\documentclass[reqno]{amsart} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2003(2003), No. 45, pp. 1--8.\newline ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu \newline ftp ejde.math.swt.edu (login: ftp)} \thanks{\copyright 2003 Southwest Texas State University.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE--2003/45\hfil Large-time dynamics of discrete-time neural networks] {Large-time dynamics of discrete-time neural networks with McCulloch-Pitts nonlinearity} \author[Binxiang Dai, Lihong Huang, \& Xiangzhen Qian \hfil EJDE--2003/45\hfilneg] {Binxiang Dai, Lihong Huang, \& Xiangzhen Qian} % In alphabetical order. \address{College of Mathematics and econometrics, Hunan University, Changsha, Hunan 410082, China} \email[Binxiang Dai]{bxdai@hnu.net.cn} \email[Lihong Huang]{lhhuang@hnu.net.cn} \email[Xiangzhen Qian]{xzqian@hnu.net.cn} \date{} \thanks{Submitted December 17, 2002. Published April 22, 2003.} \thanks{Partially supported by grant 02JJY2012 from the Hunan Province Natural Science Foundation, \newline\indent and by grant 10071016 from the National Natural Science Foundation of China.} \subjclass[2000]{39A10, 39A12} \keywords{Discrete neural networks, dynamics} \begin{abstract} We consider a discrete-time network system of two neurons with McCulloch-Pitts nonlinearity. We show that if a parameter is sufficiently small, then network system has a stable periodic solution with minimal period 4k, and if the parameter is large enough, then the solutions of system converge to single equilibrium. \end{abstract} \maketitle \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \section{Introduction} We consider the following discrete-time neural network system \[ \begin{gathered} x(n)= \lambda x(n-1)+(1- \lambda)f(y(n-k)), \\ y(n)= \lambda y(n-1)-(1- \lambda)f(x(n-k), \end{gathered} \tag{1.1} \] where the signal function f is given by the following McCulloch-Pitts nonlinearity \[ f(\zeta)=\begin{cases} -1,& \zeta>\sigma,\\ 1,& \zeta\leq\sigma. \end{cases}\tag{1.2} \] in which $\lambda \in (0,1)$ represents the internal decay rate, the positive integer $k$ is the synaptic transmission delay,and $\sigma$ is the threshold. System (1.1) can be regarded as the discrete analog of the following artificial neural network of two neurons with delayed feedback and McCulloch-Pitts nonlinearity signal function \[ \begin{gathered} \frac{dx}{dt}=-x(t)+f(y(t-\tau)), \\ \frac{dy}{dt}=-y(t)-f(x(t-\tau)). \end{gathered}\tag{1.3} \] where $\frac{dx}{dt}$ and $\frac{dy}{dt}$ are replaced by the backward difference $x(n)-x(n-1)$ and $y(n)-y(n-1)$ respectively. Model (1.3) has interesting applications in, for example, image processing of moving objects, and has been extensively studied in the literature (see [1-3] and reference herein). But, to the best of our knowledge, the dynamics of the discrete model (1.1) are less studied (see [4,5] ).For other discrete neural networks, we refer to [6,7]. For the sake of convenience, let $Z$ denote the set of all integers. For any $a,b\in Z$, $a\leq b$ define $N(a)=\{a,a+1,\cdots\}$, $N(a,b)=\{a,a+1,\cdots ,b\}$,and $N=N(0)$. Also, let $X=\{\phi|\phi=(\varphi,\psi):N(-k,-1) \rightarrow R^2\}$. For the given $\sigma \in R$, let \begin{gather*} R^+_\sigma=\{\varphi\mid \varphi:N(-k,-1)\rightarrow R \mbox{ and } \varphi(i)-\sigma >0, \mbox{ for } i \in N(-k,-1)\},\\ R^-_\sigma=\{\varphi\mid \varphi:N(-k,-1)\rightarrow R \mbox{ and } \varphi(i)-\sigma \leq 0,\mbox{ for } i \in N(-k,-1)\},\\ X^{\pm,\pm}_\sigma=\{\phi\in X \mid \phi=(\varphi,\psi),\varphi\in R^\pm _\sigma \mbox{ and } \psi \in R^\pm_\sigma\},\\ X_\sigma=X^{+,+}_\sigma \cup X^{+,-}_\sigma \cup X^{-,+}_\sigma \cup X^{-,-}_\sigma. \end{gather*} By a solution of (1.1), we mean a sequence $\{(x(n),y(n))\}$ of points in $R^2$ that is defined for all $n\in N(-k)$ and satisfies (1.1) for $n\in N$ .Clearly, for any $\phi=(\varphi,\psi)\in X_\sigma$ ,system (1.1) has an unique solution $(x^\phi(n),y^\phi(n))$ satisfying the initial conditions $$ x^\phi(i)=\varphi(i),\quad y^\phi(i)=\psi(i),\quad \mbox{for } i \in N(-k,-1). $$ Our goal is to determine the large time behaviors of $(x^{\phi}(n),y^{\phi} (n))$ for every $\phi\in X_\sigma$.Our analysis shows that for all $\phi= (\varphi,\psi)\in X_\sigma$, the behaviors of $(x^\phi(n),y^\phi(n))$ as $n \rightarrow \infty$ are completely determined by the value $(\varphi(-1), \psi(-1))$ and the size of $\sigma$. \\The main results of this paper as follows. \begin{theorem} \label{thm1} Let $|\sigma|\leq \frac{ 1+\lambda^{2k+1}-2\lambda} {1-\lambda^{2k+1}}$, $\phi=(\varphi,\psi)\in X_\sigma$ satisfy: \begin{enumerate} \item $\varphi(-1)\leq \frac{\sigma+1}{\lambda}-1$, $\psi(-1)\leq \frac{\sigma+1-2\lambda}{\lambda^{k+1}}+1$ for $\phi \in X^{+,+}_\sigma$; \item $\varphi(-1) > \frac{\sigma-1}{\lambda^{k+1}}+1$, $\psi(-1)\leq \frac{\sigma+1}{\lambda}-1$ for $\phi \in X^{-,+}_\sigma$; \item $\varphi(-1) > \frac{\sigma-1}{\lambda}+1$, $\psi(-1) > \frac{\sigma-1+2\lambda}{\lambda^{k+1}}-1$ for $\phi \in X^{-,-}_\sigma$; \item $\varphi(-1)\leq \frac{\sigma+1}{\lambda^{k+1}}-1$, $ \psi(-1)> \frac{\sigma-1}{\lambda}+1$ for $\phi \in X^{+,-}_\sigma$. \end{enumerate} Then there exists $\phi_0=(\varphi_0,\psi_0)\in X_\sigma$ such that the solution $\{x^{\phi_{0}}(n),y^{\phi_{0}}(n)\}$ of (1.1) with initial value $\phi_0=(\varphi_0,\psi_0)$ is $4k$ periodic. Moreover, for any solutions $\{(x^\phi(n),y^\phi(n))\}$ of (1.1) with initial value $\phi \in X_\sigma$, we have \[ \lim_{n\rightarrow\infty}[x^\phi(n)-x^\phi_{0}(n)]=0 \,\quad \lim_{n\rightarrow\infty}[y^\phi(n)-y^\phi_{0}(n)]=0. \] \end{theorem} \begin{theorem} \label{thm2} Let $|\sigma|>1$ and $\phi=(\varphi,\psi)\in X_\sigma$. Then $\lim_{n\rightarrow\infty}(x^\phi(n),y^\phi(n))=(1,-1)$, if $\sigma>1$; and $\lim_{n\rightarrow\infty}(x^\phi(n),y^\phi(n))=(-1,1)$, if $\sigma < -1 $. \end{theorem} \begin{theorem} \label{thm3} Let $\sigma=1$, Then $\lim_{n\rightarrow\infty}(x^\phi(n),y^\phi(n))=(1,-1)$, if $\phi\in X^{+,+}_{\sigma} \cup X^{-,+}_{\sigma} \cup X^{-,-}_\sigma $; and $\lim_{n\rightarrow\infty}(x^ \phi(n),y^ \phi(n))=(1,1)$, if $\phi\in X^{+,-}_\sigma$. \end{theorem} \begin{theorem} \label{thm4} Let $\sigma=-1$, Then $ \lim_{n \rightarrow\infty}(x^\phi(n),y^\phi(n))=(-1,1), $ if $\phi \in X^{+,+}_\sigma \cup X^{+,-}_\sigma \cup X^{-,-}_\sigma$; and $\lim_{n \rightarrow \infty }(x^\phi(n),y^\phi(n))=(-1,-1)$. if $\phi \in X^{-,+}_\sigma $. \end{theorem} For the sake of simplicity, in the remaining part of this paper, for a given $n \in N $ and a sequence $z(n)$ defined on $N(-k)$, we define $z_{n}:N(-k,-1) \rightarrow R$ by $z_{n}(m)=z(n+m)$ for all $m \in N(-k,-1)$. \section{Preliminary Lemmas} In this section, we establish several technical lemmas, important in the proofs of our main results. Assume $n_0 \in N$, we first note the difference equation \[ x(n)=\lambda x(n-1)-1+\lambda, \quad n \in N(n_0) \tag{2.1} \] with initial condition $x(n_{0}-1)=a$ is given by \[ x(n)=(a+1)\lambda^{n-n_{0}+1}-1, \quad n \in N(n_0). \tag{2.2} \] And that the solution of the difference equation \[ x(n)=\lambda x(n-1)+1-\lambda,\quad n \in N(n_0) \tag{2.3} \] with initial condition $x(n_{0}-1)=a$ is given by \[ x(n)=(a-1)\lambda^{n-n_{0}+1}+1,\quad n \in N(n_0). \tag{2.4} \] Let $(x(n),y(n))$ be a solution of (1.1) with a given initial value $\phi=(\varphi,\psi)\in X_\sigma$.Then we have the following: \begin{lemma} \label{lm1} Let $-1<\sigma\leq 1$. If there exists $n_0 \in N$ such that $( x_{n_{0}},y_{n_{0}})\in X^{+,+}_{\sigma}$, then there exists $n_1 \in N(n_0)$ such that $(x_{n_{1}+k},y_{n_{1}+k})\in X^{-,+} _{\sigma}$. Moreover, if $x(n_{0}-1)\leq \frac{\sigma+1}{\lambda}-1$,then $(x_{n_{0}+k},y_{n_{0}+k})\in X^{-,+}_{\sigma}$. \end{lemma} \begin{proof} Since $(x_{n_{0}},y_{n_{0}})\in X^{+,+}_{\sigma}$, for $n \in N(n_0,n_0+k-1)$ we have \[ \begin{gathered} x(n)=\lambda x(n-1)-1+\lambda ,\\ y(n)=\lambda y(n-1)+1-\lambda, \end{gathered}\tag{2.5} \] By (2.2) and (2.4), for $n \in N(n_0,n_0+k-1)$, we get \[ \begin{gathered} x(n)=[x(n_0-1)+1]\lambda^{n-n_{0}+1}-1,\\ y(n)=[y(n_0-1)-1]\lambda^{n-n_{0}+1}+1. \end{gathered} \tag{2.6} \] We claim that there exists a $n_1 \in N(n_0)$ such that $x(n)>\sigma$ for $n \in