\documentclass[reqno]{amsart} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2003(2003), No. 89, pp. 1--12.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2003 Texas State University-San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE--2003/89\hfil Positive solutions of boundary-value problems] {Positive solutions of boundary-value problems for 2m-order differential equations} \author[Yuji Liu \& Weigao Ge\hfil EJDE--2003/89\hfilneg] {Yuji Liu \& Weigao Ge} \address{Yuji Liu \newline Department of Mathematics, Beijing Institute of Technology\\ Beijing, 100081, China\newline Department of Applied Mathematics, Hunan Institute of Technology\\ Hunan, 414000, China} \email{liuyuji888@sohu.com} \address{Weigao Ge \newline Department of Applied Mathematics, Beijing Institute of Technology\\ Beijing, 100081, China} \date{} \thanks{Submitted June 23, 2003. Published September 4, 2003.} \thanks{Both authors were supported by by the National Natural Science Foundation of China. \hfill\break\indent Y. Liu was supported by the Science Foundation of Educational Committee of Hunan Province.} \subjclass[2000]{34B18, 34B15, 34B27} \keywords{Higher-order differential equation, boundary-value problem, \hfill\break\indent positive solution, fixed point theorem} \begin{abstract} This article concerns the existence of positive solutions to the differential equation $$ (-1)^{m} x^{(2m)}(t)=f(t,x(t),x'(t),\dots,x^{(m)}(t)), \quad 00$ and $x\in \mathop{\rm dom} L\cap \partial \Omega_2\cap K_1$, or \item[(ii)] $Lx-Nx\neq \lambda Lh$ for $\lambda >0$ and $x\in \mathop{\rm dom} L\cap \partial \Omega_1\cap K_1$; $Lx\neq \lambda Nx$ for $\lambda \in (0,1)$ and $x\in \mathop{\rm dom} L\cap \partial \Omega_2\cap K_1$, \end{itemize} then $Lx=Nx$ has at least one solution $x\in \mathop{\rm dom} L\cap \left(\overline{\Omega_2}/\Omega_1\right)\cap K_1$. \end{theorem} \section{Positive solutions of boundary-value problems} In this section, we present the main results and then give some examples to illustrate the main results. \begin{theorem} \label{thm2.1} Suppose \begin{itemize} \item[(A)] The following inequality holds uniformly in $t$: $$ \limsup_{\sum_{i=0}^{m}|x_i|\to +\infty} \frac{f(t,x_0,x_1,\dots,x_m)}{\sum_{i=0}^{m}|x_i|}<\frac{1}{m+1}\,. $$ \item[(B)] The following inequality holds uniformly in $t$: $$ \liminf_{\sum_{i=0}^{m}|x_i|\to 0} \frac{f(t,x_0,x_1,\dots,x_m)}{\sum_{i=0}^{m}|x_i|}>1\,. $$ \end{itemize} Then BVP \eqref{e6}--\eqref{e7} has at least one positive solution. \end{theorem} \begin{proof} Let $X=C^{m}[0,\pi]$ and $Y=C^0[0,\pi]$ be endowed with the norms $\|x\|=\max\{\|x_\infty,\|x'\|_\infty,\dots,\|x^{(m)}\|_\infty\}$ and $\|x\|_\infty=\max_{t\in [0,\pi]}|x(t)|$, respectively. For $x\in Y$, denote $$ \|x\|_1=\int_0^\pi |x(t)|dt,\quad\quad\;\|x\|_2=\Big(\int_0^\pi |x(t)|^2dt\Big)^{1/2}. $$ Define $$ \mathop{\rm dom} L=\{x\in C^{2m}[0,\pi]: x^{(2i)}(0)=x^{(2i)}(\pi)=0, \;i=0,1,\dots,m-1\}. $$ Define the linear operator $L: \mathop{\rm dom} L\cap X\to Y$ and the nonlinear operator $N: X\to Y$ by \begin{gather*} Lx(t)=(-1)^mx^{(2m)}(t) \quad\mbox{for } x\in \mathop{\rm dom} L\cap X\,,\\ Nx(t)=f(t,x(t),x'(t),\dots,x^{(m)}(t)) \quad\mbox{for }x\in X\,. \end{gather*} Then the differential equation \eqref{e6} can be written as $Lx=Nx$. It is easy to see that $Ker L=\{0\}$ and $Im L=Y$. Define the projectors $P: X\to X$ by $Px(t)=0$ for all $t\in [0,\pi]$ and $Q: Y\to Y$ by $Qy(t)=0$ for all $t\in [0,\pi]$, respectively. So $L$ is a Fredholm operator of index zero, and $L^{-1}: Y\to X\cap \mathop{\rm dom} L$ can be written by $$ L^{-1}y(t)=\int_0^\pi G_m(s,t)y(s)ds, $$ where \begin{gather*} G_0(s,t)=\begin{cases} \frac{s(\pi-t)}{\pi},&0\le s\le t\le \pi\\ \frac{t(\pi-s)}{\pi},&0\le t\le s\le \pi, \end{cases}\\ G_k(s,t)=\int_0^\pi G_0(s,u)G_{k-1}(u,t)du\quad\mbox{for }k=1,\dots,m\,. \end{gather*} It is easy to check that $L^{-1}$ is completely continuous, together with that $N: X\to Y$ is continuous and bounded, it follows that $N$ is $L$-compact. We divide the proof into two steps. \noindent{\bf Step 1.}\quad Prove the first part of (ii) in Theorem \ref{thm1}. By (B), there is $r>0$ such that if $\sum_{i=0}^{m}|x_i|\le r$, then $$ f(t,x_0,x_1,\dots,x_m)> \sum_{i=0}^{m}|x_i|\ge x_0\,. $$ Choose \begin{gather*} \Omega_1=\{x\in X: \|x\|\le r/(m+1)\},\\ K_1=\{x\in \mathop{\rm dom} L\cap X: x(t)\ge 0\mbox{ and }(-1)^mx^{(2m)}(t)\ge 0\mbox{ for } t\in [0,\pi]\},\\ K=\{x\in Y: x(t)\ge 0\mbox{ for }t\in [0,\pi]\}. \end{gather*} Then $\mathop{\rm Ker} L=\{0\}$, $NX\subset K$, $L^{-1}(K)\subset K_1$ and $K_1\subset X$ and $K\subset Y$ are cones. If $x\in \mathop{\rm dom} L\cap \partial \Omega_1\cap K_1$, then $\|x\|\le r/(m+1),$ so $$ \sum_{i=0}^m|x^{(i)}(t)|\le \sum_{i=0}^m\|x^{(i)}\|_\infty\le (m+1)\|x\|\le r\,. $$ It follows that \begin{equation} \label{e9} f(t,x(t),x'(t),\dots,x^{(m)}(t))\ge x(t)\;for\;t\in [0,\pi]. \end{equation} Thus $$ \sin t f(t,x(t),x'(t),\dots,x^{(m)}(t))\ge x(t)\sin t\quad \mbox{for }t\in [0,\pi]. $$ Integrating the above inequality from 0 to $\pi$,, we obtain \begin{align*} \int_0^\pi \sin tf(t,x(t),x'(t),\dots,x^{(m)}(t))dt &\ge \int_0^\pi \sin tx(t)dt\\ &=-\cos tx(t)\left|_0^\pi\right.+\int_0^\pi x'(t)\cos tdt\\ &=\sin tx'(t)\left|_0^\pi \right.