%\pdfoutput=1\relax\pdfpagewidth=8.26in\pdfpageheight=11.69in\pdfcompresslevel=9 \documentclass[reqno]{amsart} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2004(2004), No. 02, pp. 1--11.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2004 Texas State University-San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE--2004/02\hfil Multiple periodic solutions] {Multiple periodic solutions of a discrete time predator-prey systems with type IV functional responses} \author[Z. Liu, A. Chen, J. Cao, F. Chen, \hfil EJDE--2003/02\hfilneg] {Zhigang Liu, Anping Chen, Jinde Cao, \& Fengde Chen} \address{Zhigang Liu \hfill\break Department of Mathematics, Xiangnan University, Chenzhou, Hunan 423000, China} \email{lzglzglzg4359@sina.com} \address{Anping Chen \hfill\break Department of Mathematics, Xiangnan University, Chenzhou, Hunan 423000, China} \email{anping\_chen@hotmail.com} \address{Jinde Cao\hfill\break Department of Mathematics, Southeast University, Nanjing 210096, China} \email{jdcao@seu.edu.cn} \address{Fengde Chen \hfill\break Department of Mathematics, Fuzhou University, Fuzhou, Fujian 350002, China} \email{fdchen@fzu.edu.cn} \date{} \thanks{Submitted September 2, 2003. Published January 2, 2004.} \subjclass[2000]{39A11, 92B05} \keywords{Periodic solution, delayed predator-prey, coincidence degree, \hfill\break\indent type IV functional response, non-autonomous difference equation} \begin{abstract} By using the continuation theorem of Mawhin's coincidence degree theory, some sufficient conditions are obtained ensuring the existence of multiple positive periodic solutions of a discrete time predator-prey systems with type IV functional responses. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \date{} \section{Introduction} Recently, a Lotka-Volterra model with Holloing Type functional response has been extensively studied by number of papers (see papers [1]-[7], [9]-[12], [15], [18], [21]-[23] and the references cited therein). The model is described by the following system \[ \begin{gathered} x'_{1}(t)=x_{1}(t)\big[b_{1}(t)-a_{1}(t)x_{1}(t)- \frac{c(t)x_{2}(t)}{m(t)x_{2}(t)+x_{1}(t)}\big],\\ x'_{2}(t)=x_{2}(t)\big[-b_{2}(t)+\frac{a_{2}(t)x_{1}(t)}{m(t)x_{2}(t)+x_{1}(t)} \big], \end{gathered}\eqno(1.1) \] where $x_{1}(t)$ and $x_{2}(t)$ represent the densities of the prey and the predator, respectively, $b_{1}(t)$, $c(t)$, $b_{2}(t)$ and $a_{2}(t)$ are the prey intrinsic growth rate, capture rate, death rate of the predator, and the conversion rate, respectively, $b_{1}(t)/a_{1}(t)$ gives the carrying capacity of the prey, and $m$ is the half saturation constant, the functional response $x/(m(t)y+x)$ is ratio-dependent. When the prey group has defence or toxicity, the functional response in a predator-prey model should be type IV. Kot [19] proposed the following predator-prey model