N(n_0-k,n_1-1)$ and $x(n_1) \leq \sigma$. Assume, for the sake of contradiction, that $x(n)>\sigma$ for all $n \in N(n_0-k)$. From (1.1) and (1.2), we have $$ y(n)=\lambda y(n-1)+1-\lambda,\quad n \in N(n_0), $$ which yield that $$ y(n)=[y(n_0-1)-1]\lambda^{n-n_{0}+1}+1 >(\sigma-1)\lambda^{n-n_{0}+1}+1>\sigma,\quad n \in N(n_0). $$ Therefore, for all $n \in N(n_0-k) $, we have $y(n)>\sigma$. By(1.1), then $$ x(n)=\lambda x(n-1)-1+\lambda ,\quad n \in N(N_0), $$ which implies that $$ x(n)=[x(n_0-1)+1]\lambda^{n-n_{0}+1}-1,\quad n \in N(N_0). $$ Therefore, $\lim_{n \rightarrow \infty}x(n)=-1$, which contradicts $\lim_{n \rightarrow \infty}x(n) \geq \sigma>-1$. This proofs our claim. >From (1.1) and (1.2), we have $$ y(n)=\lambda y(n-1)+1-\lambda,\quad n\in N(n_0,n_1+k-1), $$ which implies that $$ y(n)=[y(n_{0}-1)-1]\lambda^{n-n_0+1}+1,\quad n\in N(n_0,n_1+k-1). $$ Note that $y_{n_{0}} \in R^+_\sigma$ and $\sigma<1 $ implies \[ y(n)>\sigma,\quad n\in N(n_{0}-k,n_{1}+k-1), \tag{2.7} \] that is $y_{n_1+k}\in R^+_\sigma$. This, together with (2.1) and (2.2), implies that $x(n) \leq \sigma $ for $n \in N(n_1,n_1+2k-1)$, that is $x_{n_1+k}\in R^-_\sigma$. So $(x_{n_1+k}, y_{n_1+k})\in X^{-,+}_\sigma$. In addition, if $x(n_0-1) \leq \frac{\sigma +1}{\lambda}-1$, then from (2.6) we get $y_{{n_0}+k}\in R^+_\sigma$ and $x(n_0)=(x(n_0-1)+1)\lambda -1 \leq \sigma$, Note that $x(n_0-1)+1>\sigma+1>0,$(2.6) implies that $$ x(n_0+k-1)\leq x(n_0+k-2)\leq \cdots \leq x(n_0) \leq \sigma, $$ that is $x_{n_{0}+k} \in R^-_\sigma$. So $(x_{n_{0}+k},y_{n_{0}+k}) \in X^{-,+}_\sigma$. This completes the proof. \end{proof} \begin{lemma} \label{lm2} Let $\sigma>-1$. If there exists $n_0 \in N$ such that $(x_{n_{0}},y_{n_{0}}) \in X^{-,+}_\sigma$,then there exists $n_1 \in N(n_0)$,such that $(x_{n_{1}+k},y_{n_{1}+k})\in X^{-,-}_\sigma$. Moreover, if $y(n_0-1)\leq \frac{\sigma+1}{\lambda}-1$, then $(x_{n_{0}+k},y_{n_{0}+k})\in X^{-,-}_\sigma$. \end{lemma} \begin{proof} Since $(x_{n_{0}},y_{n_{0}})\in X^{-,+}_\sigma$, from (1.1) and (1.2), it follows that for $n \in N(n_0,n_0+k-1)$, \[ \begin{gathered} x(n)=\lambda x(n-1)-1+\lambda,\\ y(n)=\lambda y(n-1)-1+\lambda. \end{gathered}\tag{2.8} \] So \[\begin{gathered} x(n)=[x(n_0-1)+1]\lambda^{n-n_{0}+1}-1,\\ y(n)=[y(n_0-1)+1]\lambda^{n-n_{0}+1}-1. \end{gathered}\tag{2.9} \] Note that $(x_{n_0},y_{n_0})\in X^{-,+}_\sigma$ implies $x(n_0-1) \leq \sigma$, $y(n_0-1)> \sigma$. Similar to the proof of Lemma \ref{lm1}, we know that there exists $n_1 \in N(n_0)$ such that $y(n)>\sigma$ for $n\in N(n_0-k,n_1-1)$ and $y(n_1) \leq \sigma$. Then (2.8) and (2.9) hold for $n \in N(n_0,n_1+k-1)$. So $(x_{n_{1}+k},y_{n_{1}+k})\in X^{-,-}_\sigma$. Moreover, if $y(n_0-1)\leq \frac{\sigma+1}{\lambda}-1$, then $x(n)\leq \sigma$ for $n \in N (n_0,n_0+k-1)$, that is $x_{n_{0}+k} \in R^-_\sigma$, and $$ y(n_0)=(y(n_0-1)+1)\lambda -1 \leq \sigma. $$ By (2.9) we get $$ y(n_0+k-1)\leq y(n_0+k-2) \leq \cdots \leq y(n_0) \leq \sigma, $$ which implies $y_{n_{0}+k}\in R^-_\sigma$. So $(x_{n_{0}+k},y_{n_{0}+k})\in X^{-,-}_\sigma$. \end{proof} By a similar argument as that in the proofs of Lemmas \ref{lm1} and \ref{lm2}, we obtain the following result. \begin{lemma} \label{lm3} Let $-1 \leq \sigma <1$, if there exists $n_0 \in N$ such that $(x_{n_{0}}, y_{n_{0}})\in X^{-,-}_\sigma$, then there exists $n_1 \in N(n_0)$, such that $(x_{n_{1}+k},y_{n_{1}+k}) \in X^{+,-}_\sigma$. Moreover, if $x(n_0-1)> \frac{\sigma-1}{\lambda}+1$, then $(x_{n_{0}+k},y_{n_{0}+k}) \in X^{+,-}_\sigma$. \end{lemma} \begin{lemma} \label{lm4} Let $\sigma<1$,if there exists $n_0 \in N$ such that $(x_{n_{0}},y_{n_{0}}) \in X^{+,-}_\sigma$, then there exists $n_1 \in N(n_0)$, such that $(x_{n_{1}+k},y_{n_{1}+k}) \in X^{+,+}_\sigma$. Moreover, if $y(n_0-1)>\frac{\sigma-1}{\lambda}+1$, then $(x_{n_{0}+k},y_{n_{0}+k}) \in X^{+,+}_\sigma$. \end{lemma} \section{Proofs of Main Results} \begin{proof}[Proof of Theorem \ref{thm1}] In view of Lemmas 1-4, it suffices to consider the solution $\{(x(n),y(n))\}$ of (1.1) with initial value $\phi =(\varphi,\psi)\in X^{+,+}_\sigma$. >From Lemma1, we obtain $(x_k,y_k)\in X^{-,+}_\sigma$, which implies that for $n \in N(0,k-1)$, \[ \begin{gathered} x(n)=[\varphi(-1)+1]\lambda^{n+1}-1,\\ y(n)=[\psi(-1)-1]\lambda^{n+1}+1\,. \end{gathered} \tag{3.1} \] It follows that \begin{gather*} x(k-1)=[\varphi(-1)+1]\lambda^k-1,\\ y(k-1)=[\psi(-1)-1]\lambda^k+1. \end{gather*} Using $\psi(-1) \leq \frac{\sigma+1-2\lambda}{\lambda^{k+1}}$, then $y(k-1) \leq \frac{\sigma+1}{\lambda}-1$. Again by Lemma \ref{lm2}, we get $(x_{2k},y_{2k})\in X^{-,-}_\sigma$, which implies that for $n\in N(k,2k-1)$, \[\begin{gathered} x(n)=[x(k-1)+1]\lambda^{n-k+1}-1,\\ y(n)=[y(k-1)+1]\lambda^{n-k+1}-1\,. \end{gathered} \tag{3.2} \] It follows that \begin{gather*} x(2k-1)=[x(k-1)+1]\lambda^k-1,\\ y(2k-1)=[y(k-1)+1]\lambda^k-1. \end{gather*} Note that $x(k-1)>(\sigma +1)\lambda^k-1$ and $\sigma \leq \frac{1+\lambda^{2k+1}-2\lambda}{1-\lambda^{2k+1}}$ yield $$ x(2k-1)>(\sigma+1)\lambda^{2k}-1 \geq \frac{\sigma-1}{\lambda}+1. $$ By Lemma \ref{lm3}, we obtain $(x_{3k},y_{3k})\in X^{+,-}_\sigma$, which implies that for $n \in N(2k,3k-1)$, \[\begin{gathered} x(n)=[x(2k-1)-1]\lambda^{n-2k+1}+1,\\ y(n)=[y(2k-1)+1]\lambda^{n-2k+1}-1\,. \end{gathered} \tag{3.3} \] It follows that \begin{gather*} x(3k-1)=[x(2k-1)-1]\lambda^k+1,\\ y(3k-1)=[y(2k-1)+1]\lambda^k-1. \end{gather*} Note that $y(2k-1)>(\sigma+1)\lambda^k-1$ and $\sigma \leq \frac{1+\lambda^{2k+1}-2\lambda}{1-\lambda^{2k+1}}$, we have $$ y(3k-1)>(\sigma+1)\lambda^{2k}-1 \geq \frac{\sigma-1}{\lambda}+1. $$ By Lemma \ref{lm4}, we obtain $(x_{4k},y_{4k})\in X^{+,+}_\sigma$, which implies that for $n\in N(3k,4k-1)$, \[\begin{gathered} x(n)=[x(3k-1)-1]\lambda^{n-3k+1}+1,\\ y(n)=[y(3k-1)-1]\lambda^{n-3k+1}+1\,. \end{gathered}\tag{3.4} \] It follows that \begin{gather*} x(4k-1)=[x(3k-1)-1]\lambda^{k}+1,\\ y(4k-1)=[y(3k-1)-1]\lambda^{k}+1. \end{gather*} Note that $x(3k-1)\leq (\sigma -1)\lambda^k+1$ and $\sigma \geq -\frac{1+\lambda^{2k+1}-2\lambda}{1-\lambda^{2k+1}}$, we have $$ x(4k-1)\leq (\sigma -1)\lambda^{2k}+1 \leq \frac{\sigma+1}{\lambda}-1. $$ Again by Lemma1, we obtain $(x_{5k},y_{5k})\in X^{-,+}_\sigma$, which implies that for $n\in N(4k,5k-1)$, \[\begin{gathered} x(n)=[x(4k-1)+1]\lambda^{n-4k+1}-1,\\ y(n)=[y(4k-1)-1]\lambda^{n-4k+1}+1\,. \end{gathered}\tag{3.5} \] It follows that \begin{gather*} x(5k-1)=[x(4k-1)+1]\lambda^k-1,\\ y(5k-1)=[y(4k-1)-1]\lambda^k+1. \end{gather*} In general, for $i \in N(1)$, we can get: \begin{gather*} x(n)=[\varphi (-1)+1]\lambda^{n+1}+ 2\lambda^{n+1}\frac{\lambda^{-4(i-1)k}-1}{\lambda^{2k}+1}-1,\\ y(n)=[\psi (-1)-1]\lambda^{n+1}+ 2\lambda^{n+k+1}\frac{\lambda^{-(4i-2)k}+1}{\lambda^{2k}+1}-1 \end{gather*} for $n\in N((4i-3)k,(4i-2)k-1)$; \begin{gather*} x(n)=[\varphi (-1)+1]\lambda^{n+1}- 2\lambda^{n+1}\frac{\lambda^{-(4i-2)k}+1}{\lambda^{2k}+1}+1,\\ y(n)=[\psi (-1)-1]\lambda^{n+1}+ 2\lambda^{n+k+1}\frac{\lambda^{-(4i-2)k}+1}{\lambda^{2k}+1}-1 \end{gather*} for $n\in N((4i-2)k,(4i-1)k-1)$; \begin{gather*} x(n)=[\varphi (-1)+1]\lambda^{n+1}- 2\lambda^{n+1}\frac{\lambda^{-(4i-2)k}+1}{\lambda^{2k}+1}+1,\\ y(n)=[\psi (-1)-1]\lambda^{n+1}- 2\lambda^{n+k+1}\frac{\lambda^{-4ik}-1}{\lambda^{2k}+1}+1, \end{gather*} for $n \in N((4i-1)k,4ik-1)$; \begin{gather*} x(n)=[\varphi (-1)+1]\lambda^{n+1}+ 2\lambda^{n+1}\frac{\lambda^{-4ik}-1}{\lambda^{2k}+1}-1,\\ y(n)=[\psi(-1)-1]\lambda^{n+1}- 2\lambda^{n+k+1}\frac{\lambda^{-4ik}-1}{\lambda^{2k}+1}+1, \end{gather*} for $n\in N(4ik,(4i+1)k-1)$.\\ Let $\phi_0=(\varphi_0,\psi_0)\in X^{+,+}_\sigma$, with $$ \varphi_0(-1)=\frac{1-\lambda^{2k}}{1+\lambda^{2k}}, \psi_0(-1)=\frac{1+\lambda^{2k}-2\lambda^k}{1+\lambda^{2k}}. $$ Then \begin{gather*} x^{\phi_{0}}(n)=\frac{2}{1+\lambda^{2k}}\lambda^{n-4(i-1)k+1}-1,\\ y^{\phi_{0}}(n)=\frac{2}{1+\lambda^{2k}}\lambda^{n-(4i-3k)+1}-1 \end{gather*} for $n\in N((4i-3)k,(4i-2)k-1)$; \begin{gather*} x^{\phi_{0}}(n)=-\frac{2}{1+\lambda^{2k}}\lambda^{n-(4i-2)k+1}+1,\\ y^{\phi_{0}}(n)=\frac{2}{1+\lambda^{2k}}\lambda^{n-(4i-3k)+1} -1 \end{gather*} for $n \in N((4i-2)k,(4i-1)k-1)$; \begin{gather*} x^{\phi_{0}}(n)=-\frac{2}{1+\lambda^{2k}}\lambda^{n-(4i-2)k+1}+1,\\ y^{\phi_{0}}(n)=-\frac{2}{1+\lambda^{2k}}\lambda^{n-(4i-1)k+1}+1 \end{gather*} for $n \in N((4i-1)k,4ik-1)$; \begin{gather*} x^{\phi_{0}}(n)=\frac{2}{1+\lambda^{2k}}\lambda^{n-4ik+1}-1,\\ y^{\phi_{0}}(n)=-\frac{2}{1+\lambda^{2k}}\lambda^{n-(4i-1)k+1}+1, \end{gather*} for $n \in N(4ik,(4i+1)k-1)$. Clearly, $\{(x^{\phi_0}(n),y^{\phi_0}(n))\}$ is periodic with minimal period $4k$, and as $n \rightarrow \infty$, \begin{gather*} x^\phi (n)-x^{\phi_0}(n)=[\varphi(-1)+1]\lambda^{n+1}- \frac{2\lambda^{n+1}}{1+\lambda^{2k}}\rightarrow 0, \\ y^\phi(n)-y^{\phi_{0}}(n)=[\psi(-1)-1]\lambda^{n+1}+ \frac{2\lambda^{n+k+1}}{1+\lambda^{2k}} \rightarrow 0. \end{gather*} This completes the proof of Theorem \ref{thm1}. \end{proof} \begin{proof}[Proof of Theorem \ref{thm2}] We prove only the case where $\sigma > 1$, the case where $\sigma < -1$ is similar. We distinguish several cases. \noindent{\bf Case 1} $\phi = (\varphi,\psi) \in X^{-,-}_\sigma$. In view of (1.1), for $n \in N(0,k-1)$ we have \[ \begin{gathered} x(n)=\lambda x(n-1)+1-\lambda,\\ y(n)=\lambda y(n-1)-1+\lambda\,. \end{gathered} \tag{3.6} \] which yields that for $n \in N(0,k-1)$, \[ \begin{gathered} x(n)=[\varphi(-1)-1]\lambda^{n+1}+1,\\ y(n)=[\psi(-1)+1]\lambda^{n+1}-1\,. \end{gathered}\tag{3.7} \] This implies that $x_k(m) \leq \sigma, y_k(m) \leq \sigma $ for $m \in N(-k,-1)$, therefore $(x_k,y_k)\in X^{-,-}_\sigma$. Repeating the above argument on $N(0,k-1),N(k,2k-1),\cdots ,$consecutively, we can obtain that $(x_n,y_n)\in X^{-,-}_\sigma$ for all $n \in N$. Therefore, (3.7) holds for all $n \in N$, and hence $$ \lim_{n \rightarrow \infty}(x(n),y(n))=(1,-1). $$ {\bf Case 2} $\phi=(\varphi, \psi)\in X^{-,+}_\sigma \cup X^{+,-}_\sigma \cup X^{+,+}_\sigma$. By (1.1), for $n\in N$, we have \begin{gather*} x(n)\leq \lambda x(n-1)+1-\lambda,\\ y(n)\leq \lambda y(n-1)+1-\lambda\,. \end{gather*} By induction, this implies \[ \begin{gathered} x(n)\leq [\varphi (-1)-1]\lambda^{n+1}+1,\\ y(n)\leq [\psi (-1)-1]\lambda^{n+1}+1\,. \end{gathered} \tag{3.8} \] Since \begin{gather*} \lim_{n \rightarrow \infty}[(\varphi(-1)-1)\lambda^{n+1}+1]=1< \sigma,\\ \lim_{n \rightarrow \infty}[(\psi(-1)-1)\lambda^{n+1}+1]=1< \sigma, \end{gather*} then there exists $m \in N(1)$, such that $x(n)< \sigma ,y(n)< \sigma $ for $n \in N(m)$. This implies that $(x_{n+k},y_{n+k})\in X^{-,-}_\sigma$ for all $n \in N(m)$. Thus, by case 1, we have $$ \lim_{n \rightarrow \infty}(x(n),y(n))=(1,-1). $$ This completes the proof of Theorem \ref{thm2}. \end{proof} \begin{proof}[Proof of Theorem \ref{thm3}] We distinguish several cases. \noindent{\bf Case 1} $\phi =(\varphi, \psi)\in X^{-,-}_\sigma$. Using a similar argument to that in Case 1 for the proof of Theorem \ref{thm2}, we can show the conclusion is true. \noindent{\bf Case 