\pdfoutput=1\relax\pdfpagewidth=8.26in\pdfpageheight=11.69in\pdfcompresslevel=9 \documentclass[reqno]{amsart} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2003(2003), No. 76, pp. 1--13.\newline ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu \newline ftp ejde.math.swt.edu (login: ftp)} \thanks{\copyright 2003 Southwest Texas State University.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE--2003/76\hfil Attractors of degenerate diffusion equations] {Global attractors for a class of degenerate diffusion equations} \author[Shingo Takeuchi \& Tomomi Yokota\hfil EJDE--2003/76\hfilneg] {Shingo Takeuchi \& Tomomi Yokota} \address{Shingo Takeuchi\hfill\break Department of General Education, Kogakuin University \\ 2665-1 Nakano-machi, Hachioji-shi, Tokyo 192-0015, Japan} \email{shingo@cc.kogakuin.ac.jp} \address{Tomomi Yokota\hfill\break Department of Mathematics, Tokyo University of Science \\ 26 Wakamiya-cho, Shinjuku-ku, Tokyo 162-0827, Japan} \email{yokota@rs.kagu.tus.ac.jp} \date{} \thanks{Submitted January 29, 2003. Revised May 8, 2003. Published July 11, 2003.} \thanks{S. Takeuchi was supported by Grant-in-Aid for Young Scientists (B), No. 15740110.} \subjclass[2000]{35K65, 37L30} \keywords{Global attractors, $p$-Laplacian, degenerate diffusion} \begin{abstract} In this paper we give two existence results for a class of degenerate diffusion equations with $p$-Laplacian. One is on a unique global strong solution, and the other is on a global attractor. It is also shown that the global attractor coincides with the unstable set of the set of all stationary solutions. As a by-product, an a-priori estimate for solutions of the corresponding elliptic equations is obtained. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{thm}{Theorem}[section] \newtheorem{lem}[thm]{Lemma} \newtheorem{cor}[thm]{Corollary} \newtheorem{defn}[thm]{Definition} \newtheorem{rem}[thm]{Remark} \section{Introduction and Results} % sec. 1. Let $\Omega \subset \mathbb{R}^N$, $N \ge 1$, be a bounded domain of class $C^2$ with boundary $\partial \Omega$. We consider the degenerate diffusion equation \begin{equation} \label{P} \begin{gathered} u_t=\lambda \Delta_p u +f(u), \quad (x,t) \in \Omega \times (0,+\infty), \\ u(x,t)=0, \quad (x,t) \in \partial \Omega \times (0,+\infty), \end{gathered} \end{equation} with the initial condition $u(x,0)=u_0(x)$ in $\Omega$, where $\Delta_p u:=\operatorname{div}(|\nabla u|^{p-2}\nabla u)$ with $p>2$. We assume that $f \in C^1(\mathbb{R})$, $f(0)=0$, and one of the following two conditions is satisfied: \begin{enumerate} \item[(F1)] $p>N$ and $ \limsup_{|s| \to +\infty} \frac{f'(s)}{(p-1)|s|^{p-2}} < \lambda_1\lambda$\! ; \item[(F2)] $p \le N$ and $ \sup_{s \in \mathbb{R}} f'(s) < +\infty$, \end{enumerate} where $\lambda_1$ is the first eigenvalue of $-\Delta_p$ with the Dirichlet boundary condition and is characterized by $\lambda_1=\inf\{\|\nabla u\|_p^p/\|u\|_p^p;u \in W^{1,p}_0(\Omega) \setminus \{0\}\} \in (0,+\infty)$. For example of $f$ satisfying the above conditions, we can give $f(s)=s$; $f(s)=|s|^{q-2}s(1-|s|^r)$ with $q \ge 2$ and $r>0$; $f(s)=|s|^{q-2}s$ with $q \in (2,p)$ and $p>N$; and $f(s)=|s|^{p-2}s$ with $p>N$ when $\lambda>1/\lambda_1$. It is important that we assume only one sided boundedness on $f'$. For semilinear parabolic equations, i.e. $p=2$, there are many studies on the existence of global attractors and on the existence of solutions; see for example Temam \cite{Te}. A fundamental result in this field appeared on the paper \cite{Ma} by Marion. He assumes that $f$ has a polynomial growth nonlinearity and becomes negative for sufficiently large $u$, and that $f'$ is bounded from above. Under these conditions, he showed that a global attractor of \eqref{P} in $L^2(\Omega)$ exists and is bounded in $L^\infty(\Omega)$. In fact, the boundedness can be proved even in $D(\Delta)=H^1_0(\Omega) \cap H^2(\Omega)$; see \cite{Te}. Moreover, it was also proved that the fractal and Hausdorff dimensions of the global attractor are both finite, which roughly means that solutions of \eqref{P} eventually behave with a finite number of ``degrees of freedom'' as $t \to +\infty$. The analysis for the dimensions relies on the method of linearization, which is very operative tool to investigate the time-local behavior of solutions. This article concerns the degenerate case; i.e., $p>2$. We start with the existence of solutions for \eqref{P}. The Galerkin method is well-known for constructing (weak) solutions of partial differential equations (see e.g., Tsutsumi \cite{T}). However, the method of monotone operators gives a more straightforward proof of the existence of (strong) solutions than the Galerkin method, when available. Indeed, \^Otani \cite{O} extended the abstract theory of monotone operators of Br\'ezis \cite{B} to nonlinear evolution equations with a difference term of subdifferentials, and then succeeded in obtaining