\documentclass[reqno]{amsart} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2003(2003), No. 120, pp. 1--19.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2003 Texas State University-San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE--2003/120\hfil Solvability of a (p,n-p)-problem] {Solvability of a (p, n-p)-type multi-point boundary-value problem for higher-order differential equations} \author[Yuji Liu \& Weigao Ge \hfil EJDE--2003/120\hfilneg] {Yuji Liu \& Weigao Ge } \address{Yuji Liu \hfill\break Department of Applied Mathematics, Beijing Institute of Technology, Beijing, 100081, China. \hfill\break Department of Mathematics, Hunan Institue of Technology, Yueyang, Hunan, 414000, China} \email{liuyuji888@sohu.com} \address{Weigao Ge \hfill\break Department of Applied Mathematics, Beijing Institute of Technology, Beijing, 100081, China} \date{} \thanks{Submitted August 19, 2003. Published December 1, 2003.} \thanks{Y. Liu is supported by the Science Foundation of Educational Committee of Hunan Province. \hfill\break\indent Both authors are supported by grant 10371006 from the National Natural Science \hfill\break\indent Foundation of China} \subjclass[2000]{34K20, 92D25} \keywords{Solvability, resonance, non-resonance, \hfill\break\indent multi-point boundary-value problem, higher order differential equation} \begin{abstract} In this article, we study the differential equation $$ (-1)^{n-p} x^{(n)}(t)=f(t,x(t),x'(t),\dots,x^{(n-1)}(t)),\;\;00$ such that for any $x\in \mathop{\rm dom} L/\ker L$, if $|x^{(p)}(t)|>M$ for all $t\in (0,\frac{1}{2})$, then $$ \sum_{i=1}^m\alpha_i\int_{\xi_i}^1\frac{(s-\xi_i)^{n-p-1}}{(n-p-1)!}f(s,x(s), x'(s),\dots,x^{(n-1)}(s))ds\neq 0 $$ \item[(A2)] There is a function $a\in C^0[0,1]$ and positive numbers $a_i(i=0,1,\dots,n-1)$ and $\beta_i\in [0,1)$ $(i=0,1,\dots,n-1)$ such that $$ |f(t,x_0,x_1,\dots,x_{n-1})|\le a(t)+\sum_{i=0}^{n-1}a_i|x_i|^{\beta_i} $$ for $t\in [0,1]$ and $(x_0,x_1,\dots,x_{n-1})\in \mathbb{R}^n$ \item[(A3)] There is $M^*>0$ such that for any $c\in \mathbb{R}$ then either $$ c\sum_{i=1}^m\alpha_i\int_{\xi_i}^1\frac{(s-\xi_i)^{n-p-1}}{(n-p-1)!} f(s,cs^p,cps^{p-1},\dots,cp!,0,\dots,0)ds<0\quad\forall |c|>M^* $$ or $$ c\sum_{i=1}^m\alpha_i\int_{\xi_i}^1\frac{(s-\xi_i)^{n-p-1}}{(n-p-1)!} f(s,cs^p,cps^{p-1},\dots,cp!,0,\dots,0)ds>0\quad\forall |c|>M^*. $$ \end{itemize} \begin{theorem} \label{thm2.1} Under Assumptions (A1)--(A3), the boundary-value problem \eqref{e1}--\eqref{e2} has at least one solution. \end{theorem} \begin{proof} To apply Theorem \ref{thmGM}, we define an open bounded subset $\Omega$ of $X$ so that (i), (ii) and (iii) of Theorem \ref{thmGM} hold. To obtain $\Omega$, we do three steps. The proof of this theorem is divide into four steps. \noindent{\bf Step 1.} Let $$ \Omega_1=\{x\in \mathop{\rm dom} L/\ker L,\;Lx=\lambda Nx\;\hbox{for}\;\;some\;\lambda \in (0,1)\}. $$ For $x\in \Omega_1$, $x\notin \ker L,\lambda \neq 0$ and $Nx\in \mathop{\rm Im} L$, thus $QNx=0$. Then $$ \sum_{i=1}^m\alpha_i\int_{\xi_i}^1\frac{(s-\xi_i)^{n-p-1}}{(n-p-1)!}f(s,x(s),x'(s), \dots,x^{(n-1)}(s))ds=0. $$ Hence by (A1), we know that there is $t_0\in (0,\frac{1}{2})$ such that $|x^{(p)}(t_0)|\le M$. Thus \begin{align*} |x^{(p)}(t)|&\le |x^{(p)}(t_0)|+\Big|\int_{t_0}^tx^{(p+1)}(s)ds\Big|\\ &\le M+\int_0^1|x^{(p+1)}(s)|ds\\ &\le M+\|x^{(p+1)}\|_\infty, \end{align*} i.e. $\|x^{(p)}\|_\infty\le M+\|x^{(p+1)}\|_\infty$. On the other hand, it is easy to prove that $$ \|x\|_\infty\le \|x'\|_\infty\le \dots\le \|x^{(p)}\|_\infty\;and\;\|x^{(p+1)}\|_\infty\le \dots\le \|x^{(n-1)}\|_\infty. $$ So $\|x\|=\max\{\|x^{(p)}\|_\infty,\;\|x^{(n-1)}\|_\infty\}$. Now, we prove that there is $t_1\in [0,1]$ such that \begin{equation} \label{e6} |x^{(n-1)}(t_1)|\le \frac{(n-p-1)!M}{(1-t_0)^{n-p-1}}. \end{equation} In fact, if $$ |x^{(n-1)}(t)|> \frac{(n-p-1)!M}{(1-t_0)^{n-p-1}}\quad\mbox{for all }t\in [0,1], $$ then either \begin{equation} \label{e7} x^{(n-1)}(t)> \frac{(n-p-1)!M}{(1-t_0)^{n-p-1}}\quad \mbox{for all } t\in [0,1] \end{equation} or \begin{equation} \label{e8} x^{(n-1)}(t)<- \frac{(n-p-1)!M}{(1-t_0)^{n-p-1}}\quad\mbox{for all } t\in [0,1], \end{equation} or \begin{equation} \label{e9} \begin{gathered} x^{(n-1)}(t)> \frac{(n-p-1)!M}{(1-t_0)^{n-p-1}}\quad\mbox{for some }t\in [0,1]\\ x^{(n-1)}(t)<- \frac{(n-p-1)!M}{(1-t_0)^{n-p-1}}\quad\mbox{for other }t\in [0,1]. \end{gathered} \end{equation} It is easy to see that if \eqref{e9} holds, there exists $t_1\in [0,1]$ such that $x^{(n-1)}(t_1)=(n-p-1)!M/(1-t_0)^{n-p-1}$, thus \eqref{e6} holds, which is a contradiction. Therefore, for all $t\in [0,1]$, we have $$ (-1)^{n-p-1}x^{(p)}(t)>\frac{(1-t)^{n-p-1}}{(n-p-1)!