\documentclass[twoside]{article}
\usepackage{amssymb,amsmath} % font used for R in Real numbers
\pagestyle{myheadings}
\markboth{\hfil Blow-up for $p$-Laplacian parabolic equations \hfil EJDE--2003/20}
{EJDE--2003/20\hfil Yuxiang Li \& Chunhong Xie \hfil}
\begin{document}
\title{\vspace{-1in}\parbox{\linewidth}{\footnotesize\noindent
{\sc Electronic Journal of Differential Equations},
Vol. {\bf 2003}(2003), No. 20, pp. 1--12. \newline
ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu
\newline ftp ejde.math.swt.edu (login: ftp)}
\vspace{\bigskipamount} \\
%
Blow-up for $p$-Laplacian parabolic equations
%
\thanks{ {\em Mathematics Subject Classifications:} 35K20, 35K55, 35K57, 35K65.
\hfil\break\indent
{\em Key words:} $p$-Laplacian parabolic equations, blow-up,
global existence, first eigenvalue.
\hfil\break\indent
\copyright 2003 Southwest Texas State University. \hfil\break\indent
Submitted October 20, 2002. Published February 28, 2003.} }
\date{}
%
\author{Yuxiang Li \& Chunhong Xie}
\maketitle
\begin{abstract}
In this article we give a complete picture of the blow-up criteria
for weak solutions of the Dirichlet problem
\[
u_t=\nabla(|\nabla u|^{p-2}\nabla u)+\lambda |u|^{q-2}u,\quad
\mbox{in } \Omega_T,
\]
where $p>1$. In particular, for $p>2$, $q=p$ is the blow-up
critical exponent and we show that the sharp blow-up condition
involves the first eigenvalue of the problem
\[
-\nabla(|\nabla \psi|^{p-2}\nabla \psi)=\lambda
|\psi|^{p-2}\psi,\quad\mbox{in } \Omega;\quad
\psi|_{\partial\Omega}=0.
\]
\end{abstract}
\newtheorem{thm}{Theorem}[section]
\newtheorem{lem}[thm]{Lemma}
\newtheorem{defn}[thm]{Definition}
\newtheorem{rem}[thm]{Remark}
\numberwithin{equation}{section}
\section{Introduction}
In this paper we study the Dirichlet problem
\begin{eqnarray}\label{e:main}
\begin{gathered}
u_t=\nabla(|\nabla u|^{p-2}\nabla u)+\lambda |u|^{q-2}u,\quad
\mbox{in }\Omega_T,\\
u=0, \quad\mbox{on } S_T,\\
u(x,0)=u_0(x),\quad\mbox{in } \Omega,
\end{gathered}
\end{eqnarray}
$u_0(x)\in C_0(\overline{\Omega})$, where $p>1$, $q>2$,
$\lambda>0$ and $\Omega\subset \mathbb{R}^N$ is an open bounded
domain with smooth boundary $\partial\Omega$.
When $p=2$, the blow-up properties of the semilinear heat equation
(\ref{e:main}) hasve been investigated by many researchers; see
the recent survey paper \cite{GV}. For $p\neq 2$, the main
interest in the past twenty years lies in the regularities of weak
solutions of the quasilinear parabolic equations; see the
monograph \cite{D} and the references therein. When
$\Omega=\mathbb{R}^N$, the Fujita exponents have been calculated;
see \cite{G2, G3, G4, GL} and also the survey papers \cite{DL,
L1}.
To the best of our knowledge, when $\Omega$ is a bounded domain,
the blow-up conditions are not fully established, especially, in
the case $q=p>2$. In \cite{T}, the author showed that $q=p$ is
the critical case, that is, if $q
p$, there are both nonnegative, nontrivial
global weak solutions and solutions which blow up in finite time.
The blow-up result for $q>p$ is also proved in \cite{LP}.
Furthermore, in \cite{Zh} the author proved that in the critical
case $q=p>2$, if the Lebesgue measure of $\Omega$ is sufficiently
small, (\ref{e:main}) has a global solution and if $\Omega$ is a
sufficiently large ball, it has no global solution.