better properties of solutions of $u_t=\Delta_p u+|u|^{q-2}u$ than those had been known in \cite{T} by the Galerkin method. He also proved in \cite{O2} that the solution converges to the set of all stationary solutions (c.f., Theorem \ref{thm:globalattractor} below). For our first result, we use the method in \cite{O} to establish the existence of unique global strong solutions of \eqref{P} and give regularity properties. The definition of (global) strong solutions is given in Definition \ref{defn:stsol}, below. \begin{thm} \label{thm:existence} Let $N \ge 1$, $p>2$ and $f \in C^1(\mathbb{R})$ with $f(0)=0$. Assume that either (F1) or (F2) is satisfied. Let $u_0 \in L^2(\Omega)$. Then for any $T>0$ there exists a unique strong solution $u \in C([0,T];L^2(\Omega))$ of \eqref{P} in $[0,T]$ with $u(0)=u_0$, and $u$ can be extended to a global strong solution which is denoted again by $u$. Moreover, $u$ satisfies \begin{gather} u \in C^{0,1}_{\rm loc}((0,+\infty);L^2(\Omega)) \cap C^{0,\frac{1}{p}}_{\rm loc}((0,+\infty);W^{1,p}_0(\Omega)), \label{eq:reg1}\\ u \in C^{\alpha}(\overline{\Omega} \times [\delta,T]) \quad \mbox{for all $\alpha \in (0,1)$}, \label{eq:reg6}\\ \nabla u \in C^{\alpha}(\overline{\Omega} \times [\delta,T]) \quad \mbox{for some $\alpha \in (0,1)$}, \label{eq:newreg}\\ u_t \in L^2(\delta,+\infty;L^2(\Omega)),\ u \in L^\infty(\delta,+\infty;W^{1,p}_0(\Omega)), \label{eq:reg4}\\ t^{1-\frac{1}{\sigma}}u_t,\ t^{1-\frac{1}{\sigma}}\Delta_pu \in L^{\sigma}(0,T;L^2(\Omega)) \quad \mbox{for all $\sigma \in [2,+\infty]$}, \label{eq:reg2} \end{gather} where $\delta$ and $T$ $(0<\delta0$. However, the equation $u_t=\lambda \Delta u+u$ no longer has a global attractor for $\lambda \le 1/\lambda_1$. This is the simplest and most remarkable distinction on asymptotic behavior of solutions between two cases $p>2$ and $p=2$ (see also \cite{CCD}). A self-evident fact that $\mathcal{A}_\lambda$ contains $\mathcal{E}_\lambda$ prompts us to observe as follows. It is known that $\mathcal{E}_\lambda$ is generally contained in $C^{1,\alpha}$ and not to $C^2$ even if $\Omega$ and $f$ are in $C^\infty$. Indeed, we can explicitly compose such solutions (see Takeuchi and Yamada \cite[Remark 3.2]{TY}). Therefore we can not expect that $\mathcal{A}_\lambda$ is included in $C^2$, though $\Omega$ and $f$ are both very smooth. Next, if $\mathcal{E}_\lambda$ is discrete, fortunately, then the global attractor can be exactly represented by the union of the unstable sets associated to the functions in $\mathcal{E}_\lambda$, i.e., $\mathcal{A}_\lambda= \bigcup_{\phi \in \mathcal{E}_\lambda} \mathcal{M}_{+}(\phi)$ (c.f., Temam \cite[Theorem VII.4.1]{Te}). However, since $\mathcal{E}_\lambda$ often includes some continua (c.f., \cite[Theorems 3.1--3.3]{TY}), we have no conclusion about it from the abstract theory for dynamical systems. In addition, concerning the $p$-Laplacian, we note that there is no guarantee for the validity of linearization. This seems to be the reason why equations with the $p$-Laplacian are not extensively treated in terms of dynamical systems. \begin{rem} \label{rmk1.2} \rm Dung \cite{Du} has obtained the ultimately uniform boundedness of solutions and gradients for degenerate parabolic systems including \eqref{P} with bounded initial data, and shown the existence of a global attractor in the space of bounded continuous functions only under the Neumann boundary conditions. Note that we are not subject to the boundedness for initial data. \end{rem} \begin{rem} \label{rml1/3} \rm It is possible to relax the assumptions on $f$ if one pays no attention to the uniqueness of solutions. Even in this case, we may be able to show only the existence of global attractors, which is especially defined for multivalued semiflow (see Valero \cite{V}). \end{rem} As a by-product of Theorem \ref{thm:globalattractor}, an a-priori (uniform) estimate for solutions of the elliptic equation \eqref{eq:stationary} is immediately deduced. \begin{cor} \label{cor:elliptic} Suppose the same conditions as in Theorem \ref{thm:existence}. Then there exists a positive constant $M_\lambda$ such that $\|\phi\|_{C^{1,\alpha}(\overline{\Omega})} \le M_\lambda$ for all $\phi \in \mathcal{E}_\lambda$. \end{cor} The contents of this paper are as follows. Section 2 is devoted to the preliminaries in which we define strong solutions and global attractors, and give some lemmas. We will prove Theorems \ref{thm:existence} and \ref{thm:globalattractor} in Sections 3 and 4, respectively. \section{Preliminaries} % sec. 2 In this section we give some definitions and elementary lemmas. Throughout this paper, $L^p(\Omega)$ and $W^{1,p}_0(\Omega)$, $1 \le p \le \infty$, are the usual Lebesgue and Sobolev spaces with norms $\|\cdot\|_p$ and $\|\nabla \cdot\|_p$, respectively. The scalar product of $L^2(\Omega)$ is denoted by $(\cdot,\cdot)$. $C^{\alpha}(\overline{\Omega} \times [\delta,T])$, $0<\alpha<1$, is