\documentclass[reqno]{amsart} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2003(2003), No. 85, pp. 1--17.\newline ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu \newline ftp ejde.math.swt.edu (login: ftp)} \thanks{\copyright 2003 Southwest Texas State University.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE--2003/85\hfil Stability for a coupled system of wave equations] {Stability for a coupled system of wave equations of Kirchhoff type with nonlocal boundary conditions} \author[J. Ferreira, D. C. Pereira, \& M. L. Santos\hfil EJDE--2003/85\hfilneg] {Jorge Ferreira, Ducival C. Pereira, \& Mauro L. Santos} % In alphabetical order \address{Jorge Ferreira \newline Departamento de Matem\'atica-DMA, Universidade Estadual de Maring\'a-UEM \newline Av. Colombo, 5790-Zona 7, CEP 87020-900, Maring\'a-Pr., Brazil} \email{jferreira@bs2.com.br} \address{Ducival C. Pereira \newline Instituto de Estudos Superiores da Amaz\^onia (IESAM)\\ Av. Gov. Jos\'e Malcher 1148, CEP 66.055-260, Bel\'em-Pa., Brazil\\ Faculdade Ideal(FACI) \\ Rua dos Mundurucus, 1427, CEP 66025-660, Bel\'em-Pa., Brazil} \email{ducival@aol.com} \address{Mauro L. Santos \newline Departamento de Matem\'atica, Universidade Federal do Par\'a\\ Campus Universitario do Guam\'a \\ Rua Augusto Corr\^ea 01, Cep 66075-110, Par\'a, Brazil} \email{ls@ufpa.br} \date{} \thanks{Submitted April 2, 2003. Published August 14, 2003.} \subjclass[2000]{34A34, 34M30, 35B05} \keywords{Coupled system, wave equation, Galerkin method, \hfill\break\indent asymptotic behavior, boundary value problem} \begin{abstract} We consider a coupled system of two nonlinear wave equations of Kirchhoff type with nonlocal boundary condition and we study the asymptotic behavior of the corresponding solutions. We prove that the energy decay at the same rate of decay of the relaxation functions, that is, the energy decays exponentially when the relaxation functions decay exponentially and polynomially when the relaxation functions decay polynomially. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \section{Introduction} The main purpose of this article is to study the existence of global solutions and the asymptotic behavior of the energy related to a coupled system of two nonlinear wave equations of Kirchhoff type with nonlocal boundary condition. Consider the system of equations \begin{gather} \label{1eq1-1} u_{tt} - M(\|\nabla u\|^{2}_{2}+\|\nabla v\|^{2}_{2}) \Delta u -\Delta u_{t}+ f_{1}(u)= 0 \quad\mbox{in }{\Omega\times(0,\infty)},\\ \label{1eq1-2} v_{tt} - M(\|\nabla u\|^{2}_{2}+\|\nabla v\|^{2}_{2})\Delta v -\Delta v_{t}+ f_{2}(v) = 0 \quad\mbox{in }{\Omega\times(0,\infty)},\\ \label{1eq1-3} u =v= 0\quad\mbox{on }\Gamma_{0}\times(0,\infty), \\ \label{1eq1-4} \begin{gathered} u +\int^{t}_{0}g_{1}(t-s) ((M(\|\nabla u(s)\|^{2}_{2}+\|\nabla v(s)\|^{2}_{2})\frac{\partial u}{\partial \nu}(s)+\frac{\partial u_{t}}{\partial \nu}(s))ds = 0\\ \quad\mbox{on } \Gamma_{1}\times(0,\infty), \end{gathered} \\ \label{1eq1-5} \begin{gathered} v +\int^{t}_{0}g_{2}(t-s) ((M(\|\nabla u(s)\|^{2}_{2}+\|\nabla v(s)\|^{2}_{2})\frac{\partial v}{\partial \nu}(s)+\frac{\partial v_{t}}{\partial \nu}(s))ds = 0\\ \quad\mbox{on }\Gamma_{1}\times(0,\infty), \end{gathered}\\ \label{1eq1-6} (u(0,x),v(0,x)) =(u_{0}(x),v_{0}(x)),\quad (u_{t}(0,x),v_{t}(0,x))=(u_{1}(x),v_{1}(x)) \quad\mbox{in }{\Omega}, \end{gather} where $\Omega$ is a bounded domain of $\mathbb{R}^n$, $n\geq 1$, with smooth boundary $\Gamma=\Gamma_0 \cup \Gamma_1$. Here, $\Gamma_0$ and $\Gamma_1$ are closed, disjoint, $\Gamma_0\neq \emptyset$ and $\nu$ is the unit normal vector pointing towards the exterior of $\Omega$. The equations (\ref{1eq1-4})-(\ref{1eq1-5}) are nonlocal boundary conditions responsible for the memory effect. Concerning the history condition, we must add the condition $$ u=v=0 \quad \mbox{on } \Gamma_0 \times ] -\infty, 0]. $$ We observe that, $u$ and $v$ represent transverse