\documentclass[reqno]{amsart} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2003(2003), No. 71, pp. 1--8.\newline ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu \newline ftp ejde.math.swt.edu (login: ftp)} \thanks{\copyright 2003 Southwest Texas State University.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE--2003/71\hfil Geometric properties] {Geometric properties of solutions to maximization problems} \author[F. Cuccu, K. Jha \& G. Porru\hfil EJDE--2003/71\hfilneg] {Fabrizio Cuccu, Kanhaiya Jha, \& Giovanni Porru} \address{Fabrizio Cuccu \newline Mathematics Department, Universit\`a di Cagliari\\ via Ospedale 72 \\ 09124 Cagliari, Italy} \email{fcuccu@unica.it} \address{Kanhaiya Jha \newline Kathmandu University, Mathematics Department\\ Kathmandu, Nepal} \email{jhakn@ku.edu.np} \address{Giovanni Porru \newline Mathemaiics Department, Universit\`a di Cagliari\\ via Ospedale 72 \\ 09124 Cagliari, Italy} \email{porru@unica.it} \date{} \thanks{Submitted December 2, 2002. Published June 24, 2003.} \thanks{Partially supported by ``Contributo regionale Legge N. 43"} \subjclass[2000]{35J25, 49K20, 49J20} \keywords{Functionals, maximization, symmetry} \begin{abstract} We investigate the geometric configuration of the maxima of some functionals associated with solutions to Dirichlet problems for special elliptic equations. We also discuss the symmetry breaking and symmetry preservation of the solutions in some particular cases. \end{abstract} \maketitle \newtheorem{theorem}{Theorem}[section] \newtheorem{proposition}[theorem]{Proposition} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{corollary}[theorem]{Corollary} \section{Introduction} Let $\Omega\subset {\mathbb R}^N$ be a bounded domain with a smooth boundary $\partial \Omega$ and let $D\subset\Omega$ be Lebesgue measurable. Consider the Dirichlet problem \[ \begin{gathered} -\Delta u(x)=\chi_D(x)\quad \hbox{in }\Omega,\\ u(x)=0\quad \hbox{on } \partial\Omega, \end{gathered} \eqno(1.1) \] where $\chi_D(x)=1$ if $x\in D$ and $\chi_D(x)=0$ if $x\in \Omega\setminus D$. Since $\chi_D(x)$ is not continuous, (1.1) is understood in the weak sense. By standard results on elliptic equations, problem (1.1) has a unique solution $u\in H^2(\Omega)\cap C^1(\Omega)\cap C^0(\overline\Omega)$ [14]. Of course, the solution does not change if $D$ is replaced by a new set which differs from $D$ by a subset of measure zero. In a previous paper [8], we have introduced and discussed the maximization problem $$ \max_{|G|=\alpha, |D|=\beta}\int_\Omega \chi_Gu_Ddx, \eqno(1.2)$$ where $G\subset \Omega$, $0<\alpha\le |\Omega|$, $0<\beta<|\Omega|$ and $u_D$ is the solution to problem (1.1). The sets $D$ and $G$ are defined apart subsets of measure zero. In [8] we have found a result of existence for general $\Omega$, $\alpha$, $\beta$, and a result of uniqueness in case $\Omega$ is a ball or, for general $\Omega$, in case $\alpha=|\Omega|$. We also have proved that when $\alpha=\beta$ problem (1.2) reduces to the maximization of the energy integral $$\max_{|D|=\beta}\int_\Omega |\nabla u_D|^2dx, \eqno(1.3) $$ extensively investigated in [1,5,6,7,9,11]. In section 2 of the present paper, we shall prove that if $\beta\le\alpha$ and $(D,G)$ is a solution to problem (1.2) then $D\subset G$. As a consequence, for $\beta=\alpha$ we must have $D=G$. This special case has been investigated in [8] by using a different argument. The interest of our result relies in that the solution of problem (1.2) is not unique in general. In section 3 we shall consider a special example to show that if $\Omega$ is symmetric, a solution $(D,G)$ to problem (1.2) may not be symmetric. This phenomenon, known as symmetry breaking, was already observed in [6,9,11] for problem (1.3). Of course, in this situation we have multiple solutions. In section 4 we prove that if $\Omega$ is Steiner symmetric and if $(D,G)$ is a solution to problem (1.2) then both $D$ and $G$ are Steiner symmetric. This fact was already observed in [8] by using a result described in [2]. Here we use a different approach which may have independent interest. Several open problems remain. One is the uniqueness of the solution to (1.2) for larger classes of domains $\Omega$ and general $\alpha$ and $\beta$. We think that the convexity of $\Omega$ should be sufficient to have uniqueness. Another problem is the investigation of the shape of the optimal pair $(D,G)$ in case uniqueness holds. We believe that $D$ and $G$ are convex when $\Omega$ is convex. A physical model of problem (1.2) is described in [8]. Many others models leading to equation (1.1) and its generalizations are discussed in [10]. \section{Geometric properties} Problem (1.2) with $\alpha=|\Omega|$ reduces to $$ \max_{|D|=\beta}\int_\Omega u_Ddx=\max_{|D|=\beta}\int_Dw\, dx,$$ where $w=w(x)$ is the solution to the Saint-Venant problem \begin{gather*} -\Delta w(x)=1\quad\hbox{in } \Omega,\\ w(x)=0\quad \hbox{on }\partial\Omega. \end{gather*} The maximizing domain $D$ is unique in this case and can be expressed as $D=\{x\in \Omega:w(x)>t\}$ for a particular $t$ (see [8]). Therefore, from now on we consider $\alpha<|\Omega|$. We state now our main result of this section. \begin{theorem} Let $|\Omega|>\alpha\ge \beta>0$ and let $(D,G)$ be a solution to problem $(1.2)$. Then $D\subset G$. Moreover, there are positive numbers $t\le \tau$ and positive functions $u_D(x)\le u_G(x)$ such that $D=\{x\in \Omega:u_G(x)>\tau\}$ and $G=\{x\in \Omega:u_D(x)>t\}$ up to sets of measure zero. \end{theorem} \begin{proof} Let $(D,G)$ be a solution to problem $(1.2)$ and let $u_D$ and $u_G$ satisfy \[ \begin{gathered} -\Delta u_D(x)=\chi_D(x)\quad \hbox{in } \Omega,\\ u_D(x)=0\quad\hbox{on } \partial\Omega, \end{gathered} \eqno(2.1) \] \[ \begin{gathered} -\Delta u_G(x)=\chi_G(x)\quad \hbox{in } \Omega,\\ u_G(x)=0\quad\hbox{on } \partial\Omega. \end{gathered} \eqno(2.2) \] By [8] we know that $$\{u_D(x)>t\}\subset G\subset \{u_D(x)\ge t\}, \eqno(2.3)$$ $$\{u_G(x)>\tau\}\subset D\subset \{u_G(x)\ge \tau\} \eqno(2.4)$$ for some non negative $t$, $\tau$. Here and in the sequel, we denote by $\{u(x)>t\}$ the set $\{x\in \Omega:u(x)>t\}$. Since $|D|>0$ (and $\Omega$ is connected) we have $u_D(x)>0$ in $\Omega$. If we had $t=0$ then, by (2.3), we would have $G=\Omega$. But this contradicts the hypothesis $\alpha<|\Omega|$. Similarly, one shows that $\tau>0$. Let us prove that $$ \int_\Omega |\nabla(u_G-u_D)|^2dx\le (\tau-t)(\alpha-\beta). \eqno(2.5)$$ Indeed, subtracting equation (2.1) from equation (2.2), multiplying by $(u_G-u_D)$ and integrating we find $$ \int_\Omega |\nabla(u_G-u_D)|^2dx=\int_\Omega (u_G-u_D)(\chi_G-\chi_D)dx$$ $$=\int_{G\setminus D}(u_G-u_D)dx+\int_{D\setminus G}(u_D-u_G)dx.$$ Using (2.3) and (2.4) we find $$\int_{G\setminus D}(u_G-u_D)dx\le\int_{G\setminus D}(\tau-t)dx=(\tau-t)|G\setminus D|$$ and $$\int_{D\setminus G}(u_D-u_G)dx\le\int_{D\setminus G}(t-\tau)dx=(t-\tau)|D\setminus G|.$$ Since $|G\setminus D|=|G|-|D\cap G|$ and $|D\setminus G|=|D|-|D\cap G|$, inequality (2.5) follows. Recalling that $\alpha\ge\beta$, (2.5) implies that $t\le\tau$. Introduce the subsets of $\Omega$ \begin{gather*} \Omega_1=\{u_G(x)-u_D(x)>\tau-t\},\\ \Omega_2=\{u_G(x)-u_D(x)=\tau-t\},\\ \Omega_3=\{u_G(x)-u_D(x)<\tau-t\}. \end{gather*} Of course, $\Omega_1\cup\Omega_2\cup\Omega_3=\Omega$. By (2.4), $u_G(x)\le \tau$ outside $D$, and by (2.3), $u_D(x)\ge t$ in $G$. Hence, $u_G(x)-u_D(x)\le\tau-t$ in $G\setminus D$. Therefore, $$G\setminus D\subset\Omega_2\cup\Omega_3=\Omega\setminus\Omega_1.$$ The last inclusion yields $$\Omega_1\subset D\cup(\Omega\setminus G). \eqno(2.6)$$ On the other side, using equations (2.1)-(2.2) we find $$-\Delta(u_G-u_D)=\chi_G-\chi_D\le 0\quad \hbox{in } D\cup(\Omega\setminus G). \eqno(2.7) $$ By (2.6), inequality (2.7) holds in $\Omega_1$. Since $u_G(x)-u_D(x)=\tau-t$ on the boundary of $\Omega_1$, by the maximum principle, we get $u_G(x)-u_D(x)\le \tau-t$ in $\Omega_1$. Recalling the definition of $\Omega_1$, we conclude that this set must be empty. By (2.4), $u_G(x)\ge \tau$ in $D$, and by (2.3), $u_D(x)\le t$ outside $G$. Hence, $u_G(x)-u_D(x)\ge\tau-t$ in $D\setminus G$. Therefore, since $\Omega_1$ is empty, $$D\setminus G\subset\Omega_1\cup\Omega_2=\Omega_2.$$ On $\Omega_2$, $u_G(x)-u_D(x)=\tau-t$, therefore $\Delta(u_G-u_D)=0$ almost everywhere in $D\setminus G$. On the other side, by using equations (2.1)-(2.2) once more, we get $\Delta(u_G-u_D)=1$ on $D\setminus G$. We conclude that the measure of $D\setminus G$ must be zero, hence, $D\subset G$ up to a set of measure zero. The first assertion of the theorem is proved. We have $\Delta u_G=0$ almost everywhere on the set $\{u_G(x)=\tau\}\cap D$. On the other side, $\Delta u_G=-1$ in $G$. Since $D\subset G$, the set $\{u_G(x)=\tau\}\cap D$ must have measure zero. Therefore, by (2.4), $D=\{u_G(x)>\tau\}$ up to a set of measure zero. Decompose the set $\{u_D(x)=t\}\cap G$ into $E_1=\{u_D(x)=t\}\cap G\cap