with a type IV functional response \[ \begin{gathered} x'_{1}(t)=x_{1}(t)\big[b_{1}(t)-a_{1}(t)x_{1}(t-\tau_{1}(t))- \frac{c(t)x_{2}(t-\sigma(t))}{\frac{x^{2}_{1}(t-\tau_{2}(t))}{i} +x_{1}(t-\tau_{2}(t))+a}\big],\\ x'_{2}(t)=x_{2}(t)\big[-b_{2}(t)+\frac{a_{2}(t)x_{1}(t-\tau_{3}(t))} {\frac{x^{2}_{1}(t-\tau_{4}(t))}{i} +x_{1}(t-\tau_{4}(t))+a}\big], \end{gathered} \eqno(1.2) \] where $c,\sigma,a_{i},b_{i}$ ($i=1,2$) and $\tau_{j}$ ($j=1,2,3,4$) are continuous $\omega$-periodic functions with $c(t)\geq0$, $\sigma(t)\geq0$, $a_{i}(t)\geq0$ and $\tau_{j}(t)\geq0$, $\int_{0}^{\omega}c(t)dt>0$ and $\int_{0}^{\omega}b_{i}(t)dt>0$, $i$ and $a$ are positive constants. Recently, many authors studied the existence of positive periodic solutions in population models by using the powerful and effective method of coincidence degree. Chen [8] has established the results of the existence of multiple positive periodic solutions by applying the continuation theorem for system (1.2) in the case $\tau_{2}(t)=0$. When the populations have non-overlapping generations, discrete time model described by difference equations is more appropriate than the continuous one. In [9] and [28], authors studied the periodic solutions of some difference equations by using coincidence degree theory. However, no work has been done for the multiple positive periodic solutions of discrete time predator-prey model with type IV functional responses. The main purpose of this paper is to propose a discrete analogue of system (1.2) and to obtain sufficient conditions for the existence of its multiple positive periodic solutions by employing coincidence degree theory and some analysis technique. This is the first time that a discrete time predator-prey model with a type IV functional response has been studied by using this way. The rest of this paper is organized as follows. In Section 2, we propose a discrete predator-prey model with type IV functional responses described by difference equations with the help of differential equations with piecewise constant arguments. In section 3, we shall establish easily verifiable sufficient criteria for the existence of multiple positive periodic solutions of the difference equations derived in Section 2. \section{Discrete analogue of system (1.2)} Let us consider the following equation with piecewise arguments, it is considered as a semi-discretization of (1.2) \[ \begin{gathered} \frac{1}{x_{1}(t)}\frac{dx_{1}(t)}{dt} =b_{1}([t])-a_{1}([t])x_{1}([t]-\tau_{1}([t]))-\! \frac{c([t])x_{2}([t]-\sigma([t]))}{\frac{x^{2}_{1}([t]-\tau_{2}([t]))}{i} +x_{1}([t]-\tau_{2}([t]))+a},\\ \frac{1}{x_{2}(t)}\frac{dx_{2}(t)}{dt} =-b_{2}([t])+\frac{a_{2}([t])x_{1}([t]-\tau_{3}([t]))} {\frac{x^{2}_{1}([t]-\tau_{4}([t]))}{i} +x_{1}([t]-\tau_{4}([t]))+a},\quad t\neq 0,1,2,\cdots, \end{gathered} \eqno(2.1) \] where $[t]$ denotes