-\int_0^\pi \sin t x''(t)dt\\ &=\dots\\ &=\int_0^\pi \sin t(-1)^mx^{(2m)}(t)dt. \end{align*} i.e., \begin{equation} \label{e10} \int_0^\pi \sin tNx(t)dt\ge \int_0^\pi \sin tLx(t)dt. \end{equation} On the other hand, let $h(t)$ be the unique solution of the following problem (it is easy to know, from \cite{ch}, that it has unique solution) \begin{gather*} (-1)^{m} x^{(2m)}(t)=1,\quad 00$ and $x\in \mathop{\rm dom} L\cap \partial \Omega_1\cap K_1$. In fact, if there is $\lambda _1>0$ and $x_1\in \mathop{\rm dom} L\cap \partial \Omega_1\cap K_1$ such that $$ Lx_1-Nx_1=\lambda _1Lh, $$ then \begin{align*} \int_0^\pi \sin tLx_1(t)dt &=\int_0^\pi \sin tNx_1(t)dt+\lambda _1\int_0^\pi \sin tdt\\ &>\int_0^\pi \sin tNx_1(t)dt, \end{align*} which contradicts \eqref{e10}. So the first part of (ii) in Theorem \ref{thm1} is satisfied. \noindent{\bf Step 2.}\quad Prove the second part of (ii) in Theorem \ref{thm1}. Choose $1/(m+1)>\epsilon >0$ and $M>0$ such that \begin{equation} \label{e11} f(t,x_0,x_1,x_2,\dots,x_{m})\le \big(\frac{1}{m+1}-\epsilon\big) \sum_{i=0}^{m}|x_i|+M \end{equation} for all $t\in [0,\pi]$ and $x_i\in I_i$ for $i=0,\dots,m$. In fact, from (A), there is $H>0$ such that $$ f(t,x_0,x_1,x_2,\dots,x_{m})\le \big(\frac{1}{m+1}-\epsilon\big)\sum_{i=0}^{m}|x_i| $$ for $t\in [0,\pi]$ and $\sum_{i=0}^m|x_i|\ge H$, where $x_i\in I_i$ for $i=0,1,\dots, m$. Let $$ M=\max_{t\in [0,\pi],\sum_{i=0}^m|x_i|\le H}f(t,x_0,x_1,\dots,x_m), $$ then we have \eqref{e11}. So for $x\in \mathop{\rm dom} L\cap K_1$, we have $$ f(t,x(t),x'(t),\dots,x^{(m)}(t))\le \big(\frac{1}{m+1}-\epsilon\big)\Big(\sum_{i=1}^{m}|x_i|+x(t)\Big)+M. $$ In order to get $\Omega _2$, we now prove that the set $$ S=\{x\in \mathop{\rm dom} L\cap K_1,\;Lx=\lambda Nx,\;0<\lambda <1\} $$ is bounded. In fact, if $S$ is unbounded, then there is $\lambda \in (0,1)$, and $x\in S$ such that $x$ satisfies \begin{equation} \label{e12} (-1)^{m} x^{(2m)}(t)=\lambda f(t,x(t),x'(t),\dots,x^{(m)}(t)),\;t\in [0,\pi]. \end{equation} Thus \begin{align*} (-1)^mx^{(2m)}(t)x(t) &=\lambda x(t)f(t,x(t),x'(t),\dots,x^{(m)}(t))\\ &\le \lambda \Big(\frac{1}{m+1}-\epsilon\Big)\Big(x^2(t)+\sum_{i=1}^{m}x(t)|x^{(i)}(t)|\Big)+ x(t)M. \end{align*} Integrating above inequality from 0 to $\pi$, we get \begin{align*} \int_0^\pi (-1)^mx(t)x^{(2m)}(t)dt\\ \le \lambda \Big(\frac{1}{m+1}-\epsilon\Big)\int_0^\pi \Big(x^2(t)+\sum_{i=1}^{m}x(t)|x^{(i)}(t)|\Big)dt +M\int_0^\pi x(t)dt. \end{align*} Since \begin{align*} (-1)^m\int_0^\pi x(t)x^{(2m)}(t)dt &=(-1)^m\int_0^\pi x(t)dx^{(2m-1)}(t)\\ &=(-1)^mx(t)x^{(2m-1)}\Big|_0^\pi+(-1)^{m-1}\int_0^\pi x^{(2m-1)}(t)x'(t)dt\\ &=(-1)^{m-1}\int_0^\pi x'(t)dx^{(2m-2)}(t)\\ &=\dots\\ &=\int_0^\pi \left(x^{(m)}(t)\right)^2dt, \end{align*} we obtain \begin{align*} \|x^{(m)}\|_2^2 &\le \lambda \big(\frac{1}{m+1}-\epsilon\big)\Big[\int_0^\pi x^2(t)dt+\sum_{i=1}^m\int_0^\pi x(t)|x^{(i)}(t)|dt\Big] +M\int_0^\pi x(t)dt\\ &\le \lambda \big(\frac{1}{m+1}-\epsilon \big)\Big(\|x\|_2^2+\sum_{i=1}^m\|x\|_2\|x^{(i)}\|_2\Big) +\pi M\|x\|_\infty. \end{align*} Since $x(t)\sim \sum_{n=1}^\infty a_n \sin nt$, where $a_n$ is the Fourier coefficient of $x$ and $$ x'(t)\sim \sum_{n=1}^\infty na_n \cos nt, $$ by Parseval equality, $\|x\|_2\le \|x'\|_2$. Similarly, we have $$ \|x\|_2\le \|x'\|_2\le \cdots\le \|x^{(m)}\|_2. $$ Again, \begin{align*} |x(t)|&=|x(t)-x(0)|=|\int_0^tx'(s)ds|\\ &\le \int_0^t|x'(s)|ds\le \int_0^\pi |x'(s)|ds\\ &\le \left(\int_0^\pi |x'(t)|^2dt\int_0^\pi dt\right)^{1/2} =\pi^{1/2}\|x'\|_2. \end{align*} Then we obtain $\|x\|_\infty\le \pi^{1/2}\|x'\|_2$. Thus $$ \|x^{(m)}\|_2^2\le \lambda \big(\frac{1}{m+1}-\epsilon\big)(m+1)\|x^{(m)}\|_2^2+M\pi^{3/2}\|x^{(m)}\|_2. $$ Hence $$ \|x^{(m)}\|_2\le \frac{M\pi^{3/2}}{\epsilon (m+1)}=:c_1. $$ Thus, we obtain \begin{gather*} \|x\|_\infty\le \pi ^{1/2}\|x^{(m)}\|_2\le \frac{M\pi^{2}}{\epsilon (m+1)}=:c_2\,,\\ \|x^{(i)}\|_2\le \|x^{(m)}\|_2\le \frac{M\pi^{3/2}}{\epsilon (m+1)}=:c_1\quad\mbox{for }i=0,1,\dots,m. \end{gather*} Similarly, we have $$ \|x^{(i)}\|_\infty\le \pi^{1/2}\|x^{(i+1)}\|_2\le \frac{M\pi^2}{\epsilon (m+1)}=c_2\quad\mbox{for }i=1,\dots,m-1. $$ >From \eqref{e11}, \begin{align*} |x^{(2m)}(t)| &\le\big(\frac{1}{m+1}-\epsilon\big)\Big(x(t)+\sum_{i=1}^m|x^{(i)}(t)|\Big)+M\\ &\le\big(\frac{1}{m+1}-\epsilon\big)\Big(\|x\|_\infty+\frac{m}{2}+\frac{1}{2} \sum_{i=1}^m|x^{(i)}(t)|^2\Big)+M\\ &\le\big(\frac{1}{m+1}-\epsilon\big)\Big(c_2+\frac{m}{2}+\frac{1}{2} \sum_{i=1}^m|x^{(i)}(t)|^2\Big)+M. \end{align*} Integrating above inequality from 0 to $\pi$, we get $$ \|x^{(2m)}\|_1\le \pi \big(\frac{1}{m+1}-\epsilon\big)(c_2+\frac{m}{2}) +\frac{1}{2}\big(\frac{1}{m+1}-\epsilon\big)c_1^2+M\pi=:c_3. $$ Since $x^{(2m-2)}(0)=x^{(2m-2)}(\pi)=0,$ there is $\xi \in [0,\pi]$ such that $x^{(2m-1)}(\xi)=0$, thus $$ |x^{(2m-1)}(t)|\le \|x^{(2m)}\|_1. $$ So $\|x^{(2m-1)}\|_\infty\le c_3$. Similarly, one gets $$ \|x^{(2i-1)}\|_\infty\le c_3,\quad i=1,\dots,m-1. $$ This implies $\|x\|\le \max\{c_3,c_2,c_1\}+1$ for all $x\in S$. Choose $R>\max\{\max\{c_1,c_2,c_3\}+1, r/(2m+1)\}$. Let $$ \Omega _2=\{x\in X: \|x\|0$ for $t\in [0,\pi]$. Since $(-1)^{m}x^{(2m)}(t)\ge 0$ for all $t\in [0,\pi]$, together with the boundary value conditions (1.7), we get $x(t)\ge 0$ and $x''(t)\le 0$ for all $t\in [0,\pi]$. If there is $t_0\in (0,\pi)$ such that $x(t_0)=0$, then the concavity of $x(t)$ implies \begin{align*} 0&=x(t_0)=x\Big(\frac{\pi-t_0}{\pi-t}t+\frac{t_0-t}{\pi-t}\pi\Big)\\ &\ge \frac{\pi-t_0}{\pi-t}x(t)+\frac{t_0-t}{\pi-t}x(\pi)\\ &= \frac{\pi-t_0}{\pi-t}x(t). \end{align*} This implies that $x(t)=0$ for all $t\in [0,\pi]$, which contradicts $x\in \overline{\Omega_2}/\Omega_1$. The proof is complete. \end{proof} For our convenience, we introduce the following notation: \begin{align*} &\Delta_1=\max_{t\in [0,\pi]}\int_0^\pi G_m(s,t)ds,\\ &\Delta_2=\max\Big\{\Delta_1,\;\max_{t\in [0,\pi]}\left(\int_0^t \frac{s}{\pi}G_{m-1}(s,t)ds+\int_t^\pi(1-\frac{s}{\pi})G_{m-1}(s,t)ds\right)\Big\},\\ &\Delta_3=\max\Big\{\Delta_2,\;\max_{t\in [0,\pi]}\int_0^\pi G_{m-1}(s,t)ds\Big\},\\ &\dots\\ &\Delta_m=\max\Big\{\Delta_{m-1},\;\max_{t\in [0,\pi]} \Big(\int_0^t\frac{s}{\pi}G_{m/2}(s,t)ds +\int_t^\pi(1-\frac{s}{\pi})G_{m/2}(s,t)ds\Big)\Big\}\\ &\hspace{15mm} \hbox{if m is an even integer,}\\ &\Delta_m=\max\Big\{\Delta_m,\;\max_{t\in [0,\pi]}\int_0^\pi G_{(m-1)/2}(s,t)ds\Big\}, \quad\hbox{if $m$ is an odd integer.