D$, $E_2=\{u_D(x)=t\} \cap G\cap (\partial D)$, $E_3=\{u_D(x)=t\}\cap G\cap(\Omega\setminus\overline D)$. $E_1$ has measure zero because $\Delta u_D=-1$ in $D$, therefore $u_D$ cannot be constant on a set of positive measure. $E_2$ has measure zero because $u_G(x)=\tau$ on $\partial D$ and $\Delta u_G=-1$ on $G$. $E_3$ has measure zero because the function $u_D(x)$ is harmonic (and positive) in the open set $\Omega\setminus\overline D$ and $u=0$ on $\partial \Omega$. Therefore, by (2.3), we must have $G=\{u_D(x)>t\}$ up to a set of measure zero. The theorem is proved. \end{proof} \noindent\textbf{Remarks.} By (2.1), (2.2) and Theorem 2.1, the functions $u=u_D$ and $v=u_G$ satisfy the equations $$ -\Delta u=H(v-\tau),\quad u|_{\partial\Omega}=0, \eqno(2.8)$$ $$ -\Delta v=H(u-t),\quad v|_{\partial\Omega}=0, \eqno(2.9) $$ where $H(s)=0$ for $s\le 0$ and $H(s)=1$ for $s> 0$. The system (2.8)-(2.9) may have solutions different from $u_D,\ u_G$ even when $\alpha=\beta$. Indeed, if $\alpha=\beta$ then $u_D=u_G=u$, and $u$ satisfies $$ -\Delta u=H(u-t),\quad u|_{\partial\Omega}=0. \eqno(2.10) $$ If $\Omega$ is a thin annulus and $\beta$ is small enough then problem (1.3) has a non radial solution $u=u_D$ which satisfies (2.10) [9,11]. Let $w(x)$ be the (radial) solution to the Saint-Venant problem associated with $\Omega$. Using the method of monotone operators (starting from $w$) we find a radial solution $v=v(x)$ to (2.10) with $u_D(x)\le v(x)\le w(x)$. Of course, $u_D(x)\not = v(x)$ because $u_D(x)$ is non radial. \section{Symmetry breaking} In [6,9,11] it was shown the symmetry breaking of the solution to problem (1.2) in case $\alpha=\beta$. Now, we examine an example to discuss the case $\alpha\not=\beta$. Recall that if $\Omega$ is a ball then the maximum of (1.2) is reached when $D$ and $G$ are balls concentric with $\Omega$ [8]. Let $B_1$ and $B_2$ be open unit balls in $\mathbb R^2$ centered at $(-2,0)$ and $(2,0)$ respectively, and let $\Omega=B_1\cup B_2$. Let $D=D_1\cup D_2$ with $D_1$ a ball concentric with $B_1$ and radius $R$, and $D_2$ a ball concentric with $B_2$ and radius $S$. Similarly, let $G=G_1\cup G_2$ with $G_1$ a ball concentric with $B_1$ and radius $T$, and $G_2$ a ball concentric with $B_2$ and radius $Q$. We have $|\Omega|=2\pi$, $|D|=\pi(R^2+S^2)$ and $|G|=\pi(T^2+Q^2)$. Assume $$R^2+S^2=b,\quad T^2+Q^2=a,\quad b\le a\le 2. $$ We study the problem $$\max_{|D|=\pi b,\; |G|=\pi a}\int_G u_Ddx \eqno(3.1) $$ with $b/2\le R^2\le \min[1,b]$ and $a/2\le T^2\le \min[1,a]$. Since $b\le a$, by Theorem 2.1, the maximum in (3.1) is attained when $D\subset G$. Therefore, we may suppose $R\le T$. If $u=u_D$ is the corresponding solution to problem (1.1) we find $$u(r)=\begin{cases} \frac{R^2}{4}-\frac{r^2}{4}-\frac{R^2}{2}\log R & 0\le r0:\hbox{\rm d($x$)}\mu\},\quad\Sigma_h(\mu) =\Sigma(\mu)\cap\{x\in\Omega: \hbox{\rm d($x$)}0$ in $\Omega$, we have $w(x)\le 0$ on $\partial\Sigma(\mu)$ with $w(x)< 0$ at some point of the boundary of