\documentclass[reqno]{amsart} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2003(2003), No. 52, pp. 1--10.\newline ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu \newline ftp ejde.math.swt.edu (login: ftp)} \thanks{\copyright 2003 Southwest Texas State University.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE--2003/52\hfil Multiple solutions for nonresonance] {Multiple solutions for nonresonance impulsive functional differential equations} \author[Mouffak Benchohra \& Abdelghani Ouahab\hfil EJDE--2003/52\hfilneg] {Mouffak Benchohra \& Abdelghani Ouahab} \address{Mouffak Benchohra \hfill\break Laboratoire de Math\'ematiques, Universit\'e de Sidi Bel Abbes \\ BP 89 2000 Sidi Bel Abbes, Alg\'erie} \email{benchohra@univ-sba.dz} \address{Abdelghani Ouahab \hfill\break Laboratoire de Math\'ematiques, Universit\'e de Sidi Bel Abbes \\ BP 89 2000 Sidi Bel Abbes, Alg\'erie} \email{ouahabi\_abdelghani@yahoo.fr} \date{} \thanks{Submitted January 8, 2003. Published May 3, 2003.} \subjclass[2000]{34A37, 34K25} \keywords{Nonresonance impulsive functional differential equations, \hfill\break\indent boundary conditions, fixed point, multiple solutions, cone, concave functional} \begin{abstract} In this paper we investigate the existence of multiple solutions for first and second order impulsive functional differential equations with boundary conditions. Our main tool is the Leggett and Williams fixed point theorem. \end{abstract} \maketitle \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \newtheorem{definition}[theorem]{Definition} \numberwithin{equation}{section} \allowdisplaybreaks \section{Introduction} This paper is concerned with the existence of three nonnegative solutions for initial value problems for first and second order impulsive functional differential equations with boundary conditions. Initially we consider the first order impulsive functional differential equation, \begin{gather}\label{e1} y'(t)-\lambda y(t)=f(t,y_{t}), \quad\mbox{a.e. }t\in [0,T], \; t\neq t_k, \; k=1,\dots,m, \\ \label{e2} \Delta y|_{t=t_{k}}=I_{k}(y(t_k^{-})), \quad k=1,\dots,m, \\ \label{e3} y(t)=\phi(t),\quad t\in [-r,0], \; y(0)=y(T), \end{gather} where $\lambda >0$, $f:[0,T]\times D\to \mathbb{R}^{+}$, $I_k\in C(\mathbb{R},\mathbb{R}^{+})$, $00$, there exists $h_{q} \in L^{1}(J,\mathbb{R}_{+})$ such that $|f(t,u)|\leq h_{q}(t)$ for all $\|u\|_{D}\leq q$ and for almost all $t\in J$. \end{itemize} \end{definition} Our consideration is based on the following fixed point theorem given by Leggett and Williams in 1979 \cite{LeWi}(see also Guo and Lakshmikantham \cite{GuLa}). \begin{theorem}\label{t1} Let $E$ be a Banach space, $C\subset E$ a cone of $E$ and $R>0$ a constant. Let $C_{R}=\{y\in C: \|y\|< R \}$. Suppose a concave nonnegative continuous functional $\psi$ exists on the cone $C$ with $\psi(y)\leq\|y\|$ for $y\in\overline C_R$, and let $N:\overline C_R\to\overline C_R$ be a continuous compact map. Assume there are numbers $r, L$ and $K$ with $0L\}\neq \emptyset$ and $\psi(N(y))>L$ for all $ y\in C(\psi, L, K)$; \item[(A2)] $\|N(y)\| L$ for all $y\in C(\psi, L, R)$ with $\|N(y)\|>K$, where $C_{K}=\{y\in C: \|y\|\leq K\}$ and $$ C(\psi, L, K)=\{y\in C: \psi(y)\geq L\ \hbox{and}\ \|y\|\leq K\}. $$ \end{itemize} Then $N$ has at least three fixed points $y_1, y_2, y_3$ in $\overline C_R$. Furthermore, we have $$ y_1\in C_r,\quad y_2\in\{ y\in C(\psi, L, R):\psi(y)>L\}\,\quad y_3\in \overline C_R-\{C(\psi, L, R)\cup \overline C_r\}. $$ \end{theorem} \section{First Order Impulsive FDEs} Let us start by defining what we mean by a solution of problem (\ref{e1})--(\ref{e3}). \begin{definition} \label{def3.1} \rm A function $y\in \Omega\cap\cup_{k=0}^{m}AC((t_{k},t_{k+1}),\mathbb{R})$ is said to be a solution of (\ref{e1})--(\ref{e3}) if $y$ satisfies $y'(t)-\lambda y(t)=f(t,y_t)$ a.e. on $J\backslash\{t_{1},\dots,t_{m}\}$, and $\Delta y|_{t=t_{k}}=I_{k}(y(t_{k}^{-}))$, $k=1,\dots,m$, $y(t)=\phi(t)$, $t\in[-r,0]$, and $y(0)=y(T)$. \end{definition} For the next theorem we need the following assumptions: \begin{itemize} \item[(H1)] There exist constants $c_{k}$ such that $|I_{k}(x)|\leq c_{k}$, $k=1,\dots,m$ for each $x\in\mathbb{R}$ \item[(H2)] There exist a function $g: [0,\infty)\to[0,\infty)$ continuous and non-decreasing, a function $p\in L^{1}(J,\mathbb{R}_{+})$, $r>0$, and a constant $0< M\leq 1$ such that $$ M\,p(t)g(\|u\|)\leq |H(t,s)f(t,u)|\leq p(t)g(\|u\|) $$ for each $(t,s,u)\in J\times J\times D$, and $$ \frac{1}{1-e^{-\lambda T}}\sum_{k=1}^m c_k +g(r)\int_0^Tp(t)dtr$ and an interval $[a,b]\subset(0,T)$ such that \begin{gather*} \min_{t\in[a,b]}\Big(\sum_{k=1}^mH(t,t_k)I_k(y(t_{k}))\Big)\geq M\sum_{k=1}^mc_k, \\ M\Big(\sum_{k=1}^mc_k+g(L)\int_0^Tp(s)ds\Big)>L; \end{gather*} \item[(H4)] There exist $R, K, 00$ there exists a positive constant $\ell$ such that for each $y\in B_{q}=\{y\in \Omega: \|y\|_{\Omega}\leq q \}$ one has $\| N(y)\|_{\Omega}\leq \ell$. Let $y\in B_{q}$. Then for $t\in [0,T]$ we have $$ N(y)(t)=\int_{0}^{T}H(t,s)f(s,y_s)ds +\sum_{k=1}^{m}H(t,t_{k})I_{k}(y(t_{k})). $$ By (H2) we have for each $t\in [0,T]$ \begin{align*} | N(y)(t)|&\leq \int_{0}^{T}|H(t,s)||f(s,y_s)|d\,s +\sum_{k=1}^{m}|H(t,t_{k})||I_{k}(y(t_k))| \\ &\leq \int_{0}^{T}|H(t,s)|h_q(s)d\,s+ \sum_{k=1}^{m}|H(t,t_{k})|c_{k}. \end{align*} Then for each $h\in N(B_{q})$ we have $$ \| N(y)\|_{\Omega}\leq \frac{1}{1-e^{-\lambda T}} \Big(\int_{0}^{T}h_q(s)d\,s+\sum_{k=1}^{m}c_{k}\Big):=\ell. $$ {\bf Step 3:} $N$ maps bounded set into equicontinuous sets of $\Omega$. Let $\tau_{1}, \tau_{2}\in [0,T]$, $\tau_{1}<\tau_{2}$ and $B_{q}$ be a bounded set of $\Omega$ as in Step 2. Let $y\in B_{q}$ and $t\in [0,T]$ we have $$ N(y)(t)=\int_{0}^{T}H(t,s)f(s,y_s)d\,s +\sum_{k=1}^{m}H(t,t_{k})I_{k}(y(t_{k})). $$ Then \begin{align*} &|N(y)(\tau_{2})-N(y)(\tau_{1})|\\ &\leq \int_{0}^{T}|H(\tau_{2},s)-H(\tau_{1},s)|h_q(s)ds + \sum_{k=1}^{m}|H(\tau_{2},t_{k})-H(\tau_{1},t_{k})| c_{k}. \end{align*} As $\tau_{2}\to \tau_{1}$ the right-hand side of the above inequality tends to zero. As a consequence of Steps 1 to 3 together with the Arzela-Ascoli theorem we can conclude that $N:\Omega\to \Omega$ is completely continuous. Let $C=\{ y\in\Omega :y(t)\geq 0\hbox{ for } t\in[-r, T]\}$ be a cone in $\Omega$. Since $f, H, I_k$, $k=1,\dots,m$ are positive functions, then $N(C)\subset C$ and $N: \overline C_{R}\to\overline C_{R}$ is compact. By (H1), (H2), (H4) we can show that if $y\in\overline C_{R}$ then $N(y)\subset\overline C_{R}$. Let $\psi : C\to [0,\infty)$ defined by $\psi(y)=\min_{t\in[a,b]}y(t)$. It is clear that $\psi$ is a nonnegative concave continuous functional and $\psi(y)\leq \|y\|_{\Omega}$ for $y\in\overline C_{R}$. Now it remains to show that the hypotheses of Theorem \ref{t1} are satisfied. First notice that condition (A2) of Theorem \ref{t1} holds since for $y\in\overline C_r$, and from (H1) and (H2) we have \begin{align*} |N(y)(t)|&\leq \int_{0}^{T}|H(t,s)||f(s,y_s)|ds +\sum_{k=1}^{m}|H(t,t_k)|I_{k}(y(t_k))| \\ &\leq \int_{0}^{T}g(\|y_s\|)p(s)ds +\sum_{k=1}^{m}|H(t,t_k)|I_{k}(y(t_k))| \\ &\leq g(r)\|p\|_{L^{1}}+\frac{1}{1-e^{-\lambda T}} \sum_{k=1}^{m}c_kL\}$. Also if $y\in C(\psi, L,K)$ then $$ \psi(N(y))=\min_{t\in[a,b]}\Big( \sum_{k=1}^{m}H(t,t_{k})I_k(y(t_k))+\int_0^TH(t,s)f(s,y_s)ds\Big). $$ Then from (H3) we have \begin{align*} \psi(N(y))&=\min_{t\in[a,b]}\left( \sum_{k=1}^{m}H(t,t_k)I_k(y(t_k)) +\int_0^TH(t,s)f(s,y_s)ds\right) \\ &\geq \Big(M\sum_{k=1}^mc_k+M\int_0^Tg(\|y_s\|)p(s)ds \Big)\\ &\geq M\Big( \sum_{k=1}^mc_k+g(L)\int_0^Tp(s)ds\Big) > L. \end{align*} So the conditions (A1) and (A2) of Theorem \ref{t1} are satisfied. Finally we will be prove that (A3) of Theorem \ref{t1} holds. Let $y\in C(\psi, L, R)$ with $\|N(y)\|_{\Omega}>K$ Thus \begin{align*} \psi(N(y))&= \min_{t\in[a,b]}\Big(\sum_{k=1}^{m}H(t,t_k)I_k(y(t_k)) +\int_0^TH(t,s)f(s,y_s)ds\Big)\\ &\geq M_1M_*\Big(\sum_{k=1}^{m}c_k+g(R)\int_0^Tp(s)ds\Big) \\ &\geq M_1\|N(y)\|_{\Omega}>M_1K >L. \end{align*} Thus condition (A3) holds. Then Leggett and Williams fixed point theorem implies that $N$ has at least three fixed points $y_1, y_2, y_3$ which are solutions to problem (\ref{e1})--(\ref{e3}). Furthermore, we have $$ y_1\in C_r,\ \ y_2\in\{ y\in C(\psi, L, R):\psi(y)>L\},\quad y_3\in C_R-\{C(\psi, L, R)\cup( C_r)\}. $$ \end{proof} \section{Second Order Impulsive FDEs} In this section we give an existence result for the boundary-value problem (\ref{e4})--(\ref{e7}). \begin{definition} \label{def4.1} \rm A function $y\in \Omega\cap\cup_{k=0}^{m}AC^{1}((t_{k},t_{k+1}),\mathbb{R})$ is said to be a solution of (\ref{e4})--(\ref{e7}) if $y$ satisfies $y''(t)-\lambda y(t)=f(t,y_{t})$ a.e. on $J\backslash\{t_{1},\dots,t_{m}\}$\ and the conditions $\Delta y|_{t=t_{k}}=I_{k}(y(t_{k}^{-})), \ \Delta y'|_{t=t_{k}}=\overline I_{k}(y(t_{k}^{-})), \ k=1,\dots,m$, $y(t) =\phi(t), \ t \in [-r,0], \ y(0)-y(T)=\mu_0, \ y'(0)-y'(T)=\mu_1$. \end{definition} We