displacements. The relaxation functions $g_i$ are positive and non decreasing; while the functions $f_{i}\in C^{1}(\mathbb{R})$, $i=1,2$, satisfy \[ f_{i}(s)s \ge 0 \quad \forall s \in \mathbb{R} \] Additionally, we suppose that $f_{i}$ is superlinear, that is \[ f_{i}(s)s \ge (2+\delta)F_{i}(s),\quad F_{i}(z) = \int^{z}_{0} f_{i}(s)ds \quad \forall s \in \mathbb{R},\quad i=1,2, \] for some $\delta >0$. Also the following growth conditions are satisifed: \begin{eqnarray*} |f_{i}(x)-f_{i}(y)| \leq c( 1 + |x|^{\rho -1} + |y|^{\rho -1} )|x-y|, \quad \forall x,y \in \mathbb{R}, \quad i=1,2, \end{eqnarray*} for some $c>0$ and $\rho\geq 1$ such that $(n-2)\rho \leq n$. We shall assume that the function $M\in C^{1}([0,\infty[)$ satisfies \begin{equation}\label{1eq1-7} M(\lambda)\geq m_{0}>0, \quad M(\lambda)\lambda\geq\widehat{M}(\lambda), \quad \forall \lambda\geq 0, \end{equation} where $\widehat{M}(\lambda)=\int^{\lambda}_{0}M(s)ds$. Also, we shall assume that there exists $x_{0}\in \mathbb{R}^{n}$ such that \begin{gather*} \Gamma_{0}=\{x \in \Gamma : \nu (x)\cdot(x-x_{0})\leq0\}, \\ \Gamma_{1}=\{x \in \Gamma : \nu (x)\cdot(x-x_{0})>0\}. \end{gather*} Let us denote by $m(x)=x-x_{0}$. Note that by the compactness of $\Gamma_{1}$, there exist a small positive constant $\delta_{0}$ such that \begin{equation}\label{delta-0} 0 < \delta_{0} \leq m(x) \cdot \nu (x), \quad \forall x \in \Gamma_{1}. \end{equation} The existence of global solutions and exponential decay to the problem (\ref{1eq1-1}), (\ref{1eq1-3}) with $\partial \Omega=\Gamma_{0}$ and frictional dissipative damping has been investigated by many authors (see, e.g. \cite{Biler, Brito, Ikerata-1, Ikerata-2, Matos-Pereira, Matsuyama, Nishihara, Yamada} ). There exists a large body of literature regarding viscoelastic problems with the memory term acting in the domain or in the boundary. Among the numerous works in this direction, we can cite Rivera \cite{Rivera} and M. L. Santos \cite{Santos-1, Santos-2}. Park \& Bae \cite{Park} studied the existence and uniform decay of strong solutions of the coupled wave equations (\ref{1eq1-1})-(\ref{1eq1-2}) with nonlinear boundary damping and memory source term and $M(s)=1+s$. In the present paper, we obtained respectively besides the exponential decay and uniform rate of polynomial decay. Moreover, the system (\ref{1eq1-1})-(\ref{1eq1-6}) is more general than the system considered in \cite{Park}, because they only consider the case in that $M(s)=1+s$. As we have said before we study the asymptotic behavior of the solutions of system (\ref{1eq1-1})-(\ref{1eq1-6}). We show that the energy of the coupled system (\ref{1eq1-1})-(\ref{1eq1-6}) decays uniformly in time with the same rate of decay of the relaxation functions. More precisely, denoting by $k_{1}$ and $k_{2}$ the resolvent kernels of $-g_{1}'/g_{1}(0)$ and $-g_{2}'/g_{2}(0)$ respectively, we show that the energy decays exponentially to zero provided $k_{1}$ and $k_{2}$ decays exponentially to zero. When the resolvent kernels $k_{1}$ and $k_{2}$ decays polynomially, we show that energy also decays polynomially to zero. This means that the memory effect produces strong dissipation capable of making a uniform rate of decay for the energy. The method used is based on the construction of a suitable Lyapunov functional $\mathcal{L}$ satisfying \[ \frac{d}{dt}\mathcal{L}(t)\leq - c_{1}\mathcal{L}(t)+c_{2}e^{- \gamma t} \quad \mbox {or} \quad \frac{d}{dt}\mathcal{L}(t)\leq -c_{1} \mathcal{L}(t)^{1+ \frac{1}{\alpha}}+ \frac{c_{2}}{(1+t)^{\alpha +1}} \] for some positive constants $c_{1},c_{2},\gamma$ and $\alpha$. Note that, because of condition (\ref{1eq1-3}) the solution of the system (\ref{1eq1-1})-(\ref{1eq1-6}) must belong to the space \begin{eqnarray*} V:=\{v \in H^{1}(\Omega): v = 0 \quad\mbox{on}\quad \Gamma_{0}\}. \end{eqnarray*} The notation used in this paper is standard and can be found in Lion's book \cite{Lions}. In the