} \frac{(n-p-1)!M}{(1-t_0)^{n-p-1}} $$ or $$ (-1)^{n-p-1}x^{(p)}(t)<-\frac{(1-t)^{n-p-1}}{(n-p-1)!} \frac{(n-p-1)!M}{(1-t_0)^{n-p-1}}. $$ Hence $$ |x^{(p)}(t)|>\frac{(1-t)^{n-p-1}}{(n-p-1)!}\frac{(n-p-1)!M}{(1-t_0)^{n-p-1}}. $$ Then we obtain $$ |x^{(p)}(t_0)|>\frac{(1-t_0)^{n-p-1}}{(n-p-1)!}\frac{(n-p-1)!M}{(1-t_0)^{n-p-1}}=M, $$ which contradicts $|x^{(p)}(t_0)|\le M$. Hence there is $t_1\in [0,1]$ such that $$ |x^{(n-1)}(t_1)|\le \frac{(n-p-1)!M}{(1-t_0)^{n-p-1}}\le 2^{n-p-1}(n-p-1)!M. $$ Thus we get \begin{align*} |x^{(n-1)}(t)|&\le |x^{(n-1)}(t_1)|+|\int_{t_1}^tx^{(n)}(s)ds|\\ &\le 2^{n-p-1}(n-p-1)!M+\int_0^1|f(s,x(s),x'(s),\dots,x^{(n-1)}(s))|ds\\ &\le 2^{n-p-1}(n-p-1)!M+\int_0^1a(s)ds+\sum_{i=0}^{n-1}a_i\int_0^1|x^{(i)}(s)|^{\beta_i}ds\\ &\le 2^{n-p-1}(n-p-1)!M+\int_0^1a(s)ds+ \sum_{i=0}^{n-1}a_i\|x^{(i)}\|^{\beta_i}_\infty\\ &\le 2^{n-p-1}(n-p-1)!M+\int_0^1a(s)ds+\Big(\sum_{i=0}^{p}a_i\Big)\|x^{(p)}\|^{\beta_i} _\infty\\ &\quad +\Big(\sum_{i=p+1}^{n-1}a_i\Big)\|x^{(n-1)}\|_\infty^{\beta_i}. \end{align*} and \begin{align*} |x^{(p)}(t)|&\le |x^{(p)}(t_0)|+\Big|\int_{t_0}^tx^{(p+1)}(s)ds\Big|\\ &\le M+\int_0^1|x^{(p+1)}(s)|ds\\ &= M+\int_0^1\int_s^1\frac{(u-s)^{n-p-2}}{(n-p-2)!}|f(u,x(u),x'(u),\dots,x^{(n-1)}(u))|du\,ds\\ &\le M+\int_0^1\frac{s^{n-p-2}}{(n-p-2)!}|f(s,x(s),x'(s),\dots,x^{(n-1)}(s))|ds\\ &\le M+\int_0^1\frac{s^{n-p-2}}{(n-p-2)!}a(s)ds+\frac{1}{(n-p-1)!}\sum_{i=0}^{n-1} a_i\|x^{(i)}\|_\infty^{\alpha_i}\\ &\le M+\int_0^1\frac{s^{n-p-2}} {(n-p-2)!}a(s)ds+\frac{1}{(n-p-1)!}\sum_{i=0}^{p}a_i\|x^{(p)}\|_\infty^{\beta_i}\\ &\quad + \frac{1}{(n-p-1)!}\sum_{i=p+1}^{n-1}a_i\|x^{(n-1)}\|_\infty^{\beta_i}. \end{align*} Without loss of generality, suppose that $\|x^{(n-1)}\|_\infty>1$, then \begin{align*} &\|x^{(n-1)}\|_\infty \\ &\le 2^{n-p-1}(n-p-1)!M +\int_0^1a(s)ds+\sum_{i=0}^{p}a_i\|x^{(p)}\|_\infty^{\beta_i}+ \sum_{i=p+1}^{n-1}a_i\|x^{(n-1)}\|_\infty^{\beta_i}\\ &\le 2^{n-p-1}(n-p-1)!M +\int_0^1a(s)ds+\sum_{i=0}^{p}a_i(M+\|x^{(p+1)}\|_\infty)^{\beta_i}\\ &\quad +\sum_{i=p+1}^{n-1}a_i\|x^{(n-1)}\|_\infty^{\beta_i}\\ &\le 2^{n-p-1}(n-p-1)!M +\int_0^1a(s)ds+\sum_{i=0}^{p}a_i(M+\|x^{(n-1)}\|_\infty)^{\beta_i}\\ &\quad +\sum_{i=p+1}^{n-1}a_i\|x^{(n-1)}\|_\infty^{\beta_i} . \end{align*} It follows from $\beta_i\in [0,1)$ that there is $M_1>0$ such that $\|x^{(n-1)}\|_\infty\le M_1$. Hence \begin{align*} \|x^{(p)}\|_\infty &\le M+\int_0^1\frac{s^{n-p-2}}{(n-p-2)!}a(s)ds+\frac{1}{(n-p-1)!}\sum_{i=0} ^{p}a_i\|x^{(p)}\|_\infty)^{\beta_i}\\ &\quad +\frac{1}{(n-p-1)!}\sum_{i=p+1}^{n-1}a_iM^{\beta_i}. \end{align*} We see from above inequality and $\beta_i\in [0,1)$ that there is $M_2>0$ such that $\|x^{(p)}\|_\infty\le M_2$. Hence we get $\|x\|\le \max\{M_1,\;M_2\}=M'$. It follows that $\Omega _1$ is bounded. \noindent{\bf Step 2.} Let $\Omega_2=\{x\in \ker L: Nx\in \mathop{\rm Im} L\}$. For $x\in \Omega _2$, then $x(t)=ct^p$ for some $c\in [0,1]$. It suffices to prove that there is $M''>0$ such that $|c|\le M''$. $Nx\in \mathop{\rm Im} L$ implies $$ \sum_{i=1}^m\alpha_i\int_{\xi_i}^1\frac{(s-\xi_i)^{n-p-1}}{(n-p-1)!} f(s,cs^p,cps^{p-1},\dots,cp!,0,\dots,0)ds=0. $$ By (A3), we get $|c|\le M^*$. Thus $\Omega _2$ is bounded. \noindent{\bf Step 3.} According to (A3), for any $c\in \mathbb{R}$ if $|c|>M^*$, then either \begin{equation} \label{e10} c\sum_{i=1}^m\alpha_i\int_{\xi_i}^1\frac{(s-\xi_i)^{n-p-1}}{(n-p-1)!} f(s,cs^p,cps^{p-1},\dots,cp!,0,\dots,0)ds<0\end{equation} or \begin{equation} \label{e11} \sum_{i=1}^m\alpha_i\int_{\xi_i}^1\frac{(s-\xi_i)^{n-p-1}}{(n-p-1)!} f(s,cs^p,cps^{p-1},\dots,cp!,0,\dots,0)ds>0. \end{equation} If \eqref{e10} holds, let $$ \Omega _3=\{x\in \ker L: -\lambda \wedge x+(1-\lambda )QNx=0,\;\lambda \in [0,1]\}, $$ where $\wedge$ is the isomorphism given by $\wedge (ct^p)=ct^k$ for all $c\in \mathbb{R}$. Now, we shall show that $\Omega _3$ is bounded. Since for $ct^p\in \Omega_3$, we have $$ \lambda c=(1-\lambda )\sum_{i=1}^m\alpha_i\int_{\xi_i}^1\frac{(s-\xi_i)^{n-p-1}}{(n-p-1)!