the H\"{o}lder space with norm \[ [u]_{\alpha,\overline{\Omega} \times [\delta,T]} =\sup_{(x,t) \in \overline{\Omega} \times [\delta,T]}|u(x,t)| +\sup_{(x,t),(y,\tau) \in \overline{\Omega} \times [\delta,T]} \frac{|u(x,t)-u(y,\tau)|}{|x-y|^{\alpha}+|t-\tau|^{\alpha/p}}. \] Also, $C^{1,\alpha}(\overline{\Omega})$, $0<\alpha<1$, is the usual H\"{o}lder space. \begin{defn} \label{defn:stsol} \rm A function $u \in C([0,T];L^2(\Omega))$ is called a \textit{strong solution of \eqref{P} in $[0,T]$ with $u(0)=u_0$} if $u$ is locally absolutely continuous on $(0,T)$, $u(t) \in W^{1,p}_0(\Omega),\ \Delta_p u(t) \in L^2(\Omega),\ f(u(t)) \in L^2(\Omega)$ for a.a. $t \in (0,T)$ and $u$ satisfies \begin{gather*} u_t=\lambda \Delta_p u+f(u) \quad \mbox{a.e. in } \Omega \times (0,T), \\ u(0)=u_0 \quad \mbox{a.e. in } \Omega. \end{gather*} Moreover, we say that a function $u \in C([0,+\infty);L^2(\Omega))$ is a \textit{global strong solution of} \eqref{P} if $u$ is a strong solution of \eqref{P} in $[0,T]$ with $u(0)=u_0$ for every $T>0$. \end{defn} \begin{defn} \label{defn2.2} \rm Let $\{S(t)\}_{t \ge 0}$ be a semigroup on $L^2(\Omega)$. An \textit{attractor} for the semigroup $\{S(t)\}_{t \ge 0}$ is a set $\mathcal{A} \subset L^2(\Omega)$ satisfying the following two properties: \begin{enumerate} \item $\mathcal{A}$ is an invariant set under $\{S(t)\}_{t \ge 0}$, i.e., $S(t)\mathcal{A}=\mathcal{A}$ for all $t \ge 0$, and \item $\mathcal{A}$ possesses an open neighborhood $\mathcal{U}$ such that for every $u_0 \in \mathcal{U}$, $S(t)u_0$ converges to $\mathcal{A}$ as $t \to +\infty$: $$\inf_{y \in \mathcal{A}}\|S(t)u_0-y\|_2 \to 0 \quad \mbox{as $t \to +\infty$.}$$ \end{enumerate} We say that $\mathcal{A} \subset L^2(\Omega)$ is a \textit{global attractor} for the semigroup $\{S(t)\}_{t \ge 0}$ if $\mathcal{A}$ is a compact attractor that attracts any bounded sets of $L^2(\Omega)$: $$\sup_{x \in S(t)B} \inf_{y \in \mathcal{A}}\|x-y\|_2 \to 0 \quad \mbox{as $t \to +\infty$}$$ for any bounded set $B \subset L^2(\Omega)$. \end{defn} \begin{defn} \label{dfn2.3} \rm The \textit{unstable set} $\mathcal{M}_{+}(X)$ of $X \subset L^2(\Omega)$ is the (possibly empty) set of points $u_*$ which belong to a complete orbit $\{u(t);t \in \mathbb{R}\}$ such that $$\inf_{y \in X}\|u(t)-y\|_2 \to 0 \quad \mbox{as $t \to -\infty$.}$$ \end{defn} \begin{lem}[Ghidaglia's inequality] \label{lem:ghidaglia} Let $y(\cdot)$ be a positive absolutely continuous function on $(0,+\infty)$ which satisfies $$y'+\gamma y^{\frac{p}{2}} \le \delta$$ with $p>2,\ \gamma>0$ and $\delta \ge 0$. Then for $t >0$ $$y(t) \le \left(\frac{\delta}{\gamma}\right)^\frac{2}{p}+ \left(\frac{\gamma(p-2)}{2}t\right)^{-\frac{2}{p-2}}.$$ \end{lem} For the proof of this lemma, see Temam \cite[Lemma III.5.1]{Te}. Define a function $(u-M)_+:=\max\{u-M,0\}$ for a function $u$ and a constant $M$, and $\chi[u > \alpha]$ denotes the characteristic function of the set $\{x \in \Omega; u(x)>\alpha\}$. \begin{lem} \label{lem:-1} Let $\{k_n\}_{n=0}^\infty$ be a strictly increasing sequence of nonnegative numbers. Then for any $u \in L^2(\Omega)$ \begin{equation} \label{eq:-1} \Big(\int_\Omega u(u-k_{n+1})_+dx\Big)^{1/2} \le \frac{\|(u-k_n)_+\|_2} {1-\frac{k_n}{k_{n+1}}}. \end{equation} \end{lem} \begin{proof} Easily we obtain estimates that yield \begin{align*} \big(1-\frac{k_n}{k_{n+1}}\big)^2 \int_\Omega u(u-k_{n+1})_+dx & \le \int_\Omega \big(u-k_n\frac{u}{k_{n+1}}\big)^2 \cdot \chi[u>k_{n+1}]dx\\ & \le \int_\Omega (u-k_n)^2 \cdot \chi[u>k_{n+1}]dx\\ & \le \|(u-k_n)_+\|_2^2, \end{align*} which implies \eqref{eq:-1}. \end{proof} \begin{lem} \label{lem:0} Let $\{t_n\}_{n=0}^\infty$ and $\{k_n\}_{n=0}^\infty$ be strictly increasing sequences of nonnegative numbers. Then for any $u \in L^\infty_{\rm loc}(0,+\infty;L^2(\Omega)) \cap L^p_{\rm loc}(0,+\infty;W^{1,p}_0(\Omega))$, the function \begin{equation} \label{eq:Y_n} Y_n(t)=\int_{t_n}^t \|(u-k_n)_+(s)\|_2^2ds,\quad t>t_n, \end{equation} satisfies \begin{multline} \label{eq:0} Y_{n+1}^{q/2} \leq \\ \frac{C_0 \big( \operatornamewithlimits{ess\,sup}_{t_{n+1} t_{n+1}$ and some constant $C_0>0$, where $q=(N+2)p/N$. \end{lem} \begin{proof} By the H\"{o}lder and the Gagliardo-Nirenberg inequality \begin{align*} Y_{n+1}^{q/2} & = \Big(\int_{t_{n+1}}^t \int_\Omega (u-k_{n+1})_+^2 \cdot \chi[u>k_{n+1}]dxds\Big)^{q/2} \\ & \le \int_{t_{n+1}}^t \|(u-k_{n+1})_+\|_q^qds \cdot |A_{n+1}|^\frac{q-2}{2}\\ & \le C_0 \Big( \operatornamewithlimits{ess\,sup}_{(t_{n+1},t)} \|(u-k_{n+1})_+\|_2^2 \Big)^{p/N} \int_{t_{n+1}}^t\|\nabla((u-k_{n+1})_+)\|_p^pds \cdot |A_{n+1}|^\frac{q-2}{2}, \end{align*} where $|A_{n+1}|$ denotes the Lebesgue measure of $\{(x,s) \in \Omega \times [t_{n},t];u(x,s)>k_{n+1}\}$. Combining this with \[ Y_n \ge \int_{t_{n}}^t \int_\Omega (u-k_n)_+^2 \cdot \chi[u>k_{n+1}]\,dx\,ds \ge (k_{n+1}-k_n)^2|A_{n+1}|, \] we obtain \eqref{eq:0}. \end{proof} Finally we provide a simple, but