In this paper we shall give a complete picture of the blow-up
criteria for (\ref{e:main}). In particular, in the critical case
$q=p>2$, we will prove that if $\lambda>\lambda_1$, there are no
nontrivial global weak solutions, and if $\lambda\leq\lambda_1$,
all weak solutions are global, where $\lambda_1$ is the first
eigenvalue of the nonlinear eigenvalue problem
\begin{equation}\label{e:eigenvalue problem}
-\nabla(|\nabla \psi|^{p-2}\nabla \psi)=\lambda
|\psi|^{p-2}\psi,\quad\mbox{in }\Omega;\quad
\psi|_{\partial\Omega}=0.
\end{equation}
The following lemma concerns the properties of the first
eigenvalue $\lambda_1$ and the first eigenfunction $\psi(x)$.
\begin{lem}\label{lem:eigenvalue problem}
There exists a positive constant $\lambda_1(\Omega)$ with the
following properties:
\begin{enumerate}
\item[(a)] For any $\lambda<\lambda_1(\Omega)$, the
eigenvalue problem {\rm (\ref{e:eigenvalue problem})} has
only the trivial solution $\psi\equiv 0$.
\item[(b)] There exists a positive solution $\psi\in
W_0^{1,p}(\Omega)\cap C(\overline{\Omega})$ of
{\rm (\ref{e:eigenvalue problem})}
if and only if $\lambda=\lambda_1(\Omega)$.
\item[(c)] The collection consisting of all solutions of {\rm (\ref{e:eigenvalue problem})}
with $\lambda=\lambda_1(\Omega)$ is 1-dimensional
vector space.
\item[(d)] If $\Omega_j$, $j=1, 2$ are bounded domain with
smooth boundary satisfying
$\Omega_1\Subset\Omega_2$,
then $\lambda_1(\Omega_1)>\lambda_1(\Omega_2)$.
\item[(e)] Let $\{\Omega_n\}$ be a sequence of bounded domains
with smooth boundaries such that $\Omega_n\Subset\Omega_{n+1}$
and $\bigcup_{n=1}^{\infty}\Omega_n=\Omega$, then $\lim_{n\rightarrow\infty}
\lambda_1(\Omega_n)=\lambda_1(\Omega)$.
\end{enumerate}
\end{lem}
\paragraph{Proof}
(a)-(d) follow from \cite[Lemma 2.1, 2.2]{FM}. The continuity of
$\psi(x)$ is asserted in \cite[Corollary 4.2]{Tr}. We now prove
(e). It follows from (d) that $\lambda_1(\Omega_n)$ is strictly
decreasing and so it tends to some nonnegative constant
$\lambda_1^*(\Omega)$ as $n\rightarrow\infty$. Denote by
$\psi_n(x)$ the positive solution of (\ref{e:eigenvalue problem})
on $\Omega_n$ with $\lambda=\lambda_1(\Omega_n)$ such that
$\int_{\Omega_n}\psi_ndx=1$. By (c), $\psi_n$ is unique. By the
similar method in the proof of \cite[Theorem 2.1]{FM}, one can
obtain from $\{\psi_n\}$ a positive solution $\psi^*$ of
(\ref{e:eigenvalue problem}) with $\lambda=\lambda_1^*(\Omega)$.
Then by (b), we have $\lambda_1^*(\Omega)=\lambda_1(\Omega)$.
\hfill$\diamondsuit$\smallskip
We note that the blow-up conditions for (\ref{e:main}) are similar
to that of the porous media equations; see \cite{G1, LS, PS, Sa}.
Also our results clearly illustrate the observation that larger
domains are more unstable than smaller domains; see \cite{L1}.
To prove that $q=p$ is the critical case, we shall use the method
of comparison with suitable blowing-up self-similar sub-solutions
introduced by Souplet and Weissler \cite{SW}. This method enables
us to treat the singular case $1
2$. Recently, the
self-similar sub-solution method is proven to be useful in proof
of blow-up theorems in the semilinear and porous media equations
with gradient terms and nonlocal problems; see also \cite{AMST, R,
Sou}. This paper shows that this method can apply to the
quasilinear problems with gradient diffusion. In the discussion
of the critical case, we use a technique of comparison combined
with the so-called ``concavity" method, which is a different
treatment with respect to the eigenfunction method for the porous
media equations.
This paper is organized as follows: In the next section we
consider comparison principles of the weak solutions of
(\ref{e:main}). In section 3 we first discuss the critical case
$q=p>2$. The last section is devoted to the proof of the blow-up
results for (\ref{e:main}) with large initial values.