sequel by $c$ (sometime $c_{1}, c_{2},\dots$) we denote various positive constants independent of $t$ and on the initial data. The organization of this paper is as follows. In section 2 we establish the existence and uniqueness of strong solutions for the system (\ref{1eq1-1})-(\ref{1eq1-6}). In section 3 we prove the uniform rate exponential decay. In section 4 we prove the uniform rate of polynomial decay. \section{Notation and Main Results} In this section we shall study the existence and regularity of solutions for the coupled system (\ref{1eq1-1})-(\ref{1eq1-6}). First, we shall use equations (\ref{1eq1-4})-(\ref{1eq1-5}) to estimate the terms $M(\|\nabla u(t)\|^{2}_{2}+\|\nabla v(t)\|^{2}_{2}) \frac{\partial u}{\partial \nu}+\frac{\partial u_t}{\partial \nu}$ and $M(\|\nabla u(t)\|^{2}_{2}+\|\nabla v(t)\|^{2}_{2}) \frac{\partial v}{\partial \nu}+\frac{\partial v_t}{\partial \nu}$. Denoting by \[ (g \ast \varphi)(t) = \int^{t}_{0}g(t-s)\varphi(s) ds, \] the convolution product operator and differentiating the equations (\ref{1eq1-4}) and (\ref{1eq1-5}) we arrive at the following Volterra equations: \begin{align*} & M(\|\nabla u(t)\|^{2}_{2}+\|\nabla v(t)\|^{2}_{2})\frac{\partial u}{\partial \nu} +\frac{\partial u_{t}}{\partial \nu} + \frac{1}{g_{1}(0)}g_{1}'\ast (M(\|\nabla u\|^{2}_{2}+\|\nabla v\|^{2}_{2}) \frac{\partial u}{\partial \nu}+\frac{\partial u_{t}}{\partial \nu})\\ &= -\frac{1}{g_{1}(0)}u_{t},\\ &M(\|\nabla u(t)\|^{2}_{2}+\|\nabla v(t)\|^{2}_{2})\frac{\partial v}{\partial \nu} +\frac{\partial v_{t}}{\partial \nu} + \frac{1}{g_{2}(0)}g_{2}'\ast (M(\|\nabla u\|^{2}_{2}+\|\nabla v\|^{2}_{2}) \frac{\partial v}{\partial \nu}+\frac{\partial v_{t}}{\partial \nu}) \\ &= -\frac{1}{g_{2}(0)}v_{t}. \end{align*} Applying the Volterra's inverse operator, we get \begin{gather*} M(\|\nabla u\|^{2}_{2}+\|\nabla v\|^{2}_{2})\frac{\partial u}{\partial \nu} +\frac{\partial u_t}{\partial \nu} = -\frac{1}{g_{1}(0)}\{u_{t} + k_{1} \ast u_{t}\}, \\ M(\|\nabla u\|^{2}_{2}+\|\nabla v\|^{2}_{2})\frac{\partial v}{\partial \nu} +\frac{\partial v_t}{\partial \nu} = -\frac{1}{g_{2}(0)}\{v_{t} + k_{2} \ast v_{t}\}, \end{gather*} where the resolvent kernels satisfies \[ k_{i}+ \frac{1}{g_{i}(0)}g_{i}' \ast k_{i}=- \frac{1}{g_{i}(0)}g_{i}'\quad\mbox{for } i=1,2. \] Denoting $\tau_{1}=\frac{1}{g_{1}(0)}$ and $\tau_{2}=\frac{1}{g_{2}(0)}$, we obtain \begin{gather}\label{2eq2-1} M(\|\nabla u\|^{2}_{2}+\|\nabla v\|^{2}_{2})\frac{\partial u}{\partial \nu} +\frac{\partial u_{t}}{\partial \nu}= -\tau_{1} \{u_{t} + k_{1}(0)u - k_{1}(t)u_{0} + k_{1}' \ast u \}\\ \label{2eq2-2} M(\|\nabla u\|^{2}_{2}+\|\nabla v\|^{2}_{2})\frac{\partial v}{\partial \nu} +\frac{\partial v_t}{\partial \nu}= -\tau_{2} \{v_{t} + k_{2}(0)v - k_{2}(t)v_{0} + k_{2}' \ast v \}. \end{gather} Reciprocally, taking initial data such that $u_{0}=v_{0}=0$ on $\Gamma_{1}$, the identities (\ref{2eq2-1})-(\ref{2eq2-2}) imply (\ref{1eq1-4})-(\ref{1eq1-5}). Since we are interested in relaxation functions of exponential or polynomial type and the identities (\ref{2eq2-1})-(\ref{2eq2-2}) involve the resolvent kernels $k_i$, we want to know if $k_i$ has the same properties. The following Lemma answers this question. Let $h$ be a relaxation function and $k$ its resolvent kernel, that is \begin{equation} k(t)-k*h(t)=h(t). \label{eq-volt} \end{equation} \begin{lemma}\label{Lem2.1} If $h$ is a positive continuous function, then $k$ is also a positive continuous function. Moreover, \begin{enumerate} \item If there exist positive constants $c_0$ and $\gamma$ with $c_0<\gamma$ such that $h(t)\leq c_0 e^{-\gamma t}$, then, the function $k$ satisfies $$ k(t)\leq \frac{c_0(\gamma-\epsilon)}{\gamma-\epsilon-c_0} e^{-\epsilon t}, $$ for all $0<\epsilon<\gamma-c_0$. \item Given $p>1$, let us denote by $c_p:=\sup_{t\in\mathbb{R}^+} \int_0^t (1+t)^p (1+t-s)^{-p} (1+s)^{-p} \,ds$. If there exists a positive constant $c_0$ with $c_0c_p<1$ such that $h(t)\leq