nice bright lemma. \begin{lem} \label{lem:2} Let $\{Y_n\}_{n=0}^\infty$ be a sequence of positive numbers, satisfying that there exist $a>0$, $b>1$ and $\theta>0$ such that \begin{equation} \label{eq:2} Y_{n+1} \le ab^nY_n^{1+\theta},\ n=0,1,2,\ldots. \end{equation} Then $Y_0 \le a^{-1/\theta}b^{-1/\theta^2}$ implies that $Y_n \to 0$ as $n \to +\infty$. \end{lem} \begin{proof} The lemma is introduced in the book of DiBenedetto \cite[Lemma I.4.1]{Di} without its proof. Though it is proved easily, we show it here for confirmation. Using the recursive inequality \eqref{eq:2} repeatedly, we have $$Y_n \le a^\frac{(1+\theta)^n-1}{\theta} b^\frac{(1+\theta)^n-1-\theta n}{\theta^2}Y_0^{(1+\theta)^n} \le a^{-\frac{1}{\theta}}b^{-\frac{1+\theta n}{\theta^2}} \to 0$$ as $n \to +\infty$. \end{proof} \section{Proof of Theorem \ref{thm:existence}} %sec. 3 Let $\kappa$ be a positive constant such that \begin{align*} &\kappa < 1-\max\Big\{\limsup_{|s|\to+\infty} \frac{f'(s)}{\lambda_1\lambda(p-1)|s|^{p-2}},\ 0 \Big\} \quad \text{when (F1) is satisfied};\\ &\kappa=1 \quad \text{when (F2) is satisfied}. \end{align*} Then there exists a constant $C_1>0$ such that $f'(s) \le (1-\kappa)\lambda_1\lambda(p-1)|s|^{p-2}+C_1$ for all $s \in \mathbb{R}$. Putting $$g(s):=(1-\kappa)\lambda_1\lambda|s|^{p-2}s+C_1 s-f(s), $$ we can see that $g \in C^1(\mathbb{R})$, $g(0)=0$, $g$ is nondecreasing on $\mathbb{R}$, and equation \eqref{P} can be represented by \begin{equation} \label{eq:monotone} u_t-\lambda \Delta_p u+g(u)= (1-\kappa)\lambda_1\lambda |u|^{p-2}u+C_1 u. \end{equation} Defining the following proper lower semi-continuous convex functions on $L^2(\Omega)$: \begin{equation*} \varphi_1(u):= \begin{cases} \frac{\lambda}{p} \|\nabla u\|_p^p, & u \in W^{1,p}_0(\Omega),\\ +\infty, & \mbox{otherwise}, \end{cases} \end{equation*} \begin{equation*} \varphi_2(u):= \begin{cases} \int_\Omega \int_0^u g(s)dsdx, & u \in L^2(\Omega) \quad \mbox{with $ \int_0^ug(s)ds \in L^1(\Omega)$},\\ +\infty, & \mbox{otherwise}, \end{cases} \end{equation*} and \begin{equation*} \psi(u):= \begin{cases} \frac{(1-\kappa)\lambda_1\lambda}{p}\|u\|_p^p+\frac{C_1}{2} \|u\|_2^2, & u \in L^p(\Omega),\\ +\infty, & \mbox{otherwise}, \end{cases} \end{equation*} we rewrite \eqref{eq:monotone} as \begin{equation} \label{eq:abst} u_t+\partial \varphi_1(u)+\partial \varphi_2(u) =\partial \psi(u) \quad \mbox{in $(0,+\infty)$}, \end{equation} where $\partial \varphi(u)$ denotes the subdifferential of $\varphi$ at $u$. Since $\partial \varphi_1+\partial \varphi_2$ is $m$-accretive (maximal monotone) in $L^2(\Omega)$ (see Br\'ezis,\ Crandall and Pazy \cite[Theorem 3.1]{BCP} and Okazawa \cite[Theorem 1]{Ok}), it follows that $\partial \varphi_1+\partial \varphi_2= \partial \varphi$, where $\varphi=\varphi_1+\varphi_2$. Hence \eqref{eq:abst} is rewritten as \begin{equation} \label{eq:abst2} u_t+\partial\varphi(u)=\partial \psi(u) \quad \mbox{in $(0,+\infty)$}. \end{equation} The next lemma holds the key to establishing the existence of global strong solutions of \eqref{eq:abst2}. \begin{lem} \label{lem:absorbing} Let $\kappa$, $C_1$, $\varphi$, $\varphi_1$ and $\psi$ be as above. Then \begin{gather} \|\partial\psi(u)\|_2 \le C_1\|u\|_2+C_2(\varphi_1(u))^{1-\frac{1}{p}} \quad \mbox{for all $u \in W^{1,p}_0(\Omega)$,} \label{eq:otani2} \\ \psi(u) \le (1-\kappa) \varphi_1(u)+\frac{C_1}{2} \|u\|_2^2 \quad \mbox{for all $u \in W^{1,p}_0(\Omega)$}, \label{eq:absorb} \\ (\partial\psi(u),u) \le (1-\kappa) (\partial\varphi_1(u),u)+C_1\|u\|_2^2 \quad \mbox{for all $u \in D(\partial \varphi_1)$} \label{eq:otani4} \end{gather} for some constant $C_2>0$. \end{lem} \begin{proof}[Proof of Lemma \ref{lem:absorbing}] It is clear that \eqref{eq:otani2} and \eqref{eq:absorb} follow from Sobolev's embedding theorem and Poincar\'e's inequality, respectively. Also, we can obtain by \eqref{eq:absorb} \[ (\partial\psi(u),u) =p\Big(\psi(u)-\big(\frac{1}{2}-\frac{1}{p}\big)C_1 \|u\|_2^2\Big) %\\ \le (1-\kappa) p \varphi_1(u)+C_1\|u\|_2^2, \] which proves \eqref{eq:otani4}. \end{proof} The set $\{u \in L^2(\Omega);\ \varphi(u)+\|u\|_2 \le L\}$ is compact in $L^2(\Omega)$ for every $L<+\infty$ by Rellich's theorem. Therefore, by the same argument as in the proof of \^Otani \cite[Theorem 5.3]{O} (use \eqref{eq:absorb} and \eqref{eq:otani4} instead of (5.11) in \cite{O}), we see that for any $u_0 \in L^2(\Omega)$ and for any $T>0$ there exists a strong solution $u \in C([0,T];L^2(\Omega))$ of \eqref{P} in $[0,T]$ with $u(0)=u_0$ such that $$\partial\varphi(u),\ \partial \psi(u) \in L^2(\delta,T;L^2(\Omega)) \quad \mbox{for all $\delta \in (0,T)$}.