\section{Weak solutions and comparison principles}
Following the book \cite{D}, we give the definition of the weak
solutions of (\ref{e:main}).
\begin{defn} \rm
A weak sub(super)-solution of the Dirichlet problem (\ref{e:main})
is a measurable function $u(x,t)$ satisfying
\[
u\in C(0,T; L^2(\Omega))\cap L^p(0,T; W_0^{1,p}(\Omega))\cap
L^{\infty}(\Omega_T),\ u_t\in L^2(\Omega_T)
\]
and for all $t\in (0,T]$
\begin{equation}\label{defn:weak solutions}
\begin{aligned}
&\int_{\Omega}u\varphi(x,t)dx+\int_0^t\int_{\Omega}\{-u\varphi_t+
|\nabla u|^{p-2}\nabla u\cdot\nabla\varphi\}dx\,d\tau\\
&\leq(\geq)\int_{\Omega}u_0\varphi(x,0)dx+\lambda\int_0^t
\int_{\Omega}|u|^{q-2}u\varphi \,dx\,d\tau\nonumber
\end{aligned}
\end{equation}
for all bounded test functions
\[
\varphi\in W^{1,p}(0,T; L^2(\Omega))\cap L^p(0,T; W_0^{1,p}(\Omega))\cap
L^{\infty}(\Omega_T),\quad \varphi\geq 0.
\]
A function $u$ that is both a sub-solution and a super-solution is
a weak solution of the Dirichlet problem (\ref{e:main}).
\end{defn}
It would be technically convenient to have a formulation of weak
solutions that involves $u_t$. The following notion of weak
sub(super)-solutions in terms of Steklov averages involves the
discrete time derivative of $u$ and is equivalent to
(\ref{defn:weak solutions}),
\begin{equation}\label{defn:weak solutions Steklov}
\int_{\Omega\times\{t\}}\{u_{h,t}\varphi +
[|\nabla u|^{p-2}\nabla u]_h\cdot\nabla\varphi-\lambda[|u|^{q-2}u]_h\varphi
\}dx\leq(\geq)0,
\end{equation}
for all $0T-h.
\end{cases}
\]
The equivalence of (\ref{defn:weak solutions}) and (\ref{defn:weak
solutions Steklov}) can be proven by the simple properties of
Steklov averages.
\begin{lem}[{\cite[Lemma I.3.2]{D}}]\label{lem:Steklov averages}
Let $v\in L^{q,r}(\Omega_T)$. Then let $h\rightarrow 0$, $v_h$
converges to $v$ in $L^{q,r}(\Omega_{T-\varepsilon})$ for every
$\varepsilon\in (0,T)$. If $v\in C(0,T; L^q(\Omega))$, then as
$h\rightarrow 0$, $v_h(\cdot,t)$ converges to $v(\cdot,t)$ in
$L^q(\Omega)$ for every $t\in (0,T-\varepsilon)$,
$\forall\varepsilon\in (0,T)$.
\end{lem}
The H\"{o}lder continuity of the above weak solution has been
studied by many researchers in the past twenty years; see
\cite{D}. The following lemma is a special case.
\begin{lem}\label{lem:Holder continuity}
For $p>1$, let $u$ be a bounded weak solution of the Dirichlet
problem {\rm (\ref{e:main})}. If $u_0\in C_0(\overline{\Omega})$,
then $u\in C(\overline{\Omega_T})$. Moreover, let $T^*<\infty$ be
the maximal existence time of $u$, then $\limsup_{t\rightarrow
T^*}\|u(\cdot,t)\|_{\infty}=\infty$.
\end{lem}
The existence of the local weak solutions of the Dirichlet problem
(\ref{e:main}) can be proven by Galerkin approximations using the
a priori estimates presented in the book \cite[Theorem III.1.2 and
Theorem IV.1.2]{D}. For details for $p>2$, we refer to
\cite[Theorem 2.1]{Zh}.
To establish the comparison principle, we begin with a simple
lemma that provides the necessary algebraic inequalities.
\begin{lem}\label{lem:algebraic inequalities}
For all $\eta, \eta'\in \mathbb{R}^N$, there holds
\[
(|\eta|^{p-2}\eta-|\eta'|^{p-2}\eta')\cdot(\eta-\eta')
\geq \begin{cases}
c_2(|\eta|+|\eta'|)^{p-2}|\eta-\eta'|^2, & \mbox{if } p>1,\\
c_1|\eta-\eta'|^p, &\mbox{if } p>2,
\end{cases}
\]
where $c_1$ and $c_2$ are positive constants depending only on
$p$.