c_0 (1+t)^{-p}$, then, the function $k$ satisfies $$ k(t)\leq \frac{c_0}{1-c_0c_p} (1+t)^{-p}. $$ \end{enumerate} \end{lemma} \begin{proof} Note that $k(0)=h(0)>0$. Now, we take $t_0=\inf \{ t\in\mathbb{R}^+: k(t)=0\}$, so $k(t)>0$ for all $t\in [0,t_0[$. If $t_0\in\mathbb{R}^+$, from equation (\ref{eq-volt}) we get that $-k*h(t_0)=h(t_0)$ but this is contradictory. Therefore $k(t)>0$ for all $t\in\mathbb{R}^+_0$. Now, let us fix $\epsilon$, such that $0<\epsilon<\gamma-c_0$ and denote by $$ k_{\epsilon}(t):=e^{\epsilon t}k(t), \quad h_{\epsilon}(t):=e^{\epsilon t}h(t). $$ Multiplying equation (\ref{eq-volt}) by $e^{\epsilon t}$ we get $k_{\epsilon}(t)=h_{\epsilon}(t)+k_{\epsilon}*h_{\epsilon}(t)$, hence \[ \sup_{s\in[0,t]} k_{\epsilon}(s) \leq \sup_{s\in[0,t]} h_{\epsilon}(s) +\Big(\int_0^{\infty}c_0 e^{(\epsilon-\gamma)s}\,ds\Big) \sup_{s\in[0,t]}k_{\epsilon}(s) \leq c_0 +\frac{c_0}{(\gamma-\epsilon)}\sup_{s\in[0,t]} k_{\epsilon}(s). \] Therefore, $$ k_{\epsilon}(t) \leq \frac{c_0(\gamma-\epsilon)}{\gamma-\epsilon-c_0}, $$ which implies our first assertion. To show the second part we use the notation $$ k_p(t):=(1+t)^pk(t), \quad h_p(t):=(1+t)^ph(t). $$ Multiplying equation (\ref{eq-volt}) by $(1+t)^p$ we get \[ k_p(t)=h_p(t)+ \int_0^t k_p(t-s) (1+t-s)^{-p} (1+t)^p h(s) \,ds\,, \] hence \[ \sup_{s\in[0,t]} k_p(s) \leq \sup_{s\in[0,t]} h_p(s) + c_0c_p \sup_{s\in[0,t]} k_p(s) \ \leq\ c_0 +c_0c_p\sup_{s\in[0,t]} k_p(s). \] Therefore, $$ k_p(t) \leq \frac{c_0}{1-c_0c_p}, $$ which proves our second assertion. \end{proof} \noindent{\bf Remark: } The fact that the constant $c_p$ is finite can be found in \cite[Lemma 7.4]{Racke}. Due to this Lemma, in the remainder of this paper, we shall use (\ref{2eq2-1})-(\ref{2eq2-2}) instead of (\ref{1eq1-4})-(\ref{1eq1-5}). Let us denote \begin{eqnarray*} (g \Box \varphi)(t) := \int^t_0 g(t-s)|\varphi(t)-\varphi(s)|^2 ds. \end{eqnarray*} The following lemma states an important property of the convolution operator. \begin{lemma}\label{Lem2.2} For $g,\varphi \in C^{1}([0,\infty[:\mathbb{R})$ we have \[ (g \ast \varphi)\varphi_{t} = -\frac{1}{2} g(t)| \varphi(t) |^{2} + \frac{1}{2} g' \Box \varphi - \frac{1}{2} \frac{d}{dt}\Big[g \Box \varphi - (\int^{t}_{0}g(s) ds) |\varphi|^{2}\Big]. \] \end{lemma} The proof of this lemma follows by differentiating the expression $g \Box \varphi$. The first order energy of coupled system (\ref{1eq1-1})-(\ref{1eq1-6}) is defined as \begin{align*} E(t)&:=E(t,u,v) \\ &=\frac{1}{2}\int_{\Omega}|u_{t}|^{2}dx+\frac{1}{2}\int_{\Omega}|v_{t}|^{2}dx +\frac{1}{2}\widehat{M}(\|\nabla u\|^{2}_{2}+\|\nabla v\|^{2}_{2}) + \int_{\Omega}F_{1}(u) dx \\ &\quad + \int_{\Omega}F_{2}(v) dx +\frac{\tau_{1}}{2}k_{1}(t) \int_{\Gamma_{1}}|u|^{2} d \Gamma_{1}- \frac{\tau_{1}}{2}\int_{\Gamma_{1}}k_{1}' \Box u d \Gamma_{1}\\ &\quad + \frac{\tau_{2}}{2}k_{2}(t) \int_{\Gamma_1}|v|^{2} d \Gamma_{1} - \frac{\tau_2}{2}\int_{\Gamma_1}k_{2}' \Box v d \Gamma_{1}. \end{align*} The main goal of this work is given by the following Theorem. \begin{theorem}\label{teo2.1} Let $k_{i}\in C^{2}(\mathbb{R}^{+})$ be such that $k_{i}, -k_{i}', k_{i}'' \ge 0$ for $i=1,2$. If $(u_{0},v_{0})\in (H^{2}(\Omega)\cap V)^{2}$ and $(u_{1},v_{1})\in (H^{2}(\Omega)\cap V)^{2}$ satisfy the compatibility conditions \begin{gather}\label{2eq2-3} M(\|\nabla u_0\|^{2}_{2}+\|\nabla v_0\|^{2}_{2})\frac{\partial u_{0}}{\partial \nu}+\frac{\partial u_{1}}{\partial \nu} + \tau_{1}u_{1} = 0 \quad {on } \Gamma_{1}, \\ \label{2eq2-4} M(\|\nabla u_0\|^{2}_{2}+\|\nabla v_0\|^{2}_{2}) \frac{\partial v_{0}}{\partial \nu}+\frac{\partial v_{1}}{\partial \nu} + \tau_{2} v_{1} = 0 \quad {on }\Gamma_{1}. \end{gather} Then there exists only one solution $(u,v)$ of the system (\ref{1eq1-1})-(\ref{1eq1-6}) satisfying \begin{gather*} u,v \in L^{\infty}(0,T:V), \quad u_t,v_t \in L^{\infty}(0,T:V)\,,\\ u_{tt},v_{tt}\in L^{\infty}(0,T:L^{2}(\Omega)), \quad \Delta u,\Delta v \in