} f(s,cs^p,cps^{p-1},\dots,cp!,0,\dots,0)ds. $$ If $\lambda =1$, it follows from above equality that $c=0$. Otherwise, if $|c|>M^*$, in view of \eqref{e6}, one has $$ \lambda c^2=(1-\lambda )c\sum_{i=1}^m\alpha_i\int_{\xi_i}^1\frac{(s-\xi_i) ^{n-p-1}}{(n-p-1)!} f(s,cs^p,cps^{p-1},\dots,cp!,0,\dots,0)ds<0, $$ which contradicts $\lambda c^2\ge 0$. Thus $\Omega_3$ is bounded. If \eqref{e11} holds, let $$ \Omega _3=\{x\in \ker L: \lambda \wedge x+(1-\lambda )QNx=0,\;\lambda \in [0,1]\}. $$ Similarly to above argument, we can prove that $\Omega_3$ is bounded. Next, we show that all conditions of Theorem \ref{thmGM} are satisfied. Set $\Omega$ be a open bounded subset of $X$ such that $\Omega \supset \cup_{i=1}^3\overline{\Omega_i}$. By Lemma \ref{lm2.1}, $L$ is a Fredholm operator of index zero and $N$ is $L$-compact on $\overline{\Omega}$. From the definition of $\Omega$, we have the first two conditions for Theorem \ref{thmGM}: \begin{itemize} \item $Lx\neq \lambda Nx$ for $x\in (\mathop{\rm dom} L/\ker L)\cap \partial \Omega $ and $\lambda \in (0,1)$ \item $Nx\notin \mathop{\rm Im} L$ for $x\in \ker L\cap \partial \Omega$. \end{itemize} \noindent{\bf Step 4.} We shall prove the third condition for applying Theorem \ref{thmGM}: \begin{itemize} \item $\deg(QN|_{\ker L},\;\Omega \cap \ker L, 0)\neq 0$. \end{itemize} Let $H(x,\lambda )=\pm\lambda \wedge x+(1-\lambda )QNx$. According the definition of $\Omega $, we know $H(x,\lambda)\neq 0$ for $x\in \partial \Omega \cap \ker L$, thus by homotopy property of degree, \begin{align*} \deg(QN|{\ker L},\Omega\cap \ker L,0) &=\deg(H(\cdot,0),\Omega\cap \ker L,0)\\ &=\deg(H(\cdot,1),\Omega\cap \ker L,0)\\ &=\deg(\pm\wedge,\Omega\cap \ker L,0) \neq 0. \end{align*} Thus by Theorem \ref{thmGM}, $Lx=Nx$ has at least one solution in $\mathop{\rm dom} L\cap \overline{\Omega}$, which is a solution of \eqref{e1}--\eqref{e2}. \end{proof} For the following theorem, we need the following assumptions: \begin{itemize} \item[(A4)] There exists $M>0$ such that for all $x\in \mathop{\rm dom}L$ if $|x^{(p)}(t)|>M$ for all $t\in [0,1]$, then $$ \sum_{i=1}^m\alpha_i\int_{\xi_i}^1\frac{(s-\xi_i)^{n-1-p}}{(n-1-p)!}f(s,x(s),x'(s),\dots,x^{(n-1)}(s))ds\neq 0. $$ \item[(A5)] There exists $a_0\in C^0[0,1]$ and non-negative numbers $a_i$ such that $$ |f(t,x_0,x_1,\dots,x_{n-1})|\le a_0(t)+\sum_{i=0}^{n-1}a_i|x_i| $$ for all $t\in [0,1]$ and $(x_0,\dots,x_{n-1})\in \mathbb{R}^n$. \end{itemize} \begin{theorem} \label{thm2.2} Under Assumptions (A3), (A4), (A5), the boundary-value problem \eqref{e1}--\eqref{e2} has at least one solution provided that \begin{align*} \sum_{i=0}^pa_i<(n-1-p)!,\quad \sum_{i=p+1}^{n-1}a_i<1,\\ \sum_{i=p+1}^{n-1}a_i +\frac{\Big(\sum_{i=0}^pa_i\Big)\Big(\sum_{i=p+1}^{n-1}a_i\Big)} {(n-1-p)!-\sum_{i=0}^pa_i}<1. \end{align*} \end{theorem} \begin{proof} The proof is similar to that of Theorem \ref{thm2.1}. We need to do four steps. Let $\Omega_i(i=1,2,3)$ be defined in the proof of Theorem \ref{thm2.1}. \noindent{\bf Step 1.} Prove that $\Omega_1$ is bounded. For $x\in \Omega_1$, $$ \sum_{i=1}^m\alpha_i\int_{\xi_i}^1\frac{(s-\xi_i)^{n-1-p}} {(n-1-p)!}f(s,x(s),x'(s),\dots,x^{(n-1)}(s))ds=0. $$ It follows from (A4) that there is $t_0\in [0,1]$ such that $|x^{(p)}(t_0)|\le M$. On the other hand, $x\in \Omega_1$ implies $$ x^{(n)}(t)=\lambda f(t,x(t),x'(t),\dots,x^{(n-1)}(t)),\quad t\in (0,1). $$ Integrating it from 0 to $t$ if $p\le n-2$, or from $t_0$ to $t$ if $p=n-1$, we get \begin{align*} |x^{(n-1)}(t)|&=\begin{cases} \big|x^{(n-1)}(0)+\lambda\int_0^tf(s,x(s),\dots,x^{(n-1)}(s))ds\big| &\mbox{for }p\le n-2,\\ \big|x^{(n-1)}(t_0)+\lambda\int_{t_0}^tf(s,x(s),\dots,x^{(n-1)}(s))ds\big| &\mbox{for }p=n-1 \end{cases}\\ &\le \begin{cases} \int_0^1|f(s,x(s),\dots,x^{(n-1)}(s))|ds,\\ M+\int_0^1|f(s,x(s),\dots,x^{(n-1)}(s))|ds \end{cases}\\ &\le M+\int_0^1(a_0(s)+\sum_{i=0}^{n-1}a_i|x^{(i)}(s)|)ds\\ &\le M+\int_0^1a_0(s)ds+\sum_{i=0}^{n-1}a_i\int_0^1|x^{(i)}(s)|ds. \end{align*} It is easy to see that $x^{(i)}(t)|\le \|x^{(p)}\|_\infty$ for $i=0,1,\dots,p$ and $|x^{(i)}(t)|\le \|x^{(n-1)}\|_\infty$ for all $i=p+1,\dots,n-1$ and $t\in [0,1]$. Hence $$ |x^{(n-1)}(t)|\le M+\int_0^1a_0(s)ds+\Big(\sum_{i=0}^pa_i\Big)\|x^{(p)}\|_\infty +\Big(\sum_{i=p+1}^{n-1}a_i\Big)\|x^{(n-1)}\|_\infty. $$ Thus $$\|x^{(n-1)}\|_\infty\le M+\int_0^1a_0(s)ds+\Big(\sum_{i=0}^pa_i\Big)\|x^{(p)}\|_\infty +\Big(\sum_{i=p+1}^{n-1}a_i\Big)\|x^{(n-1)}\|_\infty. $$ On the other hand, we have $$ x^{(p+1)}(t)=\lambda \int_t^1\frac{(s-t)^{n-1-p}}{(n-1-p)!