\end{lem}
For the detailed proof of this lemma, we refer to \cite[Lemma 2.1]{Da}.
\begin{thm}\label{thm:comparison}
Let $u,v\in C(\overline{\Omega_T})$ be weak sub- and
super-solutions of {\rm (\ref{e:main})} respectively and
$u(x,0)\leq v(x,0)$, then $u\leq v$ in $\overline{\Omega_T}$.
\end{thm}
\paragraph{Proof}
We write (\ref{defn:weak solutions Steklov}) for $u, v$ against
the testing function
\[
[(u-v)_h]_+(x,t) =\Big[\frac{1}{h}\int_{t}^{t+h}(u-v)(x,\tau)d\tau\Big]_+,
\]
with $h\in(0,T)$ and $t\in[0,T-h)$.
Differencing the two inequalities for $u$, $v$ and integrating
over $(0,t)$ gives
\begin{align*}
&\int_{\Omega}[(u-v)_h]_+^2(x,t)dx+2\int_0^t\!\int_{\Omega}
[|\nabla u|^{p-2}\nabla u-|\nabla v|^{p-2}\nabla v]_h\cdot
\nabla[(u-v)_h]_+dxd\tau\\
&\leq\int_{\Omega}[(u-v)_h]_+(x,0)dx
+2\lambda\int_0^t\!\int_{\Omega}[|u|^{q-2}u-|v|^{q-2}v]_h[(u-v)_h]_+dxd\tau.
\end{align*}
As $h\rightarrow 0$ the first term on the right tends to zero
since $(u-v)_+\in C(\overline{\Omega_T})$. Applying
Lemma~\ref{lem:Steklov averages} and Lemma~\ref{lem:algebraic
inequalities}, we arrive at
\[
\int_{\Omega}(u-v)_+^2(x,t)dx\leq
c_3\int_0^t\int_{\Omega}(u-v)_+^2dxd\tau.
\]
The Gronwall's Lemma gives the desired result.
\hfill$\diamondsuit$
In the following we consider the positivity of the weak solutions
of the problem
\begin{equation}\label{e:noreaction}
\begin{gathered}
v_t=\nabla(|\nabla v|^{p-2}\nabla v),\quad\mbox{in }
\Omega\times \mathbb{R}_+,\\
v=0, \quad \mbox{on } \partial\Omega\times \mathbb{R}_+,\\
v(x,0)=v_0(x)\geq 0, \quad\mbox{in } \Omega,
\end{gathered}
\end{equation}
where $p>2$. Let
\begin{multline*}
u_S(x-x_0,t-t_0)=A_{p,N}[\tau+(t-t_0)]^{-N/[(p-2)N+p]}\\
\times\Big\{\Big[a^{p/p-1}-
\big(\frac{|x-x_0|}{[\tau+(t-t_0)]^{1/[(p-2)N+p]}}
\big)^{p/(p-1)}\Big]_+\Big\}^{(p-1)/(p-2)},
\end{multline*}
where
\[
A_{p,N}=\big(\frac{p-2}{p}\big)^{(p-1)/(p-2)}
\big\{\frac{1}{(p-2)N+p}\big\}^{1/(p-2)},
\]
$\tau>0$, $a>0$ are arbitrary constants. According to \cite[p. 84
]{SGKM}, $u_S(x-x_0,t-t_0)$ satisfies the first equation of
(\ref{e:noreaction}). Without loss of generality, we assume that
$v_0(x)>0$ in a ball $B(x_0, \delta_1)$. Let
$\overline{x}\in\Omega$ be another point. In the following we
prove that there exists a finite time $\overline{t}$ and a
neighborhood $V_{\overline{x}}$ such that $v(x,\overline{t})>0$ in
$V_{\overline{x}}$. Since $\Omega$ is connected, there exists a
continuous curve $\Gamma:\gamma(s)\subset\Omega$, $0\leq s\leq 1$,
such that $\gamma(0)=x_0$ and $\gamma(1)=\overline{x}$. Denote
$\delta_2=\mathrm{dist}(\Gamma,\partial\Omega)$ and
$\delta=\min\{\delta_1,\delta_2\}$. Let $x_1=\Gamma\cap\partial
B(x_0, \delta/2)$, $\cdots$, $x_k=\Gamma\cap\partial B(x_{k-1},
\delta/2)$, $\cdots$, such that $x_k\neq x_{k-2}$. It is clear
that $\overline{x}\in B(x_n, \delta/2)$ for some $n$. Since
$\overline{B(x_1,\delta/4)}\subset B(x_0,\delta)$, then $v_0(x)>0$
in $\overline{B(x_1,\delta/4)}$. Choose suitable $\tau$ and $a$
such that $\mathop{\rm supp}u_S\subset B(x_1,\delta/4)$ and
$\|u_S\|_{\infty}\leq \min_{x\in B(x_1,\delta/4)}v_0(x)$, then
$u_S(x-x_1,t)$ is a weak sub-solution of (\ref{e:noreaction}) in
$B(x_1,\delta)$. The comparison principle implies that there
exists $\tau_1>0$ such that $v(x,\tau_1)>0$ in $B(x_1,\delta)$.
