad u'(x, 0)=u_{1}(x)\quad\hbox{on }\Omega, \end{gather*} We plan to address these questions in a future investigation. \subsection*{Appendix} Let $g(x)$ be the inverse of the function $M(x)$ defined by $$ M(0)=0,\quad M(x)= \frac{x^{\sigma}}{(\log(-\log x))^{\beta}} \quad\hbox{for } 0< x< x_{0},\quad (\sigma, \beta> 0). $$ For $x=1/t (0< x< x_{0})$ we have $$ g^{-1}(1/t)=\frac{1}{t^{\sigma}(\log(\log t))^{\beta}}\quad (t\geq t_{0}). $$ Now, we prove that the function $g(x)$ exists and verifies the hypothesis (H2). Indeed, $$ (M(x))'=\frac{x^{\sigma}\Big[\sigma(\log(-\log x))- \frac{\beta}{\log x}\Big]}{(\hbox{log}(-\log x))^{\beta+1}},\quad ( \sigma, \beta > 0). $$ When $x$ is near $0$ ($0< x< x_{0}$), it is clear that $(M(x))'\geq 0$, so $M(x)$ is an increasing continuous function. Thus the function $g$ exists. We have also $$ \frac{x}{M(x)}=\frac{(\log(-\log x))^{\beta}}{x^{\sigma-1}}\to 0 $$ as $x\to 0$ if $0<\sigma <1$, so $M(x) \to 0$ (as $x\to 0$) not faster than $x$ (near $0$). We deduce that $g(x)\to 0$ as $x\to 0$ faster than $x$ i.e. $|g(x)|\leq c|x|$. We obtain hypothesis (H2). Now, $M(x)/x$ is a decreasing function; indeed, $$ \Big(\frac{M(x)}{x}\Big)' = \frac{x^{\sigma-2}\Big[(\sigma-1)(\log(-\log x))- \frac{\beta}{\log x}\Big]}{(\log(-\log x))^{\beta+1}}. $$ For $x=e^{-n}$, and $n$ big, we see that $\left(M(x)/x\right)'\leq 0$. $g$ is a bijective and decreasing function, so for each $x$ and $y$ near $0$, such that $x\leq y$, we have $M(x)/x\geq M(y)/y$, also there exist unique $x'$ and $y'$ such that $M(x)=x'$ and $M(y)=y'$ (because $M$ is a bijective function), also $M(x)$ is an increasing function, thus, we have $$ x\leq y \Longleftrightarrow M(x)=x'\leq M(y)=y' $$ Therefore, \begin{align*} x'\leq y' &\Longleftrightarrow \frac{x'}{g(x')}\geq \frac{y'}{g(y')}\\ &\Longleftrightarrow \frac{g(x')}{x'}\leq \frac{g(y')}{y'} \quad \hbox{for } 0< x< x_{0}. \end{align*} \paragraph{Acknowledgments.} The authors wish to thank the anonymous referee for his/her valuable suggestions. \begin{thebibliography}{65} \bibitem{aass} M. Aassila, {\em Global existence and energy decay for damped quasi-linear wave equation\/,} Math. Meth. Appl. Sci. {\bf 14} (1998), 1185-1194. \bibitem{aass1} M. Aassila, {\em Global existence of solutions to a wave equation with damping and source terms\/,} Differential and Integral Equations, {\bf 14} (2001), 1301-1314. \bibitem{aass2} M. Aassila, {\em Asymptotic behavior of solutions to the wave equation with a nonlinear dissipative term in ${\mathbb{R}}^n$\/,} Rend. Cerc. Mat. Palermo {\bf 51} (2002), 207-212. \bibitem{aabe} M. Aassila \& A. Benaissa, {\em Existence globale et comportement asymptotique des solutions des \'equations de Kirchhoff moyennement d\'eg\'en\'er\'ees avec un terme nonlin\'eaire dissipatif\/,} Funkcialaj Ekvacioj {\bf 43} (2001), 309-333. \bibitem{bena} A. Benaissa, {\em Existence globale et d\'ecroissance polynomiale de l'\'energie des solutions des \'equations de Kirchhoff-Carrier moyennement d\'eg\'en\'er\'ees avec des termes nonlin\'eaires dissipatifs\/,} Bulletin of the Belgian Math. Society {\bf 8} (2001), 607-622. \bibitem{geto} V. Georgiev and G. Todorova, {\em Existence of a solution of the wave equation with nonlinear damping and source terms\/,} J. Diff. Equat. {\bf 109} (1994), 295-308. \bibitem{hiro} F. Hirosawa, {\em Global solvability for the degenerate Kirchhoff equation with real-analytic data in $\mathbb{R}^{n}$\/.