}f(s,x(s),\dots,x^{(n-1)}(s))ds. $$ Integrating from $t_0$ to $t$, we get \begin{align*} |x^{(p)}(t)| &=\Big|x^{(p)}(t_0)+\lambda\int_{t_0}^tf(s,x(s),\dots,x^{(n-1)}(s))ds\Big|\\ &\le M+\int_0^1\int_s^1\frac{(u-s)^{n-1-p}}{(n-1-p)!}f(u,x(u), \dots,x^{(n-1)}(u))du\,ds\\ &\le M+\frac{1}{(n-1-p)!}\int_0^1|f(s,x(s),\dots,x^{(n-1)}(s))|ds\\ &\le M+\frac{1}{(n-1-p)!}\Big(\int_0^1a_0(s)ds+\sum_{i=0}^{n-1}a_i|x^{(i)}(s)|ds \Big). \end{align*} Similarly, we get $$ \|x^{(p)}\|_\infty\le M+\frac{1}{(n-1-p)!}\Big(\int_0^1a_0(s)ds+\sum_{i=0}^pa_i\|x^{(p)}\|_\infty+ \sum_{i=p+1}^{n-1}a_i\|x^{(n-1)}\|_\infty\Big). $$ Hence \begin{gather*} \Big(1-\sum_{i=p+1}^{n-1}a_i\Big)\|x^{(n-1)}\|_\infty \le M+\int_0^1a_0(s)ds+\Big(\sum_{i=0}^pa_i\Big)\|x^{(p)}\|_\infty,\\ \begin{aligned} &\Big(1-\frac{1}{(n-1-p)!}\sum_{i=0}^{p}a_i\Big)\|x^{(p)}\|_\infty\\ &\le M+\frac{1}{(n-1-p)!}\Big(\int_0^1a_0(s)ds +\sum_{i=n-1-p}^{n-1}a_i\|x^{(n-1)}\|_\infty\Big). \end{aligned} \end{gather*} Thus we get from the assumptions of the Theorem \ref{thm2.2} \begin{align*} \Big(1-\sum_{i=p+1}^{n-1}a_i\Big)\|x^{(n-1)}\|_\infty \le& M+\int_0^1a_0(s)ds +\frac{\sum_{i=0}^pa_i}{1-\frac{1}{(n-1-p)!}\sum_{i=0}^pa_i} \Big[M\\ &+\frac{1}{(n-1-p)!}\Big(\int_0^1a_0(s)ds+\sum_{i=n-1-p}^{n-1}a_i \|x^{(n-1)}\|_\infty\Big)\Big]. \end{align*} i.e., \begin{align*} &\Big(1-\sum_{i=p+1}^{n-1}a_i-\frac{\left(\sum_{i=0}^pa_i\right) \big(\sum_{i=p+1}^{n-1}a_i\big)}{(n-1-p)!-\sum_{i=0}^pa_i} \Big)\|x^{(n-1)}\|_\infty\\ &\le M+\int_0^1a_0(s)ds+\frac{(n-1-p)!\sum_{i=0}^pa_i}{(n-1-p)! -\sum_{i=0}^pa_i}\Big[M+\frac{1}{(n-1-p)!}\int_0^1a_0(s)ds\Big]. \end{align*} It follows from the assumptions of Theorem \ref{thm2.2} that there is $M_1>0$ such that $\|x^{(n-1)}\|_|infty\le M_1$. Thus there is $M_2>0$ such that $\|x^{(p)}\|_\infty\le M_2$. So $\|x\|\le \max\{M_1,M_2\}$. Thus $\Omega_1$ is bounded. \noindent{\bf Step2.} Prove that $\Omega_2$ is bounded. It similar to the Step 2 of the proof of Theorem \ref{thm2.1} and is omitted. \noindent{\bf Step 3.} Prove that$\Omega_3$ is bounded. It is same to the Step 3 of the proof of Theorem \ref{thm2.1} and is omitted. \noindent{\bf Step 4.} It is same to the Step 4 of the proof of Theorem \ref{thm2.1} and is omitted. Thus the proof is complete. \end{proof} \section{Solvability of \eqref{e1}--\eqref{e2} at non-resonance} In this section, we obtain sufficient conditions for the existence of at least one solution of \eqref{e1}--\eqref{e2} at non-resonance, i.e. when $\sum_{i=1}^n\alpha_i\neq 0$. In this case, the operator $Lx(t)=(-1)^{n-p}x^{(n)}(t)$ is invertible. The method employed is based on Scheaffer's theorem, see for example \cite[Theorem 4.3.2]{sm} or [\cite{sh}. \begin{theorem}[\cite{sh,sm}] \label{thmSH} Let $(X,\|\ast\|)$ be a Banach space. $T$ is a continuous mapping of $X$ into $X$ which is compact on each bounded subset of $X$. Then either \begin{itemize} \item[(i)] The equation $x=\lambda Tx$ has a solution for $\lambda =1$, or \item[(ii)] The set of all such solutions $x$, for $\lambda\in (0,1)$, is unbounded. \end{itemize} \end{theorem} Combining the differential equation \eqref{e1} with the boundary conditions \eqref{e2}, a solutions $x(t)$ satisfies $$ x^{(p)}(1)-x^{(p)}(t)=\int_t^1\frac{(s-t)^{n-p-1}}{(n-p-1)!}f(s,x(s),x'(s) ,\dots,x^{(n-1)}(s))ds. $$ Since $\sum_{i=1}^m\alpha_ix^{(p)}(\xi_i)=0$, we have $$ x^{(p)}(1)=\frac{1}{\sum_{i=1}^m \alpha_i}\sum_{i=1}^m\alpha_i\int_{\xi_i}^1\frac{(s-\xi_i) ^{n-p-1}}{(n-p-1)!}f(s,x(s),x'(s),\dots,x^{(n-1)}(s))ds. $$ Thus \begin{align*} x^{(p)}(t)&= \frac{1}{\sum_{i=1}^m\alpha_i}\sum_{i=1}^m\alpha_i\int_{\xi_i}^1\frac{(s-\xi_i) ^{n-p-1}}{(n-p-1)!}f(s,x(s),x'(s),\dots,x^{(n-1)}(s))ds\\ &\quad-\int_t^1\frac{(s-t)^{n-p-1}}{(n-p-1)!}f(s,x(s),x'(s),\dots,x^{(n-1)}(s))ds. \end{align*} Integrating above equation, we have \begin{align*} x(t)&=\frac{1}{\sum_{i=1}^m\alpha_i}\sum_{i=1}^m\alpha_i\int_{\xi_i}^1\frac{(s-\xi_i) ^{n-p-1}}{(n-p-1)!}f(s,x(s),x'(s),\dots,x^{(n-1)}(s))ds\frac{t^p}{p!}\\ &\quad-\int_0^t\frac{(t-s)^{p-1}}{(p-1)!}\Big(\int_s^1\frac{(u-s) ^{n-p-1}}{(n-p-1)!