Thus $v(x,\tau_1)>0$ in $B(x_2,\delta/2)$ since
$B(x_2,\delta/2)\subset B(x_1,\delta)$. Repeating the above
procedure, by finite steps, there exists a finite time
$\overline{t}$ such that $v(x,\overline{t})>0$ in
$B(x_n,\delta/2)$. The proof is completed. Thus we have the
following lemma.
\begin{lem}\label{thm:positivity}
Assume that $v_0\in C_0(\overline{\Omega})$ is nontrivial. Denote
$\Omega_{\rho}=\{x\in\Omega: \mathrm{dist} (x,\partial\Omega)
>\rho\}$. Let $v$ be the weak solution of {\rm
(\ref{e:noreaction})}. Then there exists a finite time
$t_{\rho}>0$ such that $v(x,t_{\rho})>0$ in $\Omega_{\rho}$.
\end{lem}
\paragraph{Proof}
It follows from the above proof that for any $x\in\Omega$, there
exist $t_x>0$ and a neighborhood $V_x\subset\Omega$ such that
$v(x,t_x)>0$ in $V_x$. Since
$\bigcup_{x\in\Omega}V_x\supset\overline{\Omega_{\rho}}$, by the
finite covering theorem,
$\overline{\Omega_{\rho}}\subset\bigcup_{i=1}^n V_{x_i}$. Put
$t_{\rho}=\max\{t_{x_1},\cdots,t_{x_n}\}$. This lemma is proved.
\hfill$\diamondsuit$
\section{The critical case $q=p>2$}
Since in \cite{T, Zh}, the authors have been established that
$q=p>2$ is the critical case of (\ref{e:main}), we first consider
what happens if $q=p$. Zhao showed in \cite{Zh} that if the
Lebesgue measure of $\Omega$ is sufficiently small, (\ref{e:main})
has a global solution and if $\Omega$ is a sufficiently large
ball, it has no global solution. In this section we shall prove
that if $q=p>2$, the crucial role is played by the first
eigenvalue $\lambda_1$ of the eigenvalue problem
(\ref{e:eigenvalue problem}), as in the porous media equations.
First we consider the global existence case
$\lambda\leq\lambda_1$.
\begin{thm}\label{thm:small domains}
Assume that $u_0\in C_0(\overline{\Omega})$ and $q=p>2$. If
\begin{equation}\label{e:small domains}
\lambda<\lambda_1,
\end{equation}
then the unique weak solution of {\rm (\ref{e:main})} is globally
bounded.
\end{thm}
\paragraph{Proof}
Since $\lambda<\lambda_1$, by Lemma~\ref{lem:eigenvalue problem},
there exists $\Omega_{\varepsilon}\Supset\Omega$ such that
$\lambda<\lambda_{1,\varepsilon}<\lambda_1$. Let
$\psi_{\varepsilon}(x)$ be the first eigenfunction with
$\sup_{x\in\Omega}\psi_{\varepsilon}(x)=1$ of the eigenvalue
problem (\ref{e:eigenvalue problem}) with
$\Omega=\Omega_{\varepsilon}$. Choose $K$ to be so large that
$u_0(x)\leq K\psi_{\varepsilon}(x)\equiv v(x)$. For all $00$ large.
\end{rem}
\begin{rem} \rm
Theorem~\ref{thm:small domains} and Remark~\ref{rem:lambda
lambda1} hold for mixed sign solutions as well. To see this, just
use $-K\psi_{\varepsilon}$ in Theorem~\ref{thm:small domains} and
$-K\psi$ in Remark~\ref{rem:lambda lambda1} as weak subsolutions
of (\ref{e:main}).