L^{\infty}(0,T:L^{2}(\Omega))\,,\\ \Delta u_{t}, \Delta v_{t} \in L^{2}(0,T:L^{2}(\Omega)). \end{gather*} In addition, considering (\ref{delta-0}) and assuming that there exist positive constants $b_1$, $b_2$ such that \begin{gather}\label{2eq2-5} k_i(0)>0,\quad k_i'(t)\leq -b_1k_i(t), \quad k_i''(t)\geq-b_2k_i'(t), \quad i=1,2, \quad \mbox{or} \\ \label{2eq2-6} k_i(0)>0, \quad k_i'(t)\leq-b_1k_i'(t)^{1+\frac{1}{p}}, \quad k_i''(t)\geq b_2[-k_i'(t)]^{1+\frac{1}{p+1}}, \quad p>1, \quad i=1,2 \end{gather} then the energy $E(t)$ associated to problem (\ref{1eq1-1})-(\ref{1eq1-6}) decays, respectively, a the following rate \begin{gather}\label{2eq2-7} E(t)\leq \alpha_1 e^{-\alpha_2 t} E(0), \\ \label{2eq2-8} E(t) \leq \frac{c}{(1+t)^{p+1}} E(0), \end{gather} where $\alpha_1$, $\alpha_2$ and $c$ are positive constants. \end{theorem} \subsection*{Proof of the existence of regular solutions} The main idea is to use the Galerkin method. To do this let us take a basis $\{w_{j}\}_{j\in \mathbb{N}}$ to $V$ which is orthonormal in $L^{2}(\Omega)$ and we represent by $V_{m}$ the subspace of $V$ generated by the first $m$ vectors. Standard results on ordinary differential equations guarantee that there exists only one local solution $$ (u^{m}(t),v^{m}(t)):= \sum^{m}_{j=1}(g_{j,m}(t),h_{j,m}(t))w_{j}, $$ of the approximate systems \begin{equation}\label{2eq2-10} \begin{aligned} &\int_{\Omega}u^{m}_{tt}wdx +M(\|\nabla u^{m}(t)\|^{2}_{2}+\|\nabla v^{m}(t)\|^{2}_{2})\int_{\Omega}\nabla u^{m} \cdot \nabla w\,dx\\ &+\int_{\Omega}\nabla u^{m}_{t} \cdot \nabla wdx +\int_{\Omega}f_{1}(u^{m}) w\,dx \\ & = - \tau_{1}\int_{\Gamma_{1}}\{u^{m}_{t} + k_{1}(0) u^{m} - k_{1}(t) u^{m}(0) + k_{1}' \ast u^{m} \}w d \Gamma_{1} \end{aligned} \end{equation} and \begin{equation} \label{2eq2-11} \begin{aligned} & \int_{\Omega}v^{m}_{tt}wdx + M(\|\nabla u^{m}(t)\|^{2}_{2}+\|\nabla v^{m}(t)\|^{2}_{2})\int_{\Omega}\nabla v^{m} \cdot\nabla w\,dx\\ &+\int_{\Omega}\nabla v^{m}_{t} \cdot \nabla w\,dx +\int_{\Omega} f_{2}(v^{m})w\,dx \\ &= - \tau_{2}\int_{\Gamma_{1}}\{v^{m}_{t} + k_{2}(0) v^{m} - k_{2}(t) v^{m}(0) + k_{2}' \ast v^{m} \}w d \Gamma_{1}, \end{aligned} \end{equation} for all $w\in V_{m}$ with the initial data $$ (u^{m}(0),v^{m}(0))=(u_{0},v_{0}), \quad (u^{m}_{t}(0),v^{m}_{t}(0))=(u_{1},v_{1}). $$ The extension of these solutions to the whole interval $[0,T]$, $00$ \begin{align*} &\int_{\Gamma_{1}}(M(\|\nabla u\|^{2}_{2}+\|\nabla v\|^{2}_{2}) \frac{\partial u}{\partial \nu}+\frac{\partial u_{t}}{\partial \nu})\big \{ m \cdot \nabla u +(\frac{n}{2}-\theta)u \big \} d \Gamma_{1} \\ & \leq \epsilon_{1} \int_{\Gamma_{1}} \big\{|m \cdot \nabla u|^2 +\big(\frac{n}{2}-\theta\big)^2|u|^2\big\} d \Gamma_{1} \\ &\quad + c_{\epsilon_{1}}\int_{\Gamma_{1}}|(M(\|\nabla u\|^{2}_{2}+\|\nabla v\|^{2}_{2})\frac{\partial u}{\partial \nu}+\frac{\partial u_{t}}{\partial \nu})|^{2}d \Gamma_{1} \\ &\leq \epsilon_{1} c \Big\{\int_{\Gamma_{1}} m\cdot\nu |\nabla u|^2 d \Gamma_{1} + \mathcal{N}(t) \Big\} \\ &\quad + c_{\epsilon_{1}} \int_{\Gamma_{1}}|(M(\|\nabla u\|^{2}_{2}+\|\nabla v\|^{2}_{2})\frac{\partial u}{\partial \nu}+\frac{\partial u_{t}}{\partial \nu})|^{2}d \Gamma_{1}. \end{align*} Similarly, we obtain \begin{align*} &\int_{\Gamma_{1}}(M(\|\nabla u\|^{2}_{2}+\|\nabla v\|^{2}_{2}) \frac{\partial v}{\partial \nu}+\frac{\partial v_{t}}{\partial \nu})\left \{ m \cdot \nabla v +(\frac{n}{2}-\theta)v \right \} d \Gamma_{1} \\ & \leq \epsilon_{1} \int_{\Gamma_{1}} \big\{|m \cdot \nabla v|^2 +\big(\frac{n}{2}-\theta\big)^2|v|^2\big\} d \Gamma_{1} \\ &\quad + c_{\epsilon_{1}}\int_{\Gamma_{1}}|(M(\|\nabla u\|^{2}_{2}+\|\nabla v\|^{2}_{2})\frac{\partial v}{\partial \nu}+\frac{\partial v_{t}}{\partial \nu})|^{2}d \Gamma_{1} \\ & \leq \epsilon_{1} c \Big\{\int_{\Gamma_{1}} m\cdot\nu |\nabla v|^2 d \Gamma_{1} + \mathcal{N}(t) \Big\} \\ &\quad + c_{\epsilon_{1}} \int_{\Gamma_{1}}|(M(\|\nabla u\|^{2}_{2}+\|\nabla v\|^{2}_{2})\frac{\partial v}{\partial \nu}+\frac{\partial v_{t}}{\partial \nu})|^{2}d \Gamma_{1}. \end{align*} Substituting the two inequalities above into (\ref{3eq3-3}), choosing $\epsilon_{1}$ small snough and taking into account that the boundary conditions (\ref{2eq2-1})-(\ref{2eq2-2}) can be written as \begin{gather*} M(\|\nabla u\|^{2}_{2}+\|\nabla v\|^{2}_{2})\frac{\partial u}{\partial \nu}+\frac{\partial u_{t}}{\partial \nu})= -\tau_{1} \{u_{t} + k_{1}(t)u - k_{1}' \diamond u - k_{1}(t)u_{0} \},\\ M(\|\nabla u\|^{2}_{2}+\|\nabla v\|^{2}_{2})\frac{\partial v}{\partial \nu}+\frac{\partial v_{t}}{\partial \nu})= -\tau_{2} \{v_{t} + k_{2}(t)v - k_{2}' \diamond v - k_{2}(t)v_{0} \}, \end{gather*} our conclusion follows. \end{proof} To show that the energy decay exponentially we need of the following Lemma whose proof can be found in \cite{Santos-2}. \begin{lemma}\label{Lem3.3} Let $f$ be a real positive function of class $C^1$. If there exists positive constants $\gamma_0, \gamma_1$ and $c_0$ such that $$ f'(t)\leq -\gamma_0f(t) +c_0e^{-\gamma_1 t}, $$ then there exist positive constants $\gamma$ and $c$ such that $f(t)\leq (f(0) +c) e^{-\gamma t}$. \end{lemma} Next, we shall show inequality (\ref{2eq2-7}). We shall prove this result for strong solutions, that is, for solutions with initial data $(u_{0},v_{0})\in \left( H^{2}(\Omega) \cap V \right)^{2}$ and $(u_{1},v_{1})\in \left( H^{2}(\Omega) \cap V \right)^{2}$ satisfying the compatibility conditions (\ref{2eq2-3})- (\ref{2eq2-4}). Our conclusion follow by standard density arguments. Using hypothesis (\ref{2eq2-5}) in Lemma \ref{Lem3.1} we get \begin{align*} \frac{d}{dt}E(t) & \leq - \frac{\tau_{1}}{2}\int_{\Gamma_{1}} \big(|u_{t}|^{2} -b_2 k_{1}' \Box u + b_1 k_1(t)|u|^2 - |k_1(t)u_0|^2 \big) d \Gamma \\ &\quad - \frac{\tau_{2}}{2}\int_{\Gamma_{1}}\big(|v_{t}|^{2} -b_2 k_2' \Box v +b_1 k_2(t)|v|^2 - |k_2(t)v_0|^2 \big) d \Gamma\\ &\quad -\int_{\Omega}(|\nabla u_{t}|^{2}+|\nabla v_{t}|^{2})dx . \end{align*} On the other hand applying inequality (\ref{3eq3-2}) with $\mu=1/2$ in Lemma \ref{Lem3.2} we obtain \begin{align*} \frac{d}{dt}\psi (t) & \leq -\frac{\theta}{2} \mathcal{N}(t)+ C\int_{\Gamma_{1}} \big(|u_{t}|^{2} + k_1(t)|u|^2 -k_{1}' \Box u + |k_1(t)u_0|^2 \big) d \Gamma \\ &\quad + C\int_{\Gamma_{1}}\big(|v_{t}|^{2} + k_2(t)|v|^2 -k_2' \Box v + |k_2(t)v_0|^2 \big) d \Gamma\\ &\quad +c_{\epsilon}\int_{\Omega}(|\nabla u_{t}|^{2}+|\nabla v_{t}|^{2})dx . \end{align*} Let us introduce the Lyapunov functional \begin{equation} \mathcal{L} (t) := N E(t) + \psi (t),\label{3eq3-4} \end{equation} with $N>0$. Taking $N$ large, the previous inequalities imply that \[ \frac{d}{dt}\mathcal{L}(t) \leq -\frac{\theta}{2} E(t)+ 2N R^2(t)E(0), \] where $R(t) = k_{1}(t) + k_{2}(t)$. Moreover, using Young's inequality and taking $N$ large we find that \begin{equation}\label{3eq3-5} \frac{N}{2} E(t) \leq \mathcal{L} (t) \leq 2N E(t). \end{equation} From this inequality we conclude that \[ \frac{d}{dt}\mathcal{L}(t) \leq -\frac{\theta}{2} \mathcal{L}(t)+ 2N R^2(t)E(0), \] from where follows, in view of Lemma \ref{Lem3.3} and of the exponential decay of $k_{1}$, $k_{2}$, that \[ \mathcal{L} (t) \leq \{\mathcal{L}(0) + c\} e^{- {\gamma_{1}}t}, \] for some positive constants $c, \gamma$. From the inequality (\ref{3eq3-5}) our conclusion follows. \section{Uniform Rate of Polynomial Decay} Our attention will be focused on the uniform rate of decay when the resolvent kernels $k_{1}$ and $k_{2}$ satisfy (\ref{2eq2-6}). First of all we will prove the following three lemmas that will be used in the sequel. \begin{lemma}\label{Lem4.2} Let $(u,v)$ be a solution of system (\ref{1eq1-1})-(\ref{1eq1-6}) and let us denote by $(\phi_{1},\phi_{2})=(u,v)$. Then, for $p>1$, $0 < r < 1$ and $t\ge0$, we have \begin{align*} &\Big(\int_{\Gamma_{1}}|k_{i}'| \Box \phi_{i} d \Gamma_{1}\Big) ^{\frac{1+(1-r)(p+1)}{(1-r)(p+1)}}\\ &\leq 2 \Big( \int^{t}_{0}|k_{i}'(s)|^{r}ds \|\phi_{i}\|^{2}_{L^{\infty}(0,t;L^{2}(\Gamma_{1}))}\Big)^ {\frac{1}{(1-r)(p+1)}} \int_{\Gamma_{1}}|k_{i}'|^{1+ \frac{1}{p+1}} \Box \phi_{i} d \Gamma_{1} \end{align*} while for $r=0$ we get \begin{align*} &\Big(\int_{\Gamma{1}}|k_{i}'| \Box \phi_{i} d \Gamma_{1}\Big)^{\frac{p+2}{p+1}}\\ &\leq 2 \Big(\int^{t}_{0}\|\phi_{i}(s,.)