}f(u,x(u),x'(u),\dots,x^{(n-1)}(u))du\Big)ds\\ &=\frac{1}{\sum_{i=1}^m\alpha_i}\sum_{i=1}^m\alpha_i\int_{\xi_i}^1\frac{(s-\xi_i) ^{n-p-1}}{(n-p-1)!}f(s,x(s),x'(s),\dots,x^{(n-1)}(s))ds\frac{t^p}{p!}\\ &\quad+\sum_{j=0}^{n-p}\frac{(-1)^{j}t^{j+p}}{(j+p)!}\int_0^1\frac{s^{n-p-1-j}}{(n-p-1-j)!} f(s,x(s),x'(s),\dots,x^{(n-1)}(s))ds\\ &\quad+(-1)^{n-p+1}\int_0^t\frac{(t-s)^{n-1}}{(n-1)!}f(s,x(s),x'(s), \dots,x^{(n-1)}(s))ds. \end{align*} Define the Banach space \begin{align*} X=\big\{& x\in C^{n-1}[0,1]: x^{(i)}(0)=0\mbox{ for }i=0,1,\dots,p-1\\ &\mbox{and } x^{(i)}(1)=0\mbox{ for }i=p+1,\dots,n-1\big\}, \end{align*} whose norm is $\|x\|=\max\{\|x\|_\infty,\dots,\|x^{(n-1)}\|_\infty\}$, where $\|x\|_\infty=\max_{t\in [0,1]}|x(t)|$. It is easy to show that $$ \|x\|=\max\{\|x^{(p)}\|_\infty,\;\|x^{(n-1)}\|_\infty\}. $$ Define the nonlinear operator $T: X\to X$ as \begin{align*} Tx(t)&=\frac{1}{\sum_{i=1}^m\alpha_i}\sum_{i=1}^m\alpha_i\int_{\xi_i}^1\frac{(s-\xi_i) ^{n-p-1}}{(n-p-1)!}f(s,x(s),x'(s),\dots,x^{(n-1)}(s))ds\frac{t^p}{p!}\\ &\quad+\sum_{j=0}^{n-p}\frac{(-1)^{j}t^{j+p}}{(j+p)!}\int_0^1\frac{s^{n-p-1-j}}{(n-p-1-j)!} f(s,x(s),x'(s),\dots,x^{(n-1)}(s))ds\\ &\quad+(-1)^{n-p+1}\int_0^t\frac{(t-s)^{n-1}}{(n-1)!}f(s,x(s),x'(s), \dots,x^{(n-1)}(s))ds\,. \end{align*} \begin{theorem} \label{thm3.1} Assume that the nonlinearity $f$ is bounded. Then \eqref{e1}--\eqref{e2} has at least one solution. \end{theorem} \begin{proof} Let $M>0$ be such that $|f(t,x(t),x'(t),\dots,x^{(n-1)}(t))|\le M$ for $t\in [0,1]$, $(x_0,x_1,\dots,x_{n-1})\in \mathbb{R}^n$. For $\mu\in [0,1]$, consider the equation \begin{equation} \label{e12} x=\mu Tx. \end{equation} If $x(t)$ is a solution of this equation, then: \begin{align*} x(t)&=\mu\Big[\frac{1}{\sum_{i=1}^m\alpha_i}\sum_{i=1}^m\alpha_i \int_{\xi_i}^1\frac{(s-\xi_i) ^{n-p-1}}{(n-p-1)!}f(s,x(s),x'(s),\dots,x^{(n-1)}(s))ds\frac{t^p}{p!}\\ &\quad +\sum_{j=0}^{n-p}\frac{(-1)^{j}t^{j+p}}{(j+p)!}\int_0^1 \frac{s^{n-p-1-j}}{(n-p-1-j)!} f(s,x(s),x'(s),\dots,x^{(n-1)}(s))ds\\ &\quad +(-1)^{n-p+1}\int_0^t\frac{(t-s)^{n-1}}{(n-1)!}f(s,x(s),x'(s),\dots, x^{(n-1)}(s))ds\Big], \end{align*} \begin{align*} x^{(p)}(t)&=\mu\Big[\frac{1}{\sum_{i=1}^m\alpha_i}\sum_{i=1}^m\alpha_i \int_{\xi_i}^1\frac{(s-\xi_i) ^{n-p-1}}{(n-p-1)!}f(s,x(s),x'(s),\dots,x^{(n-1)}(s))ds\\ &\quad -\int_t^1\frac{(s-t)^{n-p-1}}{(n-p-1)!}f(s,x(s),x'(s),\dots,x^{(n-1)}(s))ds \Big], \end{align*} and \[ (-1)^{n-p-1}x^{(n-1)}(t) =\mu \int_t^1f(s,x(s),x'(s),\dots,x^{(n-1)}(s))ds. \] So, we have \begin{gather*} |x^{(p)}(t)|\le \mu M\Big[\frac{1}{\sum_{i=1}^m\alpha_i} \sum_{i=1}^m\alpha_i\int_{\xi_i}^1\frac{(s-\xi_i) ^{n-p-1}}{(n-p-1)!}ds+\int_0^1\frac{s^{n-p-1}}{(n-p-1)!}ds\Big],\\ |x^{(n-1)}(t)|\le \mu M. \end{gather*} This shows that all solutions of (12) satisfy $\|x\|=\max\{\|x^{(p)}\|_\infty,\;\|x^{(n-1)}\|_\infty\}$ is bounded. Taking into account that $T$ is continuous and compact on each bounded subset of $X$ and using Schaeffer's theorem, we obtain that $T$ has a fixed point, which is a solution of \eqref{e1}--\eqref{e2}. \end{proof} We remark that the hypotheses in Theorem \ref{thm3.1} are strong, but it is convenient to apply them. Next, we give another existence result. \begin{theorem} \label{thm3.2} Assume there exist $a_i\in [0,+\infty)$ $(i=0,1,\dots,n-1)$ and $a\in C[0,1]$ and $\beta_i\in [0,1](i=0,1,\dots,n-1)$ such that \begin{equation} \label{e13} |f(t,x_0,x_1,\dots,x_{n-1})|\le a(t)+a_0|x_0|^{\beta_0}+\dots+a_{n-1}|x_{n-1}|^{\beta_{n-1}} \end{equation} for $t\in [0,1]$ and $(x_0,x_1,\dots,x_{n-1})\in \mathbb{R}^n$ and $\sum_{i=p+1}^{n-1}a_i<1$. Then \eqref{e1}--\eqref{e2} has at least one solution. \end{theorem} \begin{proof} For $x\in X$, we have $$ |f(t,x(t),x'(t),\dots,x^{(n-1)}(t))|\le a(t)+\sum_{i=0}^{n-1}a_i|x^{(i)}(t)|^{\beta_i}. $$ If $x(t)$ is a solution of \eqref{e12}, then \begin{align*} |f(t,x(t),x'(t),\dots,x^{(n-1)}(t))| &= a(t)+\sum_{i=0}^{p-1}a_it|x^{(i+1)}(\xi_i)|^{\beta_i}+a_p|x^{(p)}(t)|^{\beta_p}\\ &\quad +\sum_{i=p+1}^{n-2}a_it|x^{(i+1)}(\xi_i)|^{\beta_i}+a_{n-1}|x^{(n-1)}(t)|^{\beta_{n-1}}\\ &\le a(t)+\sum_{i=0}^{p}a_i\|x^{(p)}\|_\infty^{\beta_i}+\sum_{i=p+1}^{n-1}a_i \|x^{(n-1)}\|_\infty^{\beta_i}. \end{align*} Thus \begin{align*} &|x^{(p)}(t)|\\ &\le \mu \Big[\frac{1}{|\sum_{i=1}^m\alpha_i|}\sum_{i=1}^m|\alpha_i| \int_{\xi_i}^1\frac{(s-\xi_i)^{n-p-1}}{(n-p-1)!