\end{rem}
Now we consider the blow-up case $\lambda>\lambda_1$. In
\cite[Theorem 4.1]{Zh}, using the so-called ``concavity" method,
the author showed that if $u_0\in W_0^{1,p}(\Omega)\cap
L^{\infty}(\Omega)$ and
\begin{equation}\label{e:Eu}
\mathcal{E}(u_0)=\frac{1}{p}\int_{\Omega}|\nabla u_0|^pdx-
\frac{\lambda}{p}\int_{\Omega}|u_0|^pdx<0,
\end{equation}
then there exists $T^*<\infty$ such that
\begin{equation}\label{e:blow up}
\lim_{t\rightarrow T^*}\parallel u(\cdot,t)\parallel_{L^{\infty}(\Omega)}=\infty.
\end{equation}
See also \cite{L2}. The result is crucial in the proof of the
blow-up case $\lambda>\lambda_1$. The following lemma reproves
the result using another version of the ``concavity" argument.
\begin{lem}\label{lem:blow up}
Assume that $u_0\in W_0^{1,p}(\Omega)\cap C_0(\overline{\Omega})$
satisfies {\rm (\ref{e:Eu})}, then {\rm (\ref{e:blow up})} holds.
\end{lem}
\paragraph{Proof}
Unlike in the usual ``concavity" argument, we put
\[
\mathcal{H}(t)=\frac{1}{2}\int_{\Omega}u^2dx.
\]
Taking $u$ and $u_t$ as testing functions in the weak formulation
of (\ref{e:main}), modulo a Steklov average, gives
\begin{equation} \label{e:first derivative}
\begin{gathered}
\frac{d}{dt}\mathcal{H}(t)=-p\mathcal{E}(u),\quad
\mbox{in } \mathcal{D}'(\mathbb{R}_+),\\
-\frac{d}{dt}\mathcal{E}(u)=\int_{\Omega}(u_t)^2dx,\quad
\mbox{in } \mathcal{D}'(\mathbb{R}_+).
\end{gathered}
\end{equation}
Differentiating (\ref{e:first derivative}), we have
\[
\frac{d^2}{dt^2}\mathcal{H}(t)=-p\frac{d}{dt}\mathcal{E}(u),
\quad \mbox{in } \mathcal{D}'(\mathbb{R}_+).
\]
Note that
\[
\frac{d}{dt}\mathcal{H}(t)=\int_{\Omega}uu_tdx,\quad
\mbox{in } \mathcal{D}'(\mathbb{R}_+).
\]
Then using the H\"{o}lder inequality, we have
\[
\frac{p}{2}\Big[\frac{d}{dt}\mathcal{H}(t)\Big]^2
=\frac{p}{2}\Big[\int_{\Omega}uu_tdx\Big]^2
\leq \frac{p}{2}\int_{\Omega}u^2dx\int_{\Omega}(u_t)^2dx
=\mathcal{H}(t)\frac{d^2}{dt^2}\mathcal{H}(t),
\]
in $\mathcal{D}'(\mathbb{R}_+)$, which implies
\[
\frac{d^2}{dt^2}\mathcal{H}^{1-\frac{p}{2}}(t)\leq 0, \quad\mbox{in } \mathcal{D}'(\mathbb{R}_+).
\]
It follows that $T^*<\infty$. Indeed, otherwise, taking into
account (\ref{e:Eu}) and the continuity of $\mathcal{H}(t)$, there
exists $T<\infty$ such that $\lim_{t\rightarrow
T}\mathcal{H}(t)=\infty$: a contradiction. The proof is
completed. \hfill$\diamondsuit$
The following theorem follows from the above lemma.
\begin{thm}\label{thm:large domains}
For $q=p>2$, the unique weak solution of the Dirichlet problem
{\rm (\ref{e:main})} with nontrivial, nonnegative $u_0\in
C_0(\overline{\Omega})$ blows up in finite time provided that
\begin{equation}\label{e:large domains}
\lambda>\lambda_1.