now consider the ``linear problem'' \begin{equation}\label{e8} y''(t)-\lambda y(t)=g(t), \ \ t\neq t_{k}, \ k=1,\dots, m, \end{equation} subjected to the conditions (\ref{e5}), (\ref{e6}), (\ref{e7}), and where $g\in L^{1}([t_{k},t_{k+1}],\mathbb{R})$. Note that (\ref{e5})--(\ref{e7}), (\ref{e8}) is not really a linear problem since the impulsive functions are not necessarily linear. However, if $I_{k}, \bar I_{k}$, $k=1,\dots,m$ are linear, then (\ref{e5})--(\ref{e7}), (\ref{e8}) is a linear impulsive problem. We need the following auxiliary result: \begin{lemma}\label{l5} $y\in \Omega\cap\cup_{k=0}^{m}AC^{1}((t_{k},t_{k+1}),\mathbb{R})$ is a solution of (\ref{e5})--(\ref{e7}), (\ref{e8}), if and only if $y\in\Omega$ is a solution of the impulsive integral functional equation, \begin{equation}\label{e9} y(t)=\begin{cases} \phi(t), & t\in [-r,0],\\[2pt] \int_{0}^{T}M(t,s)h(s)ds+M(t,0)\mu_{1}+N(t,0)\mu_{0} \\ +\sum_{k=1}^{m}[M(t,t_{k})I_{k}(y(t_{k})) +N(t,t_{k})\bar I_{k}(y(t_{k}))], & t\in [0,T], \end{cases} \end{equation} where $$ M(t,s)=\frac{-1}{2\sqrt\lambda (e^{\sqrt\lambda T}-1)} \begin{cases} e^{\sqrt\lambda (T+s-t)}+ e^{\sqrt\lambda (t-s)},& 0\leq s\leq t\leq T,\\ e^{\sqrt\lambda (T+t-s)}+ e^{\sqrt\lambda (s-t)},& 0\leq t0$, and $0< M^*\leq 1$ such that $$ M^*p(t)g^*(\|u\|)\leq |M(t,s)f(t,u)|\leq p(t)g^*(\|u\|) $$ for each $(t,s,u)\in J\times J\times D$, and $$ C\sum_{k=1}^{m}(c_k+d_k) +C_*[|\mu_{1}|+|\mu_{0}|] +\sup_{(t,s)\in [0,T]\times[0,T]}|M(t,s)|g^*(r^*)\int_{0}^{T}p(s)dsr^*$, $0L^* \end{align*} \item[(H8)] There exist $R^*, K, 0L^*\}$. Also if $y\in C(\psi, L^*,K^*)$ we have \begin{align*} \psi(N_1(y))=\min_{t\in[a,b]}\Big( &\int_{0}^{T}M(t,s)f(s,y_s)ds+M(t,0)\mu_{1} +N(t,0)\mu_{0}\\ &+\sum_{k=1}^{m}[M(t,t_{k})I_{k}(y(t_{k})) +N(t,t_{k})\overline I_{k}(y(t_{k}))\Big). \end{align*} Then from (H7) we get \begin{align*} \psi(N_1(y))&\geq M^*\min_{t\in[a,b]}\Big(M(t,0)\mu_1+N(t,0)\mu_0 +\sum_{k=1}^{m}(c_k+d_k)+g^*(L^*)\int_0^Tp(s)ds\Big)\\ &>L^*. \end{align*} So conditions (A1) and (A2) of Theorem \ref{t1} are satisfied. Finally to see that (A3) holds let $y\in C(\psi, L^*, R^*)$ with $\|N_{1}(y)\|_{\Omega}>K^*$ then from (H8) we have \begin{align*} &\psi(N_{1}(y))\\ &\geq M_1^*\Big( \sum_{k=1}^{m}(c_k+d_k) +C_*|\mu_1|+C|\mu_0| +\sup_{t\in [0,T]\times[0,T]}|M(t,s)| g^*(R^*)\int_0^Tp(s)ds\Big)\\ &\geq M^{*}_1\Big(C_*|\mu_1|+C|\mu_0|+C^*\sum_{k=1}^{m}(c_k+d_k) +\sup_{t\in [0,T]\times[0,T]}|M(t,s)| g^*(R^*)\int_0^Tp(s)ds\Big)\\ &\geq M_1^{*}\|N_1(y)\|_{\Omega} > M_1^{*}K>L^*. \end{align*} Thus condition (A3) for Theorem \ref{t1} holds. As consequence of Leggett and Williams theorem we deduce that $N_1$ has at least three fixed points $y_1, y_2, y_3$ which are solutions to problem (\ref{e4})--(\ref{e7}). Furthermore, we have $$ y_1\in C_{r^*},\quad y_2\in\{ y\in C(\psi, L^*, R^*):\psi(y)>L^*\}, \quad y_3\in C_{R^*}-\{C(\psi, L^*, R^*)\cup C_{r^*}\}. $$ \end{proof} \begin{thebibliography}{00} \bibitem{AgRe} R. P. Agarwal, and