} \Big(a(s)+\sum_{i=0}^{p}a_i\|x^{(p)}\|_\infty^{\beta_i}\\ &\quad +\sum_{i=p+1}^{n-1}a_i\|x^{(n-1)}\|_\infty^{\beta_i}\Big)ds +\int_0^1 \frac{s^{n-p-1}}{(n-p-1)!} \Big(a(s)+\sum_{i=0}^{p}a_i\|x^{(p)}\|_\infty^{\beta_i}\\ &\quad +\sum_{i=p+1}^{n-1}a_i\|x^{(n-1)}\|_\infty\Big)ds\Big] \\ &\le \mu\Big\{\frac{1}{|\sum_{i=1}^m\alpha_i|}\sum_{i=1}^m|\alpha_i| \Big[\int_{\xi_i}^1\frac{(s-\xi_i)^{n-p-1}}{(n-p-1)!}a(s)ds +\int_{\xi_i}^1\frac{(s-\xi_i)^{n-p-1}}{(n-p-1)!}ds\\ &\quad \times \Big(\sum_{i=0}^{p}a_i\|x^{(p)}\|_\infty^{\beta_i}\Big) +\int_{\xi_i}^1\frac{(s-\xi_i)^{n-p-1}}{(n-p-1)!}ds \Big(\sum_{i=p+1}^{n-1}a_i\|x^{(n-1)}\|_\infty^{\beta_i}\Big)\Big]\\ &\quad +\int_0^1\frac{s^{n-p-1}}{(n-p-1)!}a(s)ds+ \int_0^1\frac{s^{n-p-1}}{(n-p-1)!}a(s)ds \Big(\sum_{i=0}^{p}a_i\|x^{(p)}\|_\infty^{\beta_i}\Big)\\ &\quad+\int_0^1\frac{s^{n-p-1}}{(n-p-1)!}a(s)ds \Big(\sum_{i=p+1}^{n-1}a_i\|x^{(n-1)}\|_\infty^{\beta_i}\Big)\Big\} \\ &=\mu \Big\{\frac{1}{|\sum_{i=1}^m\alpha_i|}\sum_{i=1}^m|\alpha_i| \Big[\int_{\xi_i}^1\frac{(s-\xi_i)^{n-p-1}}{(n-p-1)!}a(s)ds\\ &\quad +\frac{(1-\xi_i)^{n-p}}{(n-p)!}\Big(\sum_{i=0}^{p}a_i\|x^{(p)} \|_\infty^{\beta_i}\Big)+\frac{(1-\xi_i)^{n-p}}{(n-p)!} \Big(\sum_{i=p+1}^{n-1}a_i\|x^{(n-1)}\|_\infty^{\beta_i}\Big)\Big]\\ &\quad +\int_0^1\frac{s^{n-p-1}}{(n-p-1)!}a(s)ds +\frac{1}{(n-p)!}\Big(\sum_{i=0}^{p}a_i\|x^{(p)}\|_\infty^{\beta_i}\Big)\\ &\quad +\frac{1}{(n-p)!}\Big(\sum_{i=p+1}^{n-1}a_i\|x^{(n-1)}\|_\infty^{\beta_i}\Big)\Big\} \\ &=\mu \Big[\sum_{i=0}^{p}a_i\|x^{(p)}\|_\infty^{\beta_i} \int_{\xi_i}^1\frac{(s-\xi_i)^{n-p-1}}{(n-p-1)!}a(s)ds +\int_0^1\frac{s^{n-p-1}}{(n-p-1)!}a(s)ds\\ &\quad+\frac{1}{(n-p)!}\Big(\frac{\sum_{i=0}^{m}|\alpha_i|}{|\sum_{i=1}^m\alpha_i|} (1-\xi_i)^{n-p}+1\Big)\sum_{i=0}^{p}a_i\|x^{(p)}\|_\infty^{\beta_i}\\ &\quad +\frac{1}{(n-p)!}\Big(\frac{\sum_{i=0}^{m}|\alpha_i|}{|\sum_{i=1}^m \alpha_i|}(1-\xi_i)^{n-p}+1\Big)\sum_{i=p+1}^{n-1}a_i \|x^{(n-1)}\|_\infty^{\beta_i}\Big]. \end{align*} and \[ |x^{(n-1)}(t)|\le \mu\Big[\int_0^1a(s)ds+\sum_{i=0}^{p}a_i \|x^{(p)}\|_\infty^{\beta_i}+\sum_{i=p+1}^{n-1}a_i\|x^{(n-1)}\|_\infty^{\beta_i}\Big]. \] Hence $$ \|x^{(n-1)}\|_\infty\le \mu\Big[\int_0^1a(s)ds+\sum_{i=0}^{p}a_i\|x^{(p)}\|_\infty^{\beta_i} +\sum_{i=p+1}^{n-1}a_i\|x^{(n-1)}\|_\infty^{\beta_i}\Big]. $$ Without loss of generality, suppose $\|x^{(n-1)}\|_\infty\ge 1$, then $$ \|x^{(n-1)}\|_\infty\le \int_0^1a(s)ds+\sum_{i=0}^{p}a_i\|x^{(p)}\|_\infty^{\beta_i} +\sum_{i=p+1}^{n-1}a_i\|x^{(n-1)}\|_\infty. $$ Thus $$ \|x^{(n-1)}\|_\infty\le \Big(1-\sum_{i=p+1}^{n-1}a_i\Big)^{-1}\Big(\int_0^1a(s)ds+ \sum_{i=0}^{p}a_i\|x^{(p)}\|_\infty^{\beta_i} \Big). $$ Hence \begin{align*} &\|x^{(p)}\|_\infty\\ &\le \mu \Big[\big|\sum_{i=1}^m\alpha_i\big|^{-1} \sum_{i=1}^m|\alpha_i|\int_{\xi_i}^1\frac{(s-\xi_i)^{n-p-1}}{(n-p-1)!}a(s)ds +\int_0^1\frac{s^{n-p-1}}{(n-p-1)!}a(s)ds \\ &\quad+\frac{1}{(n-p)!}\Big(\frac{\sum_{i=0}^{m}|\alpha_i|} {|\sum_{i=1}^m\alpha_i|}(1-\xi_i)^{n-p}+1 \Big)\Big(\sum_{i=0}^{p}a_i\|x^{(p)}\|_\infty^{\beta_i}\Big)\\ &\quad+\frac{1}{(n-p)!}\Big(\frac{\sum_{i=0}^{m}|\alpha_i|} {|\sum_{i=1}^m\alpha_i|}(1-\xi_i)^{n-p}+1 \Big)\sum_{j=p+1}^{n-1}a_j\Big(1-\sum_{i=p+1}^{n-1}a_i\Big)^{-\beta_j}\\ &\quad \times \Big(\int_0^1a(s)ds +\sum_{i=0}^pa_i\|x^{(p)}\|_\infty^{\beta_i}\Big)^{\beta_j}\Big]. \end{align*} Since $\beta_i\in [0,1)$, there exists $M_1>0$ sufficiently large and independent on $\mu$ such that $\|x^{(p)}\|_\infty\le M_1$, and $$ \|x^{(n-1)}\|_\infty\le \int_0^1a(s)ds+ \sum_{i=1}^pa_iM_1^{\beta_i}+\sum_{i=p+1}^{n-1}a_i\|x^{(n-1)}\|_\infty^{\beta_i}. $$ Similarly, it follows that there is $M_2>0$ sufficiently large and independent on $\mu$ such that $\|x^{(n-1)}\|_\infty \le M_2$. These show that $\|x\|=\max\{\|x^{(p)}\|_\infty,\;\|x^{(n-1)}\|_\infty\;\}$ is bounded. On the other hand, $T$ is continuous and compact on each bounded subset of $X$. Therefore, by Schaeffer's theorem, we obtain the existence of at least one fixed point for the operator $T$, which is a solution of \eqref{e1}--\eqref{e2}. The proof is complete. \end{proof} \section{Examples} In this section, we present some examples to illustrate the main results. \subsection*{Example 1} Consider the following boundary-value problem \begin{equation} \label{e14} \begin{gathered} x''(t)=e(t)+\frac{1}{14}[x'(t)]^{2/3}+\frac{t}{7}\cos^2t\;\sin[x(t)]^{2/3},\\ x(0)=0,\quad x'(1)=\frac{1}{2}x'(\frac{1}{2})+\frac{1}{2}x'(0). \end{gathered} \end{equation} Corresponding to \eqref{e1} and \eqref{e2}, we find $n=2$, $\xi_1=0$, $\xi_2=\frac{1}{2}$, $\xi_3=1$, and $\alpha_1=\frac{1}{2}$, $\alpha_2=\frac{1}{2}$, $\alpha_3=-1$. $f(t,x,y)=e(t)+\frac{1}{14}y^{2/3}+\frac{t}{7}\cos ^2t\;\sin x^{2/3}$. It is easy to see $|f(t,x,y)|\le |e(t)+\frac{1}{7}|x|^{2/3}+\frac{1}{14}|y|^{2/3}$ with $\beta_0=\frac{2}{3}$ and $\beta_1=\frac{2}{3}$. So Assumption (A2) holds. Since \begin{align*} &\frac{1}{2}\int_0^1f(s,x(s),x'(s))ds+\frac{1}{2}\int_{1/2}^1f(s,x(s),x'(s))ds -\int_1^1f(s,x(s),x'(s))ds\\ &=\frac{1}{2}\int_0^{1/2}f(s,x(s),x'(s))ds+\int_{1/2}^1f(s,x(s),x'(s))ds, \end{align*} it is easy to see that if $|x'(t)|>14^{3/2}\left(\|e\|_\infty+\frac{1}{7}\right)^{3/2}$ for all $t\in [0,\frac{1}{2}]$, and $e(t)\ge \frac{t}{7}\cos ^2t$ for $t\in [\frac{1}{2},1]$, choosing $M=14^{3/2}\left(\|e\|_\infty+\frac{1}{7}\right)^{3/2}$, Assumption (A1) holds. Furthermore, \begin{align*} &c\Big[\frac{1}{2}\int_0^1f(s,x(s),x'(s))ds+\frac{1}{2}\int_{1/2}^1f(s,x(s),x'(s))ds -\int_1^1f(s,x(s),x'(s))ds\Big]\\ &=\frac{1}{2}\int_0^{1/2}\left(ce(s)+\frac{1}{14}c^{5/3}+\frac{cs}{7} \cos ^2s\sin (cs)^{2/3}\right)ds\\ &\quad+\int_{1/2}^1\left(ce(s)+\frac{1}{14}c^{5/3}+\frac{cs}{7}\cos ^2s \sin (cs)^{2/3}\right)ds > 0 \end{align*} for sufficiently large $|c|$. So (A3) of Theorem \ref{thm2.1} holds. From Theorem \ref{thm2.1}, \eqref{e14} has at least one solution for every $e\in C^0[0,1]$ with $e(t)\ge \frac{t}{7}\cos ^2t$ for all $t\in [\frac{1}{2},1]$. \subsection*{Example 2} Consider the boundary-value problem \begin{equation} \label{e15} \begin{gathered} x'''(t)=e(t)+\frac{1}{14}[x'(t)]^{2/3}+\frac{t}{7}\cos ^2t\;\sin [x(t)]^{2/3} +\frac{t^2}{8}\sin ^2t\cos [x''(t)]^{4/5},\\ x(0)=0,\quad x'(1)=\frac{1}{2}x'(\frac{1}{2})+\frac{1}{2}x'(0),\;x''(0)=0. \end{gathered} \end{equation} Corresponding to \eqref{e1}--\eqref{e2} we find $n=3$, $\xi_1=0$, $\xi_2=\frac{1}{2}$, $\xi_3=1$, and $\alpha_1=\frac{1}{2}$, $\alpha_2=\frac{1}{2}$, $\alpha_3=-1$. $f(t,x,y,z)=e(t)+\frac{1}{14}y^{2/3}+\frac{t}{7}\cos ^2t\;\sin x^{2/3} +\frac{t^2}{8}\sin ^2t\;\cos z^{4/5}$. It is easy to see $|f(t,x,y,z)|\le |e(t)+\frac{1}{7}|x|^{2/3}+\frac{1}{14}|y|^{2/3}+\frac{1}{8}|z|^{4/5}$ with $\beta_0=\frac{2}{3}$ and $\beta_1=\frac{2}{3}$ and $\beta_2=\frac{4}{5}$. So Assumption (A2) holds. Similarly, we can prove that (A1) and (A3) hold if $e(t)\ge \frac{t}{7}\cos ^2t+\frac{t^2}{8}\sin ^2t$ for all $t\in [\frac{1}{2},1]$. Hence from Theorem \ref{thm2.1}, \eqref{e15} has at least one solution for every $e\in C^0[0,1]$ with $e(t)\ge \frac{t}{7}\cos ^2t+\frac{t^2}{8}\sin ^2t$ for all $t\in [\frac{1}{2},1]$. \subsection*{Example 3} Consider the boundary-value problem \begin{equation} \label{e16} \begin{gathered} x^{(n)}(t)=\sum_{i=0,i\neq p}^{n-1}a_i\sin x^{(i)}(t)+a_px^{(p)}(t)+e(t),\\ x^{(i)}(0)=0,\quad \mbox{for }i=0,1,\dots,p-1,p+1,\dots,n-1,\\ x^{(p)}(1)=\sum_{i=1}^m\alpha_ix^{(p)}(\xi_i), \end{gathered} \end{equation} where $1\le p\le n-1$, $0<\xi_1<\dots<\xi_m<1$, $a_p>0$, $\alpha_i\ge 0$ for all $i\neq p$ with $\sum_{i=1}^m\alpha_i=1$. It is easy to see above problem is a special case of \eqref{e1}--\eqref{e2}. Furthermore, $ |f(t,x_0,\dots,x_{n-1})|\le |e(t)|+\sum_{i=1}^{n-1}a_i|x_i|$. So (A5) holds. Since $|f(t,x_0,\dots, x_{n-1})|\ge a_p|x_p|-\sum_{i=1,i\neq p}^{n-1}|a_i\|x_i|-\|e\|_\infty$, we find that there is $M>0$ such that if $|x^{(p)}(t)|\ge M$ for all $t\in [0,1]$, then (A4) holds. As in Example 1, we find that there is $M^*>0$ such that (A3) holds. Thus from Theorem \ref{thm2.2}, \eqref{e16} has at least one solution provided that \begin{gather*} \sum_{i=0}^p|a_i|<(n-1-p)!,\quad \sum_{i=p+1}^{n-1}|a_i|<1,\\ \sum_{i=p+1}^{n-1}|a_i|+\frac{\left(\sum_{i=0}^{p}|a_i|\right) \left(\sum_{i=p+1}^{n-1}|a_i|\right)}{(n-1-p)!-\sum_{i=0}^p|a_i|}<1. \end{gather*} \subsection*{Acknowledgement.