\|^{2}_{L^{2}(\Gamma_{1})} ds + t \|\phi_{i}(s,.)\|^{2}_{L^{2}(\Gamma_{1})}\Big)^{p+1} \int_{\Gamma_{1}}|k_{i}'|^{1+ \frac{1}{p+1}}\Box \phi_{i} d \Gamma_{1}, \end{align*} for $i=1,2$. \end{lemma} For the proof of this lemma see e. g. \cite{Santos-1}. \begin{lemma}\label{Lem4.3} Let $f \ge 0$ be a differentiable function satisfying \[ f'(t) \leq -\frac{c_{1}}{f(0)^\frac{1}{\alpha}}f(t)^{1+\frac{1}{\alpha}} + \frac{c_{2}}{(1+t)^{\beta}}f(0) \quad \mbox{for} \quad t \ge 0, \] for some positive constants $c_{1},c_{2}$, $\alpha$ and $\beta$ such that $\beta \ge \alpha + 1$. Then there exists a constant $c > 0$ such that \[ f(t) \leq \frac {c}{(1+t)^{\alpha}}f(0) \quad \mbox{for} \quad t \ge 0. \] \end{lemma} For the proof of this lemma see e. g. \cite{Santos-2}. Next we show inequality (\ref{2eq2-8}). We shall prove this result for strong solutions, that is, for solutions with initial data $(u_{0},v_{0})\in \left( H^{2}(\Omega) \cap V \right)^{2}$ and $(u_{1},v_{1})\in \left( H^{2}(\Omega) \cap V \right)^{2}$ satisfying the compatibility conditions (\ref{2eq2-3})- (\ref{2eq2-4}). Our conclusion will follow by standard density arguments. We use some estimates of the previous section which are independent of the behavior of the resolvent kernels $k_1,\ k_2$. Using hypothesis (\ref{2eq2-6}) in Lemma~\ref{Lem3.1} yields \begin{align*} \frac{d}{dt}E(t) & \leq - \frac{\tau_{1}}{2}\int_{\Gamma_{1}}\Big(|u_{t}|^{2} +b_2 [-k_{1}']^{1+\frac{1}{p+1}} \Box u + b_1 k_1^{1+\frac{1}{p}}(t)|u|^2 - |k_1(t)u_0|^2 \Big) d \Gamma_{1} \\ &\quad - \frac{\tau_{1}}{2}\int_{\Gamma_{1}}\big(|v_{t}|^{2} +b_2 [-k_2']^{1+\frac{1}{p+1}} \Box v +b_1 k_2^{1+\frac{1}{p}}(t)|v|^2 - |k_2(t)v_0|^2 \big) d \Gamma_{1}. \end{align*} Applying inequality (\ref{3eq3-2}) with $\mu=\frac{p+2}{2(p+1)}$ and using hypothesis (\ref{2eq2-6}) we obtain the estimates \begin{eqnarray*} |k_1'\diamond u|^2\leq c[-k_1']^{1+\frac{1}{p+1}}\Box u, \quad |k_2'\diamond v|^2\leq c[-k_2']^{1+\frac{1}{p+1}}\Box v. \end{eqnarray*} The above inequalities in Lemma~\ref{Lem3.2} yields \begin{align*} \frac{d}{dt}\psi (t) & \leq -\frac{\theta}{2} \mathcal{N}(t)+ c\int_{\Gamma_{1}}\big(|u_{t}|^{2}+ k_1^{1+\frac{1}{p}}(t)|u|^2 + [-k_{1}']^{1+\frac{1}{p+1}} \Box u + |k_1(t)u_0|^2 \big) d \Gamma_{1} \\ &\quad + c\int_{\Gamma_{1}}\big(|v_{t}|^{2} + k_2^{1+\frac{1}{p}}(t)|v|^2 + [-k_2']^{1+\frac{1}{p+1}} \Box v + |k_2(t)v_0|^2 \big) d \Gamma_{1} . \end{align*} In this conditions, taking $N$ large the Lyapunov functional defined in (\ref{3eq3-4}) satisfies \begin{equation} \begin{aligned} \frac{d}{dt}\mathcal{L} (t) &\leq - \frac{\theta}{2}\mathcal{N}(t) +2N R^{2}(t)E(0) \nonumber \\ &\quad -\frac{Nc_2}{2} \Big\{\int_{\Gamma_{1}}[-k_{1}']^{1+\frac{1}{p+1}}\Box u d \Gamma_{1} + \int_{\Gamma_{1}}[- k_{2}']^{1+\frac{1}{p+1}}\Box v d \Gamma_{1} \Big\}. \end{aligned}\label{lya-pol} \end{equation} Let us fix $00$, from where follows, applying Lemma \ref{Lem4.3}, that \begin{eqnarray*} \mathcal{L} (t) \leq \frac{c}{(1+t)^{(1-r)(p+1)}}\mathcal{L}(0). \end{eqnarray*} Since $(1-r)(p+1)>1$ we get, for $t\geq 0$, the following bounds \begin{gather*} t\|u\|_{L^{2}(\Gamma_{1})}^2 + t\|v\|_{L^{2}(\Gamma_{1})}^2 \leq t \mathcal{L}(t) < \infty, \\ \int^{t}_{0}\big(\|u\|_{L^{2}(\Gamma_{1})}^2 + \|v\|_{L^{2}(\Gamma_{1})}^2\big)\,ds \leq c \int^{t}_{0} \mathcal{L}(t)\,ds < \infty. \end{gather*} Using the above estimates in Lemma \ref{Lem4.2} with $r=0$ we get \begin{gather*} \int_{\Gamma_{1}}[-k_{1}']^{1+\frac{1}{p+1}}\Box u d \Gamma_{1} \ge \frac{c}{E(0)^{\frac{1}{p+1}}}\Big(\int_{\Gamma_{1}}[- k_{1}']\Box u d \Gamma \Big)^{1+ \frac{1}{p+1}}, \\ \int_{\Gamma_{1}}[-k_{2}']^{1+\frac{1}{p+1}}\Box