} Tsukuba J. Math. {\bf 21} (1997), 483-503. \bibitem{ikeh} R. Ikehata, {\em Some remarks on the wave equations with nonlinear damping and source terms\/,} Nonlinear Analysis {\bf 27} (1996), 1165-1175. \bibitem{ikma} R. Ikehata and T. Matsuyama, {\em On global solutions and energy decay for the wave equations of Kirchhoff type with nonlinear damping terms\/,} J. Math Anal. Appl. {\bf 204} (1996), 729-753. \bibitem{ikmn} R. Ikehata, T. Matsuyama \& M. Nakao, {\em global solutions to the initial-boundary value problem for the quasilinear visco-elastic wave equation with viscosity\/,} Funkcial. Ekvac. {\bf 40} (1997), 293-312. \bibitem{iksu} R. Ikehata and T. Suzuki, {\em Stable and unstable sets for evolution equations of parabolic and hyperbolic type\/,} Hiroshima Math. J. {\bf 26} (1996), 475-491. \bibitem{ishi} H. Ishii, {\em Asymptotic stability and blowing up of solutions of some nonlinear equations\/,} J. Diff. Equat. {\bf 26} (1977), 291-319. \bibitem{kaya} K. Kajitani\& K. Yamaguti, {\em On global real analytic solution of the degenerate Kirchhoff equation\/.} Ann. Sc. Sup. Pisa {\bf 4} (1994), 279-297. \bibitem{kirc} G. Kirchhoff, {Vorlesungen $\ddot u$ber Mechanik\/,} Leipzig, Teubner, (1883). \bibitem{komo} V. Komornik, {Exact Controllability and Stabilization. The Multiplier Method}, Mason-John Wiley, Paris, 1994. \bibitem{laon} I. Lasiecka \& J. Ong, {\em Global solvability and uniform decays of solutions to quasilinear equation with nonlinear boundary dissipation\/,} Commun. in Partial Differential Equations {\bf 24} (1999), 2069-2107. \bibitem{mart} P. Martinez, {\em A new method to obtain decay rate estimates for dissipative systems\/,} ESAIM Control Optim. Calc. Var. {\bf 4} (1999), 419-444. \bibitem{momo} K. Mochizuki \& T. Motai, {\em On energy decay problems for wave equations with nonlinear dissipation term in ${\mathbb{R}}^n$ \/,} J. Math. Soc. Japan. {\bf 47} (1995), 405-421. \bibitem{naka} M. Nakao, {\em A difference inequality and its applications to nonlinear evolution equations\/,} J. Math. Soc. Japan {\bf 30} (1978), 747-762. \bibitem{naka1} M. Nakao, {\em Remarks on the existence and uniqueness of global decaying solutions of the nonlinear dissipative wave equations\/,} Math. Z. {\bf 206} (1991), 265-2276. \bibitem{naon} M. Nakao \& K. Ono, {\em Existence of global solutions to the Cauchy problem for semilinear dissipative wave equations\/,} Math. Z. {\bf 214} (1993), 325-342. \bibitem{naon1} M. Nakao \& K. Ono, {\em Global existence to the Cauchy problem of the semilinear wave equation with a nonlinear dissipation\/,} Funkcialaj Ekvacioj {\bf 38} (1995), 417-431. \bibitem{niya} K. Nishihara \& Y. Yamada, {\em On global solutions of some degenerate quasilinear hyperbolic equations with dissipative terms\/,} Funkcialaj Ekvacioj {\bf 33} (1990), 151-159. \bibitem{ono} K. Ono, {\em On global solutions and blow-up solutions of nonlinear Kirchhoff strings with nonlinear dissipation\/,} J. Math Anal. Appl. {\bf 216} (1997), 321-342. \bibitem{poho} S. I. Pohozaev , {\em On a class of quasilinear hyperbolic equations\/.} Math. Sbornik {\bf 96} (1975), 145-158. \bibitem{satt} D. H. Sattinger, {\em On global solution of nonlinear hyperbolic equations\/,} Arch. Rat. Mech. Anal. {\bf 30} (1968), 148-172. \bibitem{todo} G. Todorova, {\em Stable and unstable sets for the Cauchy problem for a nonlinear wave equation with nonlinear damping and sources terms\/.} J. Math Anal. Appl. {\bf 239} (1999), 213-226. \bibitem{tsut} M. Tsutsumi, {\em Existence and non existence of global solutions for nonlinear parabolic equations\/,} Publ. RIMS, Kyoto Univ. {\bf 8} (1972/73), 211-229. \end{thebibliography} \noindent\textsc{Mohammed Aassila }\\ Mathematisches Institut, Universit\"at zu K\"oln \\ Weyertal 86-90, D-50931 K\"oln, Germany.\\ e-mail: aassila@mi.uni-koeln.de \smallskip \noindent\textsc{Abbes Benaissa }\\ Universit\'e Djillali Liabes, Facult\'e des Sciences, \\ D\'epartement de Math\'ematiques, \\ B. P. 89, Sidi Bel Abbes 22000, Algeria \\ e-mail: benaissa\_abbes@yahoo.com \end{document}