\end{equation}
\end{thm}
\paragraph{Proof}
Let $\psi(x)>0$ be the first eigenfunction of the eigenvalue
problem (\ref{e:eigenvalue problem}) with
$\max_{x\in\Omega}\psi(x)=1$. Then we have, for any $k>0$,
\[
\mathcal{E}(k\psi)=\frac{1}{p}\int_{\Omega}|\nabla (k\psi)|^pdx-
\frac{\lambda}{p}\int_{\Omega}(k\psi)^pdx
=k^p\frac{\lambda_1-\lambda}{p}\int_{\Omega}\psi^pdx<0.
\]
Therefore, by Lemma~\ref{lem:blow up}, the solution of
(\ref{e:main}) with the initial datum $k\psi(x)$ blows up in
finite time. Given any nontrivial initial datum $u_0(x)\geq 0$,
denote by $T^*$ the maximal existence time of the weak solution of
(\ref{e:main}). Suppose by contradiction that $T^*=\infty$.
Combining (\ref{e:large domains}) with Lemma~\ref{lem:eigenvalue
problem}, there exists $\Omega_{\rho}\Subset\Omega$ such
that $\lambda>\lambda_{1,\rho}>\lambda_1$. By
Lemma~\ref{thm:positivity} and the comparison principle, there
exists $t_{\rho}>0$ such that
\begin{equation}\label{e:positivity}
u(x,t_{\rho})>0, \quad x\in \overline{\Omega_{\rho}}.
\end{equation}
Consider the problem (\ref{e:main}) in $\Omega_{\rho}$ with the
initial datum $k\psi_{\rho}$, where $\psi_{\rho}$ is the first
eigenfunction of (\ref{e:eigenvalue problem}) in $\Omega_{\rho}$
with $\max\psi_{\rho}=1$. We know that the weak solution
$u_{\rho}(x,t)$ blows up in finite time for any $k>0$. Choose $k$
so small that $u(x,t_{\rho})\geq k\psi_{\rho}$ in $\Omega_{\rho}$,
then a contradiction follows from the comparison principle. The
theorem is proved. \hfill$\diamondsuit$
\section{Global nonexistence for large initial values}
In \cite{Zh}, the author used the so-called ``concavity" method to
prove that if $q>p>2$, the unique weak solution of (\ref{e:main})
blows up in finite time if $\mathcal{E}(u_0)<0$. In this section
we use the method of comparison with suitable blowing-up
self-similar sub-solution to give a uniform treatment for all
$p>1$. In the following theorem we construct a suitable
blowing-up self-similar subsolution.
\begin{thm}\label{thm:large initial values}
Assume that $q>p>1$ and $q>2$. Given a nonnegative, nontrivial
initial datum $u_0\in C_0(\overline{\Omega})$, there exists
$\mu_0>0$ (depending only upon $u_0$) such that for all
$\mu>\mu_0$, the weak solution $u(x,t)$ of the Dirichlet problem
{\rm (\ref{e:main})} with initial data $\mu u_0$ blows up in a
finite time $T^*$. Moreover, there is some $C(u_0)>0$ such that
\begin{equation}\label{e:estimate of T^*}
T^*(\mu u_0)\leq \frac{C(u_0)}{\mu^{p-1}},\quad
\mu\rightarrow\infty.
\end{equation}
\end{thm}
\paragraph{Proof}
We seek an unbounded self-similar sub-solution of (\ref{e:main})
on $[t_0,1/\varepsilon)\times \mathbb{R}^N$,
$00$ and $t_0$ to be determined.
First note that $\forall t\in [t_0,1/\varepsilon)$,
\begin{equation}\label{e:Supp}
{\rm supp}(v(\cdot,t))\subset \overline{B}(0,R(1-\varepsilon
t_0)^m),
\end{equation}
with $R=(A^{\sigma-1}(\sigma+A))^{1/\sigma}$.
We compute (by setting $y=|x|/(1-\varepsilon t)^m$ for
convenience),
\begin{align*}
Pv &= v_t-\nabla(|\nabla v|^{p-2}\nabla v)-\lambda
|v|^{q-2}v\\
&= \frac{\varepsilon(kV(y)+myV'(y))}{(1-\varepsilon t)^{k+1}}
-\frac{(|V'(y)|^{p-2}V'(y))'+(N-1)|V'(y)|^{p-2}V'(y)/y}
{(1-\varepsilon t)^{(k+m)(p-1)+m}}\\
&\quad-\frac{\lambda}{(1-\varepsilon t)^{k(q-1)}}V^{q-1}(y).