} The authors are very thankful to the editors and one of the referees for their valuable suggestions. \begin{thebibliography}{00} \bibitem{a1} R. P. Agarwal, \emph{Boundary Value Problems for Higher Order Differential Equations, World Scientific}, Singapore, 1986. \bibitem{a2} R. P. Agarwal, \emph{Focal Boundary Value Problems for Differential and Difference Equations}, Kluwer, Dordrecht, 1998. \bibitem{ao1} R. P. Agarwal, D. O'Regan, \emph{Singular boundary value problems for super-linear second order ordinary and delay equations}, J. Diff. Eqn., 130(1996) 333-355. \bibitem{ao2} R. P. Agarwal, D. O'Regan, \emph{Two solutions to singular boundary value problems}, Proc. Amer. Math. Soc., 128(2000) 2085-2094. \bibitem{ao3} R. P. Agarwal, D. O'Regan, \emph{Right focal singular boundary value problems}, Z. A. M. M., 79(1999) 363-373. \bibitem{aol} R. P. Agarwal, D. O'Regan, V. Lakshmikantham, \emph{Singular (p,n-p) focal and (n,p) higher order boundary value problems}, Nonlinear Anal., 42(2000) 215-228. \bibitem{aow} R. P. Agarwal, D. O'Regan, P. J. Y. Wong, \emph{Positive Solutions of Differential, Difference and Integral Equations}, Kluwer Academic Publishers, Dordrecht, 1999. \bibitem{a} D. Anderson, \emph{Multiple positive solutions for a three-point boundary value problem}, Math. Comput. Modelling, 27(6)((1998) 49-57. \bibitem{cn} A. Callegari, A.. Nachnan, \emph{A nonlinear singular boundary value problem in the theory of pseudo-plastic fluids}, SIAM J. Appl. Math., 38(1980) 275-282. \bibitem{eh1} P. W. Eloe, J. Henderson, \emph{Singular nonlinear boundary value problems for higher order differential equations}, Nonlinear Anal., 17(1991) 1-10. \bibitem{eh2} P. W. Eloe, J. Henderson, \emph{Existence of solutions for some higher order boundary value problems}, Z.A.M.M., 73(1993) 315-323. \bibitem{eh3} P. W. Eloe, J. Henderson, \emph{Positive solutions for (n-1,1) boundary value problems}, Nonlinear Anal., 28(1997) 1669-1680. \bibitem{eh4} P. W. Eloe, J. Henderson, \emph{Positive solutions and nonlinear (k,n-k) conjugate eigenvalue problems}, Diff. Eqns. Dyn. Systems, 6(1998)309-317. \bibitem{fw1} W. Feng, J. R. L. Webb, \emph{Solvability of three-point boundary value problems at resonance}, Nonlinear Anal., 30(1997) 3227-3238. \bibitem{fw2} W. Feng, J. R. L. Webb, \emph{Solvability of m-point boundary value problems with nonlinear growth}, J. Math. Anal. Appl., 212(1997) 467-489. \bibitem{gm} R. E. Gaines, J. L. Mawhin, \emph{Coincidence Degree and Nonlinear Differential Equations}, Lecture Notes in Math., 568, Springer, Berlin, 1977. \bibitem{gnt} C. P. Gupta, S. K. Ntougas, P. C. Tsamatos, \emph{Solvability of an m-point boundary value problem for second order ordinary differential equations}, J. Math. Anal. Appl., 189(1995) 575-584. \bibitem{hg} X. He, W. Ge, \emph{Positive solutions for semi-positone (p,n-p) right focal boundary value problems}, Appl. Anal., 81(2002) 227-240. \bibitem{ht} J. Henderson, H. B. Thompson, \emph{Existence of multiple positive solutions for some n$^{th}$ order boundary value problems}, Nonlinear Anal., 7(2000) 55-62. \bibitem{im} V. Il'in, E. Moiseev, \emph{Non-local boundary value problems of first kind for a Sturm-Liouville operator in its differential and finite difference aspects}, Differential Eqns., 23(1987) 803-810. \bibitem{l1} B. Liu, \emph{Solvability of multi-point boundary value problems at resonance(III)}, Appl. Math. Comput., 129(2002)119-143. \bibitem{l2} B. Liu, \emph{Solvability of multi-point boundary value problems at resonance(IV)}, Appl. Math. Comput., 143(2003)275-299. \bibitem{lg} Y. Liu, W. Ge, \emph{Positive solutions for (n-1,1) three-point boundary value problems with coefficient that changes sign}, J. Math. Anal. Appl., 282(2003)457-468. \bibitem{ly1} B. Liu, J. Yu, \emph{Solvability of multi-point boundary value problems at resonance(II)}, Appl. Math. Comput., 136(2003)353-377. \bibitem{ly2} B. Liu, J. Yu, \emph{Solvability of multi-point boundary value problems at resonance(I)}, Indian J. Pure Appl. Math., 33(4)(2002)475-494. \bibitem{ly3} B. Liu, J. Yu, \emph{Existence of solutions for m-point boundary value problems of second order differential equations with impulses}, Appl. Math. Comput., 125(2002)155-175. \bibitem{sh} H. Shaeffer, \emph{Vber die method der a priori schranken}, Math. Ann., 129(1955)45-416. \bibitem{sm} D. R. Smart, \emph{Fixed Point Theorems}, Cambridge Univ. Press, Cambridge, 1980. \bibitem{wa} P. Y. Wong, R. P. Agarwal, \emph{On two-point right focal eigenvalue problems}, Z. A. A., 17(1998) 691-713. \end{thebibliography} \enddocument