$$ % The proof of the existence of strong solutions of \eqref{P} in $[0,T]$ % is completed. We need the following lemmas to prove \eqref{eq:reg1}--\eqref{eq:reg2} and the uniqueness. \begin{lem} \label{lem:111} Take $T>0$ and $\delta \in (0,T]$. Let $u$ be a strong solution of \eqref{P} in $[0,T]$ obtained as above. Then there exist positive constants $C_3$ and $C_4$ independent of $T$ such that \begin{gather} \label{eq:add1} \frac{1}{2}\|u(T)\|_2^2 + \kappa\int_0^T \varphi(u(t))dt \le C_3 T + \frac{1}{2}\|u_0\|_2^2,\\ \label{eq:add2} \int_{\delta}^T \|u_t(t)\|_2^2dt + \frac{\kappa}{2} \varphi(u(T)) \le \varphi(u(\delta)) + C_4,\\ %\quad \mbox{for all $\delta \in (0,T]$},\\ \label{eq:add3} \int_0^T t\|u_t(t)\|_2^2dt + \kappa T \varphi_1(u(T)) \le c(T,\|u_0\|_2),\\ %\quad \mbox{for all $T>0$},\\ \label{eq:add4} t^{1-\frac{1}{\sigma}} (\varphi_1 (u))^{1-\frac{1}{p}} \in L^{\sigma}(0,T), %\quad \mbox{for all $T>0$}, \end{gather} where $c(T,\|u_0\|_2)=(C_1 T+1/\kappa) (C_3 T + \|u_0\|_2^2/2)$ and $\sigma \in [1,+\infty]$ is arbitrary. \end{lem} \begin{proof}[Proof of Lemma \ref{lem:111}] Taking the scalar product of \eqref{eq:abst2} in $L^2(\Omega)$ with $u$ and using \eqref{eq:otani4} and some inequalities with $p>2$, we have \begin{align*} \frac{1}{2}\frac{d}{dt}\|u\|_2^2+(\partial \varphi(u),u) & = (\partial \psi(u),u) \\ & \le (1-\kappa) (\partial\varphi_1(u),u)+C_3+ \frac{\kappa(p-1)\lambda}{p}\|\nabla u\|_p^p \\ & =\big(1-\frac{\kappa}{p}\big) (\partial \varphi_1(u),u)+C_3; \end{align*} so that \begin{equation*} \frac{1}{2}\frac{d}{dt}\|u\|_2^2+ \frac{\kappa}{p} (\partial \varphi_1(u),u)+(\partial \varphi_2(u),u) \le C_3. \end{equation*} Since $(\partial \varphi_1(u),u)=p\varphi_1(u)$ and $(\partial \varphi_2(u),u) \ge \varphi_2(u)$, we obtain \begin{equation} \frac{1}{2} \frac{d}{dt}\|u(t)\|_2^2+\kappa \varphi(u(t)) \le C_3 \quad \textrm{for a.a. } t>0. \label{eq:absorbing} \end{equation} Integrating this inequality gives \eqref{eq:add1}. Next, setting $J(u(t)):=\varphi(u(t))-\psi(u(t))$, we see from \eqref{eq:abst2} that \begin{equation}\label{eq:j} \frac{d}{dt}J(u(t)) =(\partial\varphi(u(t))-\partial\psi(u(t)),u_t(t)) =-\|u_t(t)\|_2^2. \end{equation} Integrating it over $[\delta,T]$ ($0< \delta \le T$) and using \eqref{eq:absorb}, we have \begin{align*} \int_{\delta}^T \|u_t(t)\|_2^2dt + \varphi(u(T)) - \varphi(u(\delta)) &= \psi(u(T)) - \psi(u(\delta)) \\ &\le (1-\kappa)\varphi(u(T))+\frac{C_1}{2}\|u(T)\|_2^2 \\ &\le (1-\kappa)\varphi(u(T))+\frac{\kappa}{2}\varphi(u(T))+C_4, \end{align*} which implies \eqref{eq:add2}. Here we used Sobolev's embedding theorem and Young's inequality in the last inequality. Multiplying \eqref{eq:j} by $t \ge 0$ and integrating it over $[0,\tau]$, we have $$\int_0^\tau t\|u_t(t)\|_2^2dt + \tau J(u(\tau)) = \int_0^\tau J(u(t))dt. $$ Since $\kappa \varphi_1(u)-C_1\|u\|_2^2/2 \le J(u) \; (\le \varphi(u))$ by \eqref{eq:absorb}, it follows that $$\int_0^\tau t\|u_t(t)\|_2^2dt + \kappa \tau \varphi_1(u(\tau)) \le \frac{C_1}{2}\tau \|u(\tau)\|_2^2 + \int_0^\tau \varphi(u(t))dt. $$ Setting $\tau=T$ and applying \eqref{eq:add1} to the right-hand side, we obtain \eqref{eq:add3}, and $$\tau^{1-\frac{1}{\sigma}} (\varphi_1(u(\tau)))^{1-\frac{1}{p}} \le \left(\frac{c(T,\|u_0\|_2)}{\kappa}\right)^{1-\frac{1}{p}} \frac{1}{\tau^{\frac{1}{\sigma}-\frac{1}{p}}} \in L^{\sigma}(0,T).$$ This is nothing but \eqref{eq:add4}. \end{proof} \begin{lem} \label{lem:3.3} Let $u$ and $c(\cdot,\cdot)$ be as in Lemma \ref{lem:111}. Then for any $t \in (0,T]$ there exists a constant $L(t)>0$ such that \begin{gather} \label{eq:difference2} \|u_t(t)\|_2 \le e^{L(t)}\|u_t(\delta)\|_2 \quad \mathrm{for\ a.a.}\ t \ge \delta,\\ \label{eq:difference3} t^2\|u_t(t)\|_2^2 \le 2 c(t,\|u_0\|_2)e^{2L(t)}. \end{gather} \end{lem} \begin{proof}[Proof of Lemma \ref{lem:3.3}] Let $0N$, otherwise $\kappa=1$. Applying Gronwall's inequality to the preceding estimate yields that for all $\delta>0$ \begin{equation}\label{eq:difference} \|u(t+h)-u(t)\|_2 \le e^{\int_{\delta}^t K(\|\nabla u(s+h)\|_p^{p-2},\|\nabla u(s)\|_p^{p-2})ds} \|u(\delta +h)-u(\delta)\|_2, \end{equation} where $\int_\delta^tKds$ is bounded with respect to $h$ by \eqref{eq:add1} in Lemma \ref{lem:111}. Dividing \eqref{eq:difference} by $h$ and letting $h \to +0$, we obtain \eqref{eq:difference2}. Applying \eqref{eq:difference2}: $\|u_t(T)\|_2 \le e^{L(T)}\|u_t(t)\|_2$ $(00$ there exists a constant $k_T>0$ such that $u(t) \in L^{\infty}(\Omega)$ and \begin{equation} \label{eq:bdd} \|u(t)\|_\infty \le k_T \quad \mbox{for all $ t \in [\frac{T}{2},T]$}. \end{equation} \end{lem} \begin{proof}[Proof of Lemma \ref{lem:222}] In case of (F1), the assertion is trivial by \eqref{eq:add2} with Sobolev's embedding theorem. We consider the case (F2). However, we note that the following proof does not need the condition $p \le N$ in (F2). The key to the proof of \eqref{eq:bdd} is to deduce a global iterative inequality (c.f., DiBenedetto \cite[Chapter V]{Di}). Take any $T>0$ and $k>0$. Define sequences $\{t_n\}_{n=0}^\infty$, $\{k_n\}_{n=0}^\infty$ of nonnegative numbers and a sequence of functions $\{\zeta_n\}_{n=0}^\infty$ as follows: \begin{gather*} t_n = \frac{T}{2}\big(1-\frac{1}{2^n}\big), \quad k_n = k \big(1-\frac{1}{2^n}\big) \quad \mbox{and} \\ \zeta_n(t) = \begin{cases} 0, & 0 \le t \le t_n, \\ \frac{t-t_n}{t_{n+1}-t_n},\quad & t_n < t < t_{n+1},\\ 1, & t_{n+1} \le t \le T. \end{cases} \end{gather*} Differentiating $\|(u-k_{n+1})_+(s)\|_2^2\zeta_n(s)$ with respect to $s$ and using \eqref{eq:monotone} with $\kappa=1$ and $(u-k_{n+1})_+g(u) \ge 0$, we obtain \begin{multline*} \frac{d}{ds}(\|(u-k_{n+1})_+\|_2^2\zeta_n)+ 2\lambda\|\nabla((u-k_{n+1})_+)\|_p^p\zeta_n \\ \le \|(u-k_{n+1})_+\|_2^2\zeta_n'+2C_1\int_\Omega u(u-k_{n+1})_+\zeta_ndx. \end{multline*} Integrating this over $[t_n,t]$ with $t_{n+1} \le t \le T$ and noting the properties of $\zeta_n$, we have \begin{align*} & \quad \|(u-k_{n+1})_+(t)\|_2^2+2\lambda \int_{t_{n+1}}^t\|\nabla((u-k_{n+1})_+)\|_p^pds\\ & \le \frac{2^{n+2}}{T}\int_{t_n}^t\|(u-k_{n+1})_+\|_2^2ds +2C_1\int_{t_n}^t \int_\Omega u(u-k_{n+1})_+dxds\\ & \le \frac{2^{n+2}}{T}\int_{t_n}^t\|(u-k_n)_+\|_2^2ds +2C_1(2^{n+1}-1)^2\int_{t_n}^t \|(u-k_n)_+\|_2^2ds, \end{align*} where we used an obvious inequality and Lemma \ref{lem:-1} in the second inequality. Thus \begin{multline} \label{eq:1} \sup_{[t_{n+1},T]}\|(u-k_{n+1})_+\|_2^2+2\lambda \int_{t_{n+1}}^T\|\nabla((u-k_{n+1})_+)\|_p^pds\\ \le C_6\left(1+\frac{1}{T}\right)4^n \int_{t_n}^T \|(u-k_n)_+\|_2^2ds \end{multline} for some constant $C_6>0$. Now we put $Y_n$ as \eqref{eq:Y_n} with $t=T$ and it follows from \eqref{eq:1} and \eqref{eq:0} in Lemma \ref{lem:0} that \eqref{eq:2} in Lemma \ref{lem:2} is satisfied with \begin{gather*} a = a_k=\frac{C_7}{k^{\frac{2}{q}(q-2)}} \big(1+\frac{1}{T}\big)^{\frac{2}{q}\left(1+\frac{p}{N}\right)},\\ b = 4^{1+\frac{2p}{Nq}}\ (>1),\quad \theta = \frac{2p}{Nq},\quad q = \frac{(N+2)p}{N}, \end{gather*} where $C_7$ is a positive constant. Since it is possible to take $k=k_T$ sufficiently large as \begin{equation} \label{eq:k} Y_0 \le \int_0^T\|u(s)\|_2^2ds \le a_k^{-\frac{1}{\theta}}b^{-\frac{1}{\theta^2}}, \end{equation} Lemma \ref{lem:2} gives $Y_n \to 0$ as $n \to +\infty$. Hence $$\int_{\frac{T}{2}}^T\|(u-k_T)_+\|_2^2ds=0,$$ which implies that $u \le k_T$ a.e. in $\Omega \times [T/2,T]$. The same argument holds true for $-u$ so that Lemma \ref{lem:222} is established. \end{proof} Now we are in a position to complete the proof of Theorem \ref{thm:existence}. By Lemma \ref{lem:222} we see that $f(u) \in L^{\infty}(\delta,T;L^{\infty}(\Omega))$, and hence DiBenedetto \cite[Theorems X.1.1 and X.1.2]{Di} (see also Chen and DiBenedetto \cite[Theorems 1 and 2]{CD}) yields \eqref{eq:reg6}, \eqref{eq:newreg} and \begin{equation} \label{eq:newbdd} \|u(t)\|_{C^{1,\alpha}(\overline{\Omega})} \le \gamma(p,N,\delta,T) \quad \mbox{for all $t \in [\delta,T]$}, \end{equation} where $\gamma(p,N,\delta,T)$ depends also on $\int_{\delta}^T \|\nabla u(t)\|_p^p dt$. The first claim of \eqref{eq:reg2} is proved by \eqref{eq:add3} in Lemma \ref{lem:111} and \eqref{eq:difference3} in Lemma \ref{lem:3.3} because $\|t^{1-1/\sigma}u_t\|_2^{\sigma}=\|\sqrt{t}u_t\|_2^2 \|tu_t\|_2^{\sigma-2}$. Since $(\partial \varphi_1(u), \partial \varphi_2(u)) \ge 0$ (see \cite[p.138, l.6]{BCP} and \cite[(5)]{Ok}), we have \begin{align} \label{eq:abst3} \|\partial \varphi_1(u)\|_2 &\le \|\partial\varphi(u)\|_2 \notag \\ &\le \|u_t\|_2+\|\partial \psi(u)\|_2 \quad \mbox{by \eqref{eq:abst2}} \notag \\ &\le \|u_t\|_2+C_1\|u\|_2+C_2 (\varphi_1(u))^{1-\frac{1}{p}} \quad \mbox{by \eqref{eq:otani2}}. \end{align} Multiplying \eqref{eq:abst3} by $t^{1-1/\sigma}$ and integrating it over $[0,T]$, we obtain the second claim of \eqref{eq:reg2} by virtue of the first one and \eqref{eq:add4}. In view of \eqref{eq:difference2} in Lemma \ref{lem:3.3} we have the first claim of \eqref{eq:reg1}. It follows from Tartar's inequality that \begin{align*} & \ \|\nabla u(t)-\nabla u(s)\|_p^p \\ &\le 2^{p-2}\int_{\Omega}(|\nabla u(t)|^{p-2}\nabla u(t)- |\nabla u(s)|^{p-2}\nabla u(s))\!\cdot\!(\nabla u(t)-\nabla u(s))\,dx \\ &\le 2^{p-2}(\|\Delta_p u(t)\|_2+\|\Delta_p u(s)\|_2) \|u(t)-u(s)\|_2. \end{align*} Noting that $\Delta_p u \in L^{\infty}(\delta,T;L^2(\Omega))$ (see \eqref{eq:reg2} with $\sigma=+\infty$) and applying the first claim to the right-hand side, we obtain \eqref{eq:reg1} (c.f., Okazawa and Yokota \cite{OY} for \eqref{eq:reg1} in case (F2) is satisfied). The uniqueness of solutions of \eqref{P} in $[0,T]$ is proved as follows. Let $u$ and $v$ be strong solutions of \eqref{P} in $[0,T]$ with $u(0)=u_0 \in L^2(\Omega)$ and $v(0)=v_0 \in L^2(\Omega)$, respectively. As in the proof of \eqref{eq:difference}, we have $$\|u(t)-v(t)\|_2 \le e^{\int_0^t K(\|\nabla u(s)\|_p^{p-2},\|\nabla v(s)\|_p^{p-2})ds} \|u_0-v_0\|_2.$$ This implies the uniqueness of solutions of \eqref{P} in $[0,T]$. Finally, since $T>0$ is arbitrary, we see that $u$ can be extended uniquely to a global strong solution of \eqref{P}. Noting that $C_4$ in \eqref{eq:add2} of Lemma \ref{lem:111} is independent of $T$, we obtain \eqref{eq:reg4}. \begin{rem} \label{rmk3.1} \rm To prove the first claim of \eqref{eq:reg1}, we have used \eqref{eq:difference2}. If \eqref{eq:difference3} is employed instead of \eqref{eq:difference2}, then we see that $$\|u(t)-u(s)\|_2 \le e^{L(T)}\sqrt{2c(T,\|u_0\|_2)} \cdot |\log{t}-\log{s}|, \quad t,\ s \in (0,T].