2} $\phi =(\varphi,\psi)\in X^{-,+}_\sigma$. By lemma 2, there exists $n_0 \in N$ such that $(x_{n_{0}+k},y_{n_{0}+k})\in X^{-,-}_\sigma$. Thus, it follows from Case 1 that conclusion is true. \noindent{\bf Case 3} $\phi=(\varphi, \psi)\in X^{+,+}_\sigma $. By Lemma \ref{lm1}, there exists $n_0 \in N$, such that $(x_{n_{0}+k},y_{n_{0}+k})\in X^{-,+}_\sigma $. Thus, it follows from Case 2 that the conclusion is true. \noindent{\bf Case 4} $\phi =(\varphi, \psi)\in X^{+,-}_\sigma $. By (1.1) and (1.2) we have that for $n\in N(0,k-1)$, \begin{gather*} x(n)=\lambda x(n-1)+1-\lambda,\\ y(n)=\lambda y(n-1)+1-\lambda \end{gather*} which implies that for $i\in N(-k,-1)$, \[ \begin{gathered} x_k(i)=[\varphi(-1)-1]\lambda^{i+k+1}+1,\\ y_k(i)=[\psi(-1)-1]\lambda^{i+k+1}+1\,. \end{gathered}\tag{3.9} \] Since $\varphi (-1) >\sigma =1, \psi (-1)\leq \sigma =1$, then (3.9) implies that $x_k(i)>1$, $y_k(i)\leq 1$ for $i \in N(-k,-1)$, and so $(x_k,y_k)\in X^{+,-}_\sigma$. Repeating the above argument on $N(k,2k-1),N(2k,3k-1),\dots$, consecutively, we can get, for all $n\in N$, \begin{gather*} x(n)=[\varphi (-1)-1]\lambda^{n+1}+1,\\ y(n)=[\psi (-1)-1]\lambda^{n+1}+1\,. \end{gather*} Therefore, $\lim_{n \rightarrow \infty}(x(n),y(n))=(1,1)$. This completes the proof of Theorem \ref{thm3}. \end{proof} The proof of Theorem \ref{thm4} is similar to that of Theorem \ref{thm3} and we omit it. \begin{thebibliography}{0} \bibitem{1} T. Roska and L. O. Chua, \textit{Cellular neural networks with nonlinear and delay-type template elements}, Int. J. Circuit Theory Appl., 20(1992), 469--481 \bibitem{2} L. H. Huang and J. H. Wu, \textit{The role of threshold in preventing delay-induced oscillations of frustrated neural networks with McCulloch-Pitts nonlinearity}, Int. J. Math. Game Theory Algebra, 11(2001), 71--100 \bibitem{3} J. H. Wu, \textit{Introduction to Neural Dynamics and Signal Transmission Delay}, De-Gruyter, 2001 \bibitem{4} Z. Zhou, J. S. Yu and L. H. Huang, \textit{Asymptotic behavior of delay difference systems}, Computers Math. Applic.42(2001), 283--290. \bibitem{5} Z. Zhou and J. H. Wu, \textit{Attractive periodic orbits in nonlinear discrete-time neural networks with delayed feedback}, J. Difference Equ. Appl., 8(2002), 467--483. \bibitem{6} R. D. DeGroat, L. R. Hunt, etal, \textit{Discrete-time nonlinear system stability}, IEEE Trans. Circuits Syst., 39(1992), 834--840. \bibitem{7} T. Ushio, \textit{Limitation of delayed feedback control discrete time systems}, IEEE Trans. Circuits syst., 43(1996), 815--816. \bibitem{8} V. L. J. Kocic and G. Ladas, \textit{Global Behavior of Nonlinear Difference Equations of Higher Order with Applications}, Kluwer Academic Publishers, 1993, \end{thebibliography} \end{document}