} \end{align*} Clearly, we have $\Delta_m\ge \Delta_i$ for $i=1,2,\dots,m$. \begin{theorem} \label{thm2.2} Assume the following two conditions are satisfied: \begin{itemize} \item[(C)] The inequality $ f(t,x_0,x_1,\dots,x_m)\ge x_0$ holds for all $(x_0,x_1,\dots,x_m)$ in $R^{m+1}$ and all $t$ in $[0,\pi]$. \item[(D)] The following inequality holds uniformly for $t\in [0,\pi]$: $$ \limsup_{\sum_{i=0}^m|x_i|\to 0} \frac{f(t,x_0,x_1,\dots,x_m)}{\sum_{i=0}^m|x_i|} <\frac{1}{(m+1)\Delta_m}\,. $$ \end{itemize} Then BVP \eqref{e6}--\eqref{e7} has at least one positive solution. \end{theorem} \begin{proof} We divide the proof of the theorem into two steps. \noindent{\bf Step 1.}\quad To prove the first part of (i), choose $r>0$ and $\delta \in (0,1/[(m+1)\Delta_m]$ such that \begin{equation} \label{e13} f(t,x_0,x_1,\dots,x_m)\le \delta \sum_{i=0}^m|x_i| \end{equation} for $t\in [0,\pi] $ and $(x_0,x_1,\dots,x_m)\in R^{m+1}$ with $\sum_{i=0}^m|x_i|\le r$. Let $$ \Omega_1=\{\;x\in \mathop{\rm dom} L\cap K_1,\;\|x\|< \frac{r}{m+1}\}. $$ For $x\in \partial \Omega_1$, we have $\|x\|=\frac{r}{m+1}$, then $$ \sum_{i=0}^m|x^{(i)}(t)|\le \sum_{i=0}^m\|x^{(i)}\|_\infty\le (m+1)\|x\|=r. $$ So, we get $$ f(t,x(t),x'(t),\dots,x^{(m)}(t))\le \delta \sum_{i=1}^m|x^{(i)}(t)|,\quad\hbox{for }t\in [0,\pi]. $$ If $Lx=\lambda Nx$ with $\lambda \in (0,1)$ has a solution $x\in \mathop{\rm dom} L\cap K_1\cap \partial \Omega_1$, then $$ x(t)=\lambda L^{-1}Nx(t)=\lambda \int_0^\pi G_m(t,s)f(s,x(s),x'(s),\dots,x^{(m)}(s))ds. $$ Hence, we get \begin{align*} \|x\|_\infty &=\lambda \max_{t\in [0,\pi]}\int_0^\pi G_m(t,s)f(s,x(s),x'(s),\dots,x^{(m)}(s))ds\\ &\le \delta\max_{t\in [0,\pi]}\int_0^\pi G_m(t,s)\sum_{i=0}^m|x^{(i)}(s)|ds\\ &\le \delta \Delta_1(m+1)\|x\|. \end{align*} It is easy to check that \begin{align*} \|x'\|_\infty &=\lambda \max_{t\in [0,\pi]}\Big[-\int_0^t\frac{s}{\pi}G_{m-1}(t,s)f(s,x(s),x'(s), \dots,x^{(m)}(s))ds \\ &\quad + \int_t^\pi \big(1-\frac{s}{\pi}\big)G_{m-1}(t,s)f(s,x(s),x'(s), \dots,x^{(m)}(s))ds\Big]\\ &\le \max_{t\in [0,\pi]}\Big(\int_0^t\frac{s}{\pi}G_{m-1}(t,s)f(s,x(s),x'(s), \dots,x^{(m)}(s))ds\\ &\quad + \int_t^\pi\big(1-\frac{s}{\pi}\big)G_{m-1}(t,s)f(s,x(s),x'(s), \dots,x^{(m)}(s))ds\Big)\\ &\le \max_{t\in [0,\pi]}\Big(\int_0^t\frac{s}{\pi}G_{m-1}(t,s)ds+ \int_t^\pi\big(1-\frac{s}{\pi}\big)G_{m-1}(t,s)ds\Big) \delta (m+1)\|x\|\\ &\le \Delta_2\delta (m+1)\|x\|. \end{align*} Finally, we can get $\|x^{(m)}\|_\infty\le \delta \Delta_m(m+1)\|x\|$. Hence, we have $$ \|x\|\le \delta \Delta_m(m+1)\|x\|. $$ Thus $(m+1)\delta\Delta_m\ge 1$, which contradicts $\delta \in (0,1/[\Delta_m(m+1)])$. The first step is complete. \noindent{\bf Step 2.