\end{align*}
It is easy to verify that
\begin{gather}
1\leq V(y)\leq 1+\frac{A}{\sigma},\quad -1\leq V'(y)\leq 0,\quad
\mbox{for } 0\leq y\leq A, \nonumber\\
0\leq V(y)\leq 1,\quad -\frac{R^{\sigma-1}}{A^{\sigma-1}}\leq
V'(y)\leq -1,\quad \mbox{for } A\leq y\leq R,
\label{e:p-Laplace V} \\
(|V'(y)|^{p-2}V'(y))'+(N-1)|V'(y)|^{p-2}V'(y)/y
=-\frac{N}{A}\chi_{\{y\frac{k}{m},\quad
0<\varepsilon<\frac{\lambda}{k(1+A/\sigma)}.
\end{gather*}
For $t_0\leq t<1/\varepsilon$ with $t_0$ sufficiently close to
$1/\varepsilon$, we have, in the case $0\leq y\leq A$,
\[
Pv(x,t)\leq \frac{\varepsilon k(1+A/\sigma)-\lambda}{(1-\varepsilon t)^{k+1}}
+\frac{N/A}{(1-\varepsilon t)^{(k+m)(p-1)+m}}\leq 0.
\]
In the case $A\leq yR$. Since $v(x,t)$ is
continuous and piecewise $C^2$ and due to the sign of the singular
measure in (\ref{e:p-Laplace V}) , then $v(x,t)$ is a local weak
sub-solution of the Dirichlet problem (\ref{e:main}).
Now by translation, one can assume without loss of generality that
$0\in \Omega$ and $u_0(0)=\max_{x\in \Omega}u_0(x)$. It follows
from the continuity of $u_0$ that
\[
u_0(x)\geq C,\quad \mbox{for all } x\in B(0,\rho),
\]
for some ball $B(0,\rho)\Subset\Omega$ and some constant
$C>0$. Taking $t_0$ still closer to $1/\varepsilon$ if necessary,
one can assume that $B(0,R(1-\varepsilon t_0)^m)\subset
B(0,\rho)$. Therefore,
\begin{equation}\label{e:large mu}
\mu u_0(x)\geq \mu C \geq \frac{V(0)}{(1-\varepsilon
t_0)^k}\geq v(x,t_0),\quad x\in \Omega,
\end{equation}
for all $\mu>\mu_0=V(0)/C(1-\varepsilon t_0)^k$. By the
Theorem~\ref{thm:comparison}, it follows that
\[
u(x,t)\geq v(x,t+t_0),\quad x\in \Omega,\;
0V(0)/C(1-\varepsilon t_0)^k$, by the previous calculation,
whenever $t_0\leq T <1/\varepsilon$ such that $\mu\geq
V(0)/C(1-\varepsilon T)^k$, we have $T^*(\mu u_0)\leq
1/\varepsilon-T$. Then
\[
T^*(\mu u_0)\leq \frac{1}{\varepsilon}\left(\frac{1+A/\sigma}{\mu
C}\right)^{q-2},\quad
\mbox{for all } \mu\geq \frac{V(0)}{C(1-\varepsilon
t_0)^{1/(q-2)}}.
\]
The proof is completed. \hfill$\diamondsuit$
Under the conditions of the above theorem, the solutions of
(\ref{e:main}) exist globally for small initial data.
\begin{thm}
Assume that $q>p>1$ and $q>2$. There exists $\eta>0$ such that the
solution of {\rm (\ref{e:main})} exists globally if
$\|u_0\|_{\infty}<\eta$.
\end{thm}
\paragraph{Proof}
Let $\Omega_{\varepsilon}\Supset\Omega$ be a bounded domain
and $\psi_{\varepsilon}$ be the first eigenfunction of
(\ref{e:eigenvalue problem}) on $\Omega_{\varepsilon}$ with
$\sup_{x\in \Omega}\psi_{\varepsilon}(x)=1$. Denote
$\delta=\inf_{x\in \Omega}\psi_{\varepsilon}(x)$. Choose
$k^{q-p}=\lambda_1/\lambda$ and $\eta=k\delta$. A direct
computation yields that $k\psi_{\varepsilon}(x)$ and
$-k\psi_{\varepsilon}(x)$ is a weak super- and sub-solution of
(\ref{e:main}) respectively. This theorem follows the comparison
principle. \hfill$\diamondsuit$
\begin{thm}
Assume that $2