each connected component. We conclude that $w(x)<0$ on $\Sigma(\mu)$ for such values of $\mu$. The same conclusion holds for $z(x)$. Recall that $w(x)$ and $z(x)$ depend on $\mu$. Let $(m,M)$ be the largest interval of $\mu$ such that both $$w(x)<0\quad \hbox{\rm and}\quad z(x)<0 $$ hold on $\Sigma(\mu)$. By contradiction, assume $m>0$. Since $w$ and $z$ are continuous with respect to $\mu$, we have $$w(x)\le 0\quad \hbox{\rm and}\quad z(x)\le 0 \quad \forall x\in \Sigma(m).$$ Then, $\Delta w\ge 0$ and $\Delta z\ge 0$ on $\Sigma(m)$ by (4.9). The strong maximum principle ([12] Theorem 2.13) and the assumption $m>0$ yield $$w(x)<0\quad \hbox{\rm and}\quad z(x)<0 \quad \forall x\in \Sigma(m).$$ The boundary point Lemma ([12] Lemma 2.12) applied to the flat boundary $x_1=\mu$ of $\Sigma(\mu)$, $m\le \mu\le M$ yields $$\frac{\partial w}{\partial x_1}<0\quad \hbox{\rm and}\quad \frac{\partial z}{\partial x_1}<0 \quad \forall x\in \overline{\Sigma(m)}\setminus \partial\Omega.$$ Recalling the definition of $w$ and $z$ we must have $$\frac{\partial u}{\partial x_1}<0\quad \hbox{\rm and}\quad \frac{\partial v}{\partial x_1}<0 \quad \forall x\in \overline{\Sigma(m)}\setminus \partial\Omega.\eqno(4.10)$$ Following again the argument described in [12] (pag. 97), for $\epsilon>0$ and $\tau>0$ small, choose a set $$E_\epsilon=(m-\epsilon,m+\tau]\times S,\ \ S\subset \mathbb R^{N-1}, \ \ E_\epsilon\subset \Sigma(m-\epsilon)$$ as well as a compact subset $F\subset \Sigma(m)$. Using (4.10) one proves that $w(x)$ and $z(x)$ are strictly negative on $E_\epsilon$ provided $\{m\}\times S$ is a compact subset of $\{x_1=m\}\cap\Omega$. Let $G_\epsilon=\Sigma(m-\epsilon)\setminus(E_\epsilon\cup F)$. $S$ and $F$ can be chosen so that, for $\epsilon$ small, $w(x)<0$ on $F$ and $G_\epsilon\subset \Sigma_h(m-\epsilon)$. Using the strong maximum principle again one gets $w(x)<0$ and $z(x)<0$ on $\Sigma(m-\epsilon)$. This contradicts the maximality of $(m,M)$ for the negativity of $w(x)$ or $z(x)$. We conclude that $m=0$. Hence, $u(x_1,y)\le u(-x_1,y)$ and $v(x_1,y)\le v(-x_1,y)$ on $\Sigma(0)$. Repetition of the same proof starting from the left side of $\Omega$ leads to the inequalities $u(x_1,y)\ge u(-x_1,y)$ and $v(x_1,y)\ge v(x_1,y)$ on $\Sigma(0)$, and the theorem follows. \end{proof} \noindent\textbf{Remark.} The result of Theorem 4.1 can be extended the the more general system \begin{gather*} -\Delta u=h(u)+f(v),\quad u|_{\partial\Omega}=0,\\ -\Delta v=k(v)+g(u),\quad v|_{\partial\Omega}=0, \end{gather*} where $f$ and $g$ are as before, whereas $h$ and $k$ are locally Lipschitz continuous in $(0,\infty)$. Indeed, in this case, instead of (4.5) one finds $$ \Delta w+c_1(x,\mu)w\ge 0 \quad \hbox{\rm and}\quad \Delta z+c_2(x,\mu)z\ge 0\quad \forall x\in \Sigma_h(\mu), $$ where $c_1(x,\mu)$ and $c_2(x,\mu)$ are bounded uniformly with respect to $\mu$. The maximum principles for thin sets apply in this situation [12]. Symmetry results for systems in case of smooth