$$ \end{rem} \begin{rem} \label{rmk3.2} \rm Let $f(u)$ be replaced by the spatially inhomogeneous reaction $f(x,u)$. If $f \in C^1(\overline{\Omega} \times \mathbb{R})$, $f(x,0)=0$ for every $x \in \Omega$ and either (F1) or (F2) is satisfied uniformly with respect to $x \in \Omega$, then under some condition on $\nabla_x f$ (see Okazawa \cite{Ok}), we can prove the unique existence of global strong solutions of \eqref{P} with $f(u)$ replaced by $f(x,u)$. \end{rem} \section{Proof of Theorem \ref{thm:globalattractor}} %sec. 4 Thanks to Theorem \ref{thm:existence}, an operator $S(t):L^2(\Omega) \to L^2(\Omega)$ for each $t \ge 0$ is well defined by $S(t)u_0=u(t;u_0)$. Then it is easy to verify that the family of operators $\{S(t)\}_{t \ge 0}$ enjoys the \textit{$C^0$-semigroup} properties on $L^2(\Omega)$, that is, $\{S(t)\}_{t \ge 0}$ is a semigroup and the mapping $(t,u_0) \mapsto S(t)u_0$ from $(0,+\infty) \times L^2(\Omega)$ into $L^2(\Omega)$ is continuous. \begin{proof}[Proof of Theorem \ref{thm:globalattractor}] Let $\kappa, C_1$ and $C_3$ be the same constants defined in the proof of Theorem \ref{thm:existence}. It is sufficient to show the existence of a compact absorbing set in $L^2(\Omega)$ for the semigroup $\{S(t)\}_{t \ge 0}$ (see, e.g., Temam \cite[Theorem I.1.1]{Te}). From \eqref{eq:absorbing} in the proof of Lemma \ref{lem:111}, in particular \begin{equation*} \frac{1}{2}\frac{d}{dt}\|u(t)\|_2^2+C_8\|u(t)\|^p_2 \le C_3 \end{equation*} for some $C_8>0$. Hence, Ghidaglia's inequality (Lemma \ref{lem:ghidaglia} with $y(t)=\|u(t)\|_2^2$) gives \begin{equation} \label{eq:l^2bounded} \|u(t)\|_2^2 \le \Big(\frac{C_3}{C_8}\Big)^\frac{2}{p} +(C_8(p-2)t)^{-\frac{2}{p-2}} \quad \mbox{for all $t>0$.} \end{equation} Next, it follows from \eqref{eq:j} that $J(u(t))$ is nonincreasing in $t>0$ and hence \begin{equation} \label{eq:absorbing1} J(u(t+1)) \le \int_t^{t+1}J(u(s))ds \le \int_t^{t+1}\varphi(u(s))ds \end{equation} when $t>0$. By \eqref{eq:absorb} in Lemma \ref{lem:absorbing}, we obtain $J(u(t+1)) \ge \kappa\varphi_1(u(t+1))- C_1\|u(t+1)\|_2^2/2$. Moreover, integrating \eqref{eq:absorbing} over $[t,t+1]$ gives $\kappa\int_t^{t+1} \varphi(u(s))ds \le C_3+\|u(t)\|_2^2/2$. Applying these two inequalities to \eqref{eq:absorbing1}, we have \begin{equation*} 2\kappa^2\varphi_1(u(t+1)) \le 2C_3+\|u(t)\|_2^2 +\kappa C_1 \|u(t+1)\|_2^2; \end{equation*} and hence \eqref{eq:l^2bounded} yields that there exist positive constants $C_9$ and $C_{10}$ such that \begin{equation} \label{eq:w} \varphi_1(u(t)) \le C_9+C_{10}((p-2)(t-1))^{-\frac{2}{p-2}} \quad \mbox{for all $t>1$.} \end{equation} Since $C_9$ and $C_{10}$ are independent of the solution, \eqref{eq:w} implies that there exists a number $t_0>1$ such that $S(t)B \subset B_{\rho_0}(0)$ for any bounded set $B \subset L^2(\Omega)$ and $t \ge t_0$, where $B_{\rho_0}(0)=\{u \in W^{1,p}_0(\Omega);\|\nabla u\|_p \le \rho_0\}$ and $\lambda \rho_0^p/p>C_7$. Therefore $B_{\rho_0}(0)$ is a compact absorbing set in $L^2(\Omega)$ and $\mathcal{A}_\lambda=\bigcap_{t \ge 0} \overline{\bigcup_{s \ge t}S(s)B_{\rho_0}(0)}$ is a connected global attractor in $L^2(\Omega)$. In addition, for all $\phi \in \mathcal{A}_\lambda$ \begin{equation} \label{eq:size} \|\phi\|_2^2 \le \Big(\frac{C_3}{C_8}\Big)^{2/p}\quad \mbox{and} \quad \|\nabla \phi\|_p^p \le \frac{pC_9}{\lambda}<\rho_0^p. \end{equation} Indeed, by the invariance property of global attractor, for every $\phi \in \mathcal{A}_\lambda$ there exists a $u_n \in \mathcal{A}_\lambda$ such that $S(n)u_n= u(n;u_n)=\phi$. Applying \eqref{eq:l^2bounded} and \eqref{eq:w} to $u(t)=S(t)u_n$, and setting $t=n \to +\infty$, we obtain these estimates. We will prove the boundedness of $\mathcal{A}_\lambda$ in $C^{1,\alpha}(\overline{\Omega})$ for some $\alpha \in (0,1)$. It follows from \eqref{eq:newbdd} and \eqref{eq:w} that \begin{equation} \label{eq:newbdd2} \|u(t)\|_{C^{1,\alpha}(\overline{\Omega})} \le \gamma(p,N) \quad \mbox{for all $t \in [1,2]$}, \end{equation} where $\alpha$ and $\gamma(p,N)$ are independent of the solution. Now take any $\phi \in \mathcal{A}_{\lambda}$ and $u_2$ be as above. Applying \eqref{eq:newbdd2} to $S(t)u_2$, we see that $\|S(t)u_2\|_{C^{1,\alpha}(\overline{\Omega})} \le \gamma(p,N)$ for all $t \in [1,2]$. Setting $t=2$, we obtain $$\|\phi\|_{C^{1,\alpha}(\overline{\Omega})} \le \gamma(p,N) \quad \mbox{for all $\phi \in \mathcal{A}_{\lambda}$;}$$ that is, $\mathcal{A}_{\lambda}$ is bounded in $C^{1,\alpha}(\overline{\Omega})$. The boundedness of $\{\Delta_p\phi;\phi \in \mathcal{A}_\lambda\}$ in $L^2(\Omega)$ is also shown in a similar way. The solution $u(t;u_2) \in \mathcal{A}_\lambda$ satisfies \eqref{eq:abst3}. Multiplying it by $t$ yields \begin{align*} \|t\partial \varphi_1(u)\|_2 &\le \|tu_t\|_2+C_1t\|u\|_2+C_2t (\varphi_1(u))^{1-\frac{1}{p}}\\ &\le \|tu_t\|_2+C_1t\|u\|_2+\frac{C_2t}{p}+ \frac{C_2(p-1)}{p}t\varphi_1(u) \\ &\le \tilde{c}(t,\|u_0\|_2), \end{align*} where $\tilde{c}(\cdot,\cdot)$ is a continuous function and increasing with respect to the first variable, determined by \eqref{eq:difference3},\ \eqref{eq:add1} and \eqref{eq:add3}. Hence, $\lambda \|\Delta_p u(t;u_2)\|_2 \le \tilde{c}(2,\|u_2\|_2)$ for all $t \in [1,2]$. Since $u_2 \in \mathcal{A}_\lambda$ and \eqref{eq:size} is satisfied, there exists a constant $C_{11}>0$ such that $\|\Delta_p u(t;u_2)\|_2 \le C_{11}$ for all $t \in [1,2]$. Setting $t=2$, we conclude that $$\|\Delta_p \phi\|_2 \le C_{11} \quad \mbox{for all $\phi \in \mathcal{A}_\lambda$}.$$ Finally we show that $\mathcal{A}_\lambda=\mathcal{M}_{+}(\mathcal{E}_\lambda)$. Since $\mathcal{A}_{\lambda}$ is relatively compact in $C^1(\overline{\Omega})$, the function $J(u)=\varphi(u)-\psi(u)$ is continuous on $\mathcal{A}_{\lambda}$ with respect to the $L^2(\Omega)$-topology. This fact and \eqref{eq:j} mean that $J:\mathcal{A}_{\lambda} \to \mathbb{R}$ is a Lyapunov function of $S(\cdot)$. Therefore it follows from \cite[Theorem VII.4.1]{Te} that $\mathcal{A}_{\lambda}$ coincides with the unstable set of $\mathcal{E}_{\lambda}$. \end{proof} \begin{rem} \label{rmk4.1} \rm The absorbing time $t_0$ of the absorbing set $B_{\rho_0}(0)$ is independent of the set of initial data $B$. Indeed, \eqref{eq:w} implies that all solutions belong to $B_{\rho_0}(0)$ uniformly with respect to the initial data when $t \ge t_0$, where $$t_0:=1+\frac{1}{p-2}\Big(\frac{pC_{10}}{\lambda \rho_0^p-pC_9}\Big) ^{(p-2)/2}.$$ \end{rem} \subsection*{Acknowledgment} The authors would like to thank the anonymous referee for the careful reading of the manuscript. \begin{thebibliography}{99} \bibitem{B} H.\ Br\'ezis, ``Operateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert'', Mathematics Studies 5, North-Holland, Amsterdam, 1973. \bibitem{BCP} H.\ Br\'ezis, M.\ G.\ Crandall and A.\ Pazy, \textit{Perturbations of nonlinear maximal monotone sets in Banach spaces}, Comm.\ Pure Appl.\ Math. \textbf{23} (1970), 123--144. \bibitem{CCD} A.\ N.\ Carvalho, J.\ W.\ Cholewa and T.\ Dlotko, \textit{Global attractors for problems with monotone operators}, Boll.\ Unione Mat.\ Ital.\ Sez.\ B Artic.\ Ric.\ Mat. \textbf{2} (1999), 693--706. \bibitem{CD} Y.\ Z.\ Chen and E.\ DiBenedetto, \textit{Boundary estimates for solutions of nonlinear degenerate parabolic systems}, J.\ Reine Angew.\ Math. \textbf{395} (1989), 102--131. \bibitem{Di} E.\ DiBenedetto, ``Degenerate Parabolic Equations'', Universitext, Springer-Verlag, New York, 1993. \bibitem{Du} L.\ Dung, \textit{Ultimately uniform boundedness of solutions and gradients for degenerate parabolic systems}, Nonlinear Anal. \textbf{39} (2000), 157--171. \bibitem{I} H.\ Ishii, \textit{Asymptotic stability and blowing up of solutions of some nonlinear equations}, J.\ Differential Equations \textbf{26} (1977), 291--319. \bibitem{Ma} M.\ Marion, \textit{Attractors for reaction-diffusion equations: existence and estimate of their dimension}, Appl.\ Anal. \textbf{25} (1987), 101--147. \bibitem{Ok} N.\ Okazawa, \textit{An application of the perturbation theorem for $m$-accretive Operators. II}, Proc.\ Japan Acad. Ser.\ A \textbf{60} (1984), 10--13. \bibitem{OY} N.\ Okazawa and T.\ Yokota, \textit{Global existence and smoothing effect for the complex Ginzburg-Landau equation with $p$-Laplacian}, J.\ Differential Equations \textbf{182} (2002), 541--576. \bibitem{O} M.\ \^Otani, \textit{On existence of strong solutions for} $\frac{du}{dt}(t)+\partial \psi^1(u(t))-\partial \psi^2(u(t)) \ni f(t)$, J.\ Fac.\ Sci.\ Univ.\ Tokyo\ Sec.\ IA, \textbf{24} (1977), 575--605. \bibitem{O2} M.\ \^Otani, \textit{Existence and asymptotic stability of strong solutions of nonlinear evolution equations with a difference term of subdifferentials}, ``Qualitative theory of differential equations, Vol. I, II'' (Szeged, 1979), 795--809, Colloq.\ Math.\ Soc.\ Janos Bolyai, 30, North-Holland, Amsterdam-New York (1981). \bibitem{TY} S.\ Takeuchi and Y.\ Yamada, \textit{Asymptotic properties of a reaction-diffusion equation with degenerate $p$-Laplacian,} Nonlinear Anal. \textbf{42} (2000), 41--61. \bibitem{Te} R.\ Temam, ``Infinite Dimensional Dynamical Systems in Mechanics and Physics, 2nd Ed.'', Applied Mathematical Sciences 68, Springer-Verlag, New-York, 1997. \bibitem{T} M.\ Tsutsumi, \textit{Existence and nonexistence of global solutions for nonlinear parabolic equations}, Publ.\ RIMS.\ Kyoto Univ. \textbf{8} (1972), 211--229. \bibitem{V} J.\ Valero, \textit{Attractors of parabolic equations without uniqueness}, J.\ Dynam.\ Differential Equations \textbf{13} (2001), 711--744. \end{thebibliography} \end{document}