v d \Gamma_{1} \ge \frac{c}{E(0)^{\frac{1}{p+1}}}\Big(\int_{\Gamma_{1}}[- k_{2}']\Box v d \Gamma \Big)^{1+ \frac{1}{p+1}}. \end{gather*} Using these inequalities instead of (\ref{4eq4-5})-(\ref{4eq4-6}) and reasoning in the same way as above we conclude that \[ \frac{d}{dt} \mathcal{L} (t) \leq -\frac{c}{\mathcal{L} (0)^{\frac{1}{p+1}}}\mathcal{L} (t)^{1+ \frac{1}{p+1}} + 2NR^{2}(t) E(0). \] Applying Lemma \ref{Lem4.3} again, we obtain \[ \mathcal{L} (t) \leq \frac{c}{(1+t)^{p+1}} \mathcal{L}(0). \] Finally, from (\ref{3eq3-5}) we conclude \[ E(t) \leq \frac{c}{(1+t)^{p+1}}E(0), \] which completes the present proof. \subsection*{Remark}We would like to mention that for 3 or more variables:u,v,..., the same procedure can be used to obtain similar conclusions. \subsection*{Acknowledgements} This research was written while the first author was visiting, the Federal University of Par\'{a} - UFPA-Brazil, during March 2003. He was partially supported by CNPq-Bras\'{i}lia-Brazil under grant No. 300344/92-9. The authors are thankful to the referee of this paper for valuable suggestions which improved this paper. Also, the authors would like to thank Professor Julio G. Dix for his valuable attention to our paper. \begin{thebibliography}{00} \bibitem{Biler} P. Biler, \textit{Remark on the decay for damped string and beam equations}, Nonlinear Anal. T.M.A. 9(1) (1984) 839-842. \bibitem{Brito} E. H. Brito, \textit{Nonlinear initial boundary value problems}, Nonlinear Anal. T.M.A., 11 (1) (1987) 125-137. \bibitem{Ikerata-1} R. Ikerata, \textit{On the existence of global solutions for some nonlinear hyperbolic equations with Neumann conditions}, TRU Math. (1988) 1-24. \bibitem{Ikerata-2} R. Ikerata, \textit{A note on the global solvability of solutions to some nonlinear wave equations with dissipative terms}, Diff. Int. Eqs., 8 (3) (1995) 607-616. \bibitem{Rivera} S. Jiang \& J. E. M\~unoz Rivera, \textit{A global existence for the Dirichlet problems in nonlinear n-dimensional viscoelasticity}, Diff. Int. Eqs., 9 (4) (1996) 791-810. \bibitem{Kirchhoff} G. Kirchhoff, \textit{Vorlesungen \"uber mechanik}, Tauber Leipzig (1883). \bibitem{Lions} J. L. Lions, \textit{Quelques M\`ethodes de resolution de probl\`emes aux limites non lineaires}. Dunod Gauthiers Villars, Paris (1969). \bibitem{Matos-Pereira} M. P. Matos \& D. C. Pereira, \textit{On a hyperbolic equation with strong damping}, Funkcial. Ekvac., 34 (1991) 303-311. \bibitem{Matsuyama} T. Matsuyama \& R. Ikerata, \textit{On global solutions and energy decay for the wave equations of Kirchhoff type with nonlinear damping terms}, J. Math. Anal. Appl., 204 (1996) 729-753. \bibitem{Nishihara} K. Nishihara, \textit{Exponentially decay of solutions of some quasilinear hyperbolic equations with linear damping}, Nonlinear Anal. T. M. A., 8 (6) (1984) 623-636. \bibitem{Rivera-A-1} J. E. Mu\~noz Rivera and D. Andrade, \textit{Exponential decay of non-linear wave equation with a viscoelastic boundary condition}, Math. Methods Appl. Sci., 23 (2000), 41--61. \bibitem{Yamada} Y. Yamada, \textit{On some quasilinear wave equations with dissipative terms}, Nagoya Math. J., 87 (1982) 17-39. \bibitem{Park} J. Y. Park \& J. J. Bae, \textit{On coupled wave equation of Kirchhoff type with nonlinear boundary damping and memory source term}, Appl. Math. Comp., 129 (2002) 87-105 \bibitem{Racke} R. Racke, \textit{Lectures on nonlinear evolution equations. Initial value problems}, Aspect of Mathematics E19. Friedr. Vieweg \& Sohn, Braunschweig/Wiesbaden (1992). \bibitem{Santos-1} M. L. Santos, \textit{Asymptotic behavior of solutions to wave equations with a memory condition at the boundary}, Electron. J. Diff. Eqs., Vol. 2001 (2001), No. 73, 1-11. \bibitem{Santos-2} M. L. Santos, \textit{Decay rates for solutions of a system of wave equations with memory}, Electron. J. Diff. Eqs., Vol 2002 (2002), No. 38, 1-17. \end{thebibliography} \end{document}