}\quad Choose $\Omega_2$ sufficiently large such that $\Omega_1\subset \overline{\Omega_1}\subset \Omega_2$, by condition (C), we have that $$f(t,x_0,x_1,\dots,x_m)\ge x_0 $$ holds for all $t\in [0,\pi]$ all $(x_0,x_1,\dots,x_m)\in R^{m+1}$. Hence, $$ f(t,x(t),x'(t),\dots,x^{(m)}(t))\ge x(t) $$ holds for all $t\in [0,\pi]$, i.e. \eqref{e9} holds. Similar to Step 1 in Theorem \ref{thm1}, we can get a contradiction, hence the second part of (i) in Theorem \ref{thm1} is satisfied. It follows from (i) of Theorem \ref{thm1} that BVP \eqref{e6} and \eqref{e8} has at least one positive solution $x(t)$. The proof is complete. \end{proof} \subsection*{Remark} Consider the boundary-value problem \begin{equation} \label{e14} \begin{gathered} (-1)^{m} x^{(2m)}(t)=f(t,x(t),x'(t),\dots,x^{(m)}(t)),\quad 00$ is a constant, $f$ and $m$ are defined in \eqref{e6}--\eqref{e7}. Let $s=\pi t/T$, we transform BVP \eqref{e14} into a BVP similar to BVP \eqref{e6}--\eqref{e7}. Then a similar existence result can be obtained. \begin{theorem} \label{thm2.3} Suppose $(A)$ and $(B)$ of Theorem \ref{thm2.1} hold. Then BVP \eqref{e6} and \eqref{e8} has at least one positive solution. \end{theorem} \begin{proof} Consider the boundary-value problem \begin{gather*} (-1)^{m} x^{(2m)}(t)= \begin{cases} f(t,x(t),x'(t),\dots,x^{(m)}(t)), &\mbox{for } 0\le t\le\pi,\\ f(2\pi-t,x(2\pi-t),-x'(2\pi-t),\dots,\\ (-1)^mx^{(m)}(2\pi-t)) & \mbox{for } \pi\le t\le 2\pi, \end{cases}\\ x^{(2i)}(0)=x^{(2i)}(2\pi)=0\quad\mbox{for }i=0,1,\dots,m-1\,. \end{gather*} This problem is exactly similar to that of Theorem \ref{thm2.1}, we can obtain at least one positive solution $x(t)$, which is defined on $[0,2\pi]$, of above BVP and so $x(t)(t\in [0,\pi])$ is a positive solution of BVP \eqref{e6} and \eqref{e8}. The proof completed. \end{proof} \begin{theorem} \label{thm2.4} Suppose Conditions $(C)$ and $(D)$ of Theorem \ref{thm2.2} hold. Then BVP \eqref{e6} and \eqref{e8} has at least one positive solution. \end{theorem} The proof is similar to that of Theorem \ref{thm2.3} and is omitted. Next, we present two examples to illustrate the main results. \begin{example} \rm Consider the boundary-value problem \begin{equation} \label{e15} \begin{gathered} x^{(4)}(t)=f(t,x(t),x'(t),x''(t)), \quad 01 $$ hold uniformly, then \eqref{e15} has at least one positive solution. \end{example} \begin{example} \rm Consider the boundary-value problem \begin{equation} \label{e16} \begin{gathered} x^{(6)}(t)=-\frac{2}{1+|x(t)|+|x'(t)|+x''(t)|+|x'''(t)|},\quad 0