functions are discussed in [18]. \begin{thebibliography}{99} \bibitem{[1]} {\sc A. Alvino, G. Trombetti and P.L. Lions,} {\it On optimization problems with prescribed rearrangements,} Nonlinear Analysis, TMA, {\bf 13} (1989), 185-220. \bibitem{[2]}{\sc A. Alvino, G. Trombetti and P.L. Lions,} {\it Comparison results for elliptic and parabolic equations via symmetrization: a new approach,} Differential and Integral Equations, {\bf 4} (1991), 25-50. \bibitem{[3]}{\sc H. Berestycki, L. Nirenberg,} {\it On the method of moving planes and the sliding method.} Bol. Soc. Brasileira de Matematica {\bf 22} (1991), 1-37. \bibitem{[4]}{\sc J.E. Brothers and W.P. Ziemer,} {\it Minimal rearrangements of Sobolev functions,} J. reine angew. Math. {\bf 384} (1988), 153-179. \bibitem{[5]}{\sc G.R. Burton,} {\it Rearrangements of functions, maximization of convex functionals and vortex rings,} Math. Ann. {\bf 276} (1987), 225-253. \bibitem{[6]}{\sc G.R. Burton,} {\it Variational problems on classes of rearrangements and multiple configurations for steady vortices,} Ann. Inst. Henry Poincar\'e {\bf 6} (1989), 295-319. \bibitem{[7]}{\sc G.R. Burton and J.B. McLeod,} {\it Maximisation and minimisation on classes of rearrangements,} Proc. Roy. Soc. Edinb. {\bf 119A} (1991), 287-300. \bibitem{[8]}{\sc F. Cuccu, K. Jha and G. Porru,} {\it Optimization problems for some functionals related to solutions of PDE's,} Int. Journal of Pure and Appl. Maths. {\bf 2} (2002), 399-410. \bibitem{[9]}{\sc F. Cuccu and G. Porru,} {\it Optimization in a problem of heat conduction,} Adv. Math. Sc. Appl. {\bf 12} (2001), 245-255. \bibitem{[10]}{\sc J.I. Diaz,} {\it Qualitative study of nonlinear parabolic equations: an introduction,} Extracta Mathematicae, {\bf 16} (2001), 303-341. \bibitem{[11]}{\sc V. Ferone and M.R. Posteraro,} {\it Maximization on classes of functions with fixed rearrangement,} Diff. and Int. Equations, {\bf 4} (1991), 707-718. \bibitem{[12]}{\sc L.E. Fraenkel,} An introduction to maximum principles and symmerty in elliptic problems, Cambridge Tracts in Mathematics, Cambridge Univ. Press. (2000). \bibitem{[13]}{\sc B. Gidas, Wei-Ming Ni, L. Nirenberg,} {\it Symmetry and relative properties via the maximum principle,} Commun. Math. Phys. {\bf 68} (1979), 209-243. \bibitem{[14]}{\sc D. Gilbarg and N.S. Trudinger,} Elliptic Partial Differential Equations of Second Order, Springer Verlag, Berlin, 1977. \bibitem{[15]}{\sc B. Kawohl,} Rearrangements and convexity of level sets in PDE, Lectures Notes in Math., {\bf 1150}, Springer Springer-Verlag Berlin Heidelberg New York, 1985. \bibitem{[16]}{\sc E. Lieb and M. Loss,} Analysis, Amer. Math. Soc., (1997). \bibitem{[17]}{\sc G. Talenti,} {\it Elliptic equations and rearrangements,} Ann. Sc. Norm. Sup. Pisa, {\bf 3} (1976), 697-718. \bibitem{[18]}{\sc W.C. Troy,} {\it Symmetric properties in systems of semilinear elliptic equations,} J. of Differential equations, {\bf 42} (1981), 400-413. \end{thebibliography} \end{document}