D. O'Regan, \textit{Existence of three solutions to integral and discrete equations via the Leggett Williams fixed point theorem}, Rock. Mount. J. Math., {\bf 31} (2001), 23-35. \bibitem{AgRe1} R. P. Agarwal, and D. O'Regan, \textit{Multiple solutions for second order impulsive differential equations}, Appl. Math. Comput., {\bf 114} (2000), 51-59. \bibitem{AgReWo} R. P. Agarwal, D. O'Regan and P. J. Y. Wong, \textit{Positive Solutions of Differential, Difference and Integral Equations}, Kluwer Acad. Publ., Dordrecht, 1999. \bibitem{AnAvPe} D. Anderson, R. I. Avery and A. C. Peterson, \textit{Three solutions to a discrete focal boundary value problem}, J. Comput. Math. Appl., {\bf 88} (1998), 103-118. \bibitem{AnRiHe} D. Anderson, R. I. Avery and J. Henderson, \textit{Corollary to the five functionals fixed point theorem}, Nonlinear Stud., {\bf 8} (2001), 451-464. \bibitem{AvHe} R. I. Avery and J. Henderson, \textit{Three symmetric positive solutions for a second order boundary value problem}, Appl. Math. Lett., {\bf 13} (3) (2000), 1-7. \bibitem{BaSi} D. D. Bainov and P. S. Simeonov, \textit{Systems with Impulse Effect, Ellis Horwood Ltd.}, Chichister, 1989. \bibitem{BeEl} M. Benchohra and P. Eloe, \textit{On nonresonance impulsive functional differential equations with periodic boundary conditions}, Appl. Math. E-Notes, {\bf 1} (2001), 65-72. \bibitem{BeHeNt1} M. Benchohra, J. Henderson and S. K. Ntouyas, \textit{An existence result for first order impulsive functional differential equations in Banach spaces}, Comput. Math. Appl., {\bf 42} (10\&11) (2001), 1303-1310. \bibitem{Don} Y. Dong, \textit{Periodic boundary value problems for functional differential equations with impulses}, J. Math. Anal. Appl., {\bf 210} (1997), 170-181. \bibitem{FrLiNiRo} D. Franco, E. Liz, J. J. Nieto and Y. V. Rogovchenco, \textit{A contribution to the study of functional differential equations with impulses}, Math. Nachr., {\bf 218} (2000), 49-60. \bibitem{GuLa} D. Guo and V. Lakshmikantham, \textit{Nonlinear Problems in Abstract Cones}, Academic Press, San Diego, 1988. \bibitem{GuLi} D. Guo and X. Liu, \textit{Multiple positive solutions of boundary value problems for impulsive differential equations in Banach spaces}, Nonlinear Anal., {\bf 25} (1995), 327-337. \bibitem{HeTh} J. Henderson and H. B. Thompson, \textit{Existence of multiple solutions for second order boundary value problems}, J. Differential Equations, {\bf 166} (2000), 443-454. \bibitem{LaBaSi} V. Lakshmikantham, D. D. Bainov and P. S. Simeonov, \textit{Theory of Impulsive Differential Equations}, World Scientific, Singapore, 1989. \bibitem{LeWi} R. W. Leggett and L.R. Williams, \textit{Multiple positive fixed points of nonlinear operators on ordered Banach spaces}, Indiana. Univ. Math. J., {\bf 28} (1979), 673-688. \bibitem{SaPe} A. M. Samoilenko and N. A. Perestyuk, \textit{Impulsive Differential Equations}, World Scientific, Singapore, 1995. \end{thebibliography} \end{document}