the integer part $t$, $t\in(0,+\infty)$. By a solution of (2.1), we mean a function $x=(x_{1},x_{2})^{T}$, which is defined for $t\in [0,+\infty)$, and possesses the following properties: \begin{enumerate} \item $x$ is continuous on $[0,+\infty)$. \item The derivative $\frac{dx_{1}(t)}{dt}$, $\frac{dx_{2}(t)}{dt}$ exist at each point $t\in[0,+\infty)$ with the possible exception of the points $t\in\{0,1,2,\cdots\}$, where left-sided derivatives exist. \item The equations in (2.1) are satisfied on each interval $[k,k+1)$ with $k=0,1,2,\cdots$. \end{enumerate} For $k\leq t0,\quad s=-m,-m+1,\cdots,0,\quad i=1,2, \eqno(2.4) $$ where $m=\max_{k\in I_{\omega}}\{\tau_{1}(k),\tau_{2}(k),\tau_{3}(k), \tau_{4}(k),\sigma(k)\}$, $\tau_{i}(k)$ and $\sigma(k)$ are integers. For given initial conditions (2.4), we may prove that (2.3) has a unique solution $(x_{1}(k),x_{2}(k))^{T}$ defined on $\{-m,\cdots,-1,0,1,2,\cdots\}$ and satisfying $$ x_{i}(k)>0,\quad i=1,2;k=0,1,2,\cdots. $$ \section{Existence of multiple positive periodic solutions} In this section, we shall apply the continuation theorem of Mawhin's coincidence degree theory to establish our main results. Let $\mathbb{Z}$, $\mathbb{Z}^{+}$, $\mathbb{R}$, $\mathbb{R}^{+}$, and $\mathbb{R}^{2}$ denote the sets of all integers, nonnegative integers, real numbers, nonnegative real numbers, and two-dimensional Euclidean vector space, respectively. Throughout this paper, we will use the following notation: $$ I_{\omega}=\{0, 1, \cdots,\omega-1\},\quad \overline{g}=\frac{1}{\omega}\sum_{k=0}^{\omega-1}g(k),\quad \overline{G}=\frac{1}{\omega}\sum_{k=0}^{\omega-1}|g(k)|, $$ where $\{g(k)\}$ is an $\omega$-periodic sequence of real numbers defined for $k\in\mathbb{Z}$. \par In system (2.3), we always assume that $b_{i}:\mathbb{Z}\to \mathbb{R}$ and $c,\sigma,a_{i},\tau_{j}:\mathbb{Z}\to \mathbb{R}^{+}$ are $\omega$-periodic, i.e., \begin{gather*} a_{i}(k+\omega)=a_{i}(k),\quad b_{i}(k+\omega)=b_{i}(k), \quad c(k+\omega)=c(k),\\ \sigma(k+\omega)=\sigma(k),\quad \tau_{j}(k+\omega)=\tau_{j}(k), \end{gather*} for any $k\in\mathbb{Z}$, $i=1,2$; $j=1,2,3,4$ and $\overline{c}>0$, $\overline{b}_{i}>0$, $i$ and $a$ are positive constants, where $\omega$, a fixed positive integer, denotes the prescribed common period of the parameters in (2.3). For the reader's convenience, we first summarize a few concepts from the book by Gaines and Mawhin [14]. Let $X$ and $Y$ be normed vector spaces. Let $L: \mathop{\rm Dom}L\subset X\to Y$ be a linear mapping and $N: X\to Y$ be a continuous mapping. The mapping $L$ will be called a Fredholm mapping of index zero if $\mathop{\rm dim}\ker L =\mathop{\rm codim\,Im}L<\infty$ and $\mathop{\rm Im}L$ is closed in $Z$. If $L$ is a Fredholm mapping of index zero, then there exist continuous projectors $P: X\to X$ and $Q: Y\to Y$ such that $\mathop{\rm Im}P=\ker L$ and $\mathop{\rm Im}L=\ker Q=\mathop{\rm Im}(I-Q)$. It follows that $L|\mathop{\rm Dom}L\cap\ker P: (I-P)X\to\mathop{\rm Im}L$ is invertible and its inverse is denoted by $K_{p}$. If $\Omega$ is a bounded open subset of $X$, the mapping $N$ is called $L$-compact on $\overline{\Omega}$ if $(QN)(\overline{\Omega})$ is bounded and $K_{p}(I-Q)N: \overline{\Omega}\to X$ is compact. Because $\mathop{\rm Im}Q$ is isomorphic to $\ker L$, there exists an isomorphism $J: \mathop{\rm Im}Q\to\ker L$. In the proof our existence result, we need the following lemmas. \begin{lemma}[{Continuation theorem [14]}] \label{lm3.1} Let $L$ be a Fredholm mapping of index zero and $N$ be $L$-compact on $\overline{\Omega}$. Suppose \begin{itemize} \item[(a)] For each $\lambda\in (0,1)$, every solution $x$ of $Lx=\lambda Nx$ is such that $x\notin\partial\Omega$; \item[(b)] $QNx\neq0$ for each $x\in \partial\Omega\cap \ker L$ and $\deg \{JQN,\Omega \cap \ker L,0\}\neq0$. \end{itemize} Then the operator equation $Lx=Nx$ has at least one solution lying in $\mathop{\rm Dom}L\cap\overline{\Omega}$. \end{lemma} \begin{lemma}[{\cite[Lemma 3.2]{s9}}] \label{lm3.2} Let $g:\mathbb{Z}\to \mathbb{R}$ be an $\omega$-periodic, i.e., $g(k+\omega)=g(k)$. Then for any fixed $k_{1}, k_{2}\in I_{\omega}$, and any $k\in\mathbb{Z}$, one has \begin{gather*} g(k)\leq g(k_{1})+\sum_{s=0}^{\omega-1}|g(s+1)-g(s)|,\\ g(k)\geq g(k_{2})-\sum_{s=0}^{\omega-1}|g(s+1)-g(s)|. \end{gather*} \end{lemma} \begin{proof} It is only necessary to prove that the inequalities hold for any $k\in I_{\omega}$. For the first inequality, it is easy to see the first inequality holds if $k=k_{1}$. If $k>k_{1}$, then $$ g(k)-g(k_{1})=\sum_{s=k_{1}}^{k-1}(g(s+1)-g(s)) \leq\sum_{s=k_{1}}^{k-1}|g(s+1)-g(s)|\leq\sum_{s=0}^{\omega-1}|g(s+1)-g(s)|, $$ and hence, $ g(k)\leq g(k_{1})+\sum_{s=0}^{\omega-1}|g(s+1)-g(s)|$. If $k\overline{b}_{2}\big(1+2\sqrt{\frac{a}{i}}\big) \exp \left[(\overline{B}_{1}+\overline{b}_{1})\omega\right]$. \end{itemize} For further convenience, we introduce the following six positive numbers: \begin{gather*} l_{\pm}=\frac{i\{\overline{a}_{2}\exp [(\overline{B}_{1}+\overline{b}_{1})\omega] -\overline{b}_{2}\}\pm \sqrt{i^{2}\{\overline{a}_{2}\exp [(\overline{B}_{1}+\overline{b}_{1})\omega] -\overline{b}_{2}\}^{2}-4ia\overline{b}_{2}^{2}}}{2\overline{b}_{2}}, \\ \begin{aligned} u_{\pm}&=\Big(i\{\overline{a}_{2}-\overline{b}_{2}\exp [(\overline{B}_{1} +\overline{b}_{1})\omega]\} \\ &\quad \pm \sqrt{i^{2}\{\overline{a}_{2}-\overline{b}_{2}\exp [(\overline{B}_{1} +\overline{b}_{1}) \omega]\}^{2}-4ia\overline{b}_{2}^{2} \exp [2(\overline{B}_{1}+\overline{b}_{1})\omega]}\Big)\\ &\quad \div \big(2\overline{b}_{2}\exp [(\overline{B}_{1}+\overline{b}_{1})\omega]\big), \end{aligned}\\ y_{\pm}=\frac{i(\overline{a}_{2}-\overline{b}_{2})\pm\sqrt{i^{2}(\overline{a}_{2}-\overline{b}_{2})^{2} -4ia\overline{b}_{2}^{2}}}{2\overline{b}_{2}}. \end{gather*} It is not difficult to prove that $$ l_{-} \ln\big[\frac{\overline{b}_{2}}{\overline{a}_{2}}f(y_{1}(\xi_{1}))\big]- (\overline{B}_{1}+\overline{b}_{1})\omega. \eqno(3.10) \] In particular, we have $y_{1}(\xi_{1})> \ln\big[\frac{\overline{b}_{2}}{\overline{a}_{2}} f(y_{1}(\xi_{1}))\big]-(\overline{B}_{1}+\overline{b}_{1})\omega$, or $$ \frac{\overline{b}_{2}}{i}\exp(2y_{1}(\xi_{1}))-\left[\overline{a}_{2} \exp(\overline{B}_{1}+\overline{b}_{1})\omega -\overline{b}_{2}\right]\exp\{y_{1}(\xi_{1})\}+\overline{b}_{2}a<0. $$ Because of (H1), we have $$ \ln l_{-}\ln u_{+}. \eqno(3.12) $$ It follows from (3.11), (3.6) and Lemma 3.2 that \[ y_{1}(k)\leq y_{1}(\xi_{1})+\sum_{s=0}^{\omega-1}|y_{1}(s+1)-y_{1}(s)| < \ln l_{+}+(\overline{B}_{1}+\overline{b}_{1})\omega:=H_{12}. \eqno(3.13) \] On the other hand, it follows from (3.5) and (3.13) that $$ \overline{b}_{1}\omega\geq\frac{\overline{c}\omega\exp\{y_{2}(\xi_{2})\}} {f(\ln l_{+}+(\overline{B}_{1}+\overline{b}_{1})\omega)} \eqno(3.14) $$ $$ \overline{b}_{1}\omega\leq\overline{a}_{1}\omega\exp\left[\ln l_{+}+(\overline{B}_{1}+\overline{b}_{1})\omega\right] +\frac{\overline{c}\omega \exp\{y_{2}(\eta_{2})\}}{a}. \eqno(3.15) $$ It follows from (3.14) that $y_{2}(\xi_{2})\leq\ln\big\{\frac{\overline{b}_{1}}{\overline{c}}f(\ln l_{+}+(\overline{B}_{1}+\overline{b}_{1})\omega)\big\}$. This, combined with (3.7), gives \[\begin{aligned} y_{2}(k)&\leq y_{2}(\xi_{2})+\sum_{s=0}^{\omega-1}|y_{2}(s+1)-y_{2}(s)|\\ &<\ln\Big\{\frac{\overline{b}_{1}}{\overline{c}}f(\ln l_{+}+(\overline{B}_{1}+\overline{b}_{1})\omega)\Big\}+(\overline{B}_{2} +\overline{b}_{2})\omega :=H_{22}. \end{aligned}\eqno(3.16) \] Moreover, because of (H2), it follows from (3.15) that $$ y_{2}(\eta_{2})\geq\ln\frac{a\{\overline{b}_{1}-\overline{a}_{1}l_{+}\exp[(\overline{B}_{1} +\overline{b}_{1})\omega]\}}{\overline{c}}. $$ This, combined with (3.7) again, gives \[\begin{aligned} y_{2}(k)&\geq y_{2}(\eta_{2})-\sum_{s=0}^{\omega-1}|y_{2}(s+1)-y_{2}(s)|\\ &>\ln\frac{a\{\overline{b}_{1}-\overline{a}_{1}l_{+}\exp[(\overline{B}_{1} +\overline{b}_{1})\omega]\}}{\overline{c}}-(\overline{B}_{2} +\overline{b}_{2})\omega :=H_{21}. \end{aligned}\eqno(3.17) \] It follows from (3.16) and (3.17) that $$ \begin{array}{rcl} \max_{k\in I_{\omega}}|y_{2}(k)|<\max\{|H_{21}|,|H_{22}|\}:=H_{2}. \end{array}\eqno(3.18) $$ Obviously, $\ln l_{\pm}$, $\ln u_{\pm}$, $H_{12}$ and $H_{2}$ are independent of $\lambda$. Now, let's consider $QNy$ with $y=(y_{1},y_{2})^{T}\in \mathbb{R}^{2}$. Note that $$ QN(y_{1},y_{2})^{T}=\Big(\overline{b}_{1}-\overline{a}_{1}\exp(y_{1}) -\frac{\overline{c}\exp(y_{2})}{f(y_{1})},-\overline{b}_{2} +\frac{\overline{a}_{2}\exp(y_{1})}{f(y_{1})}\Big)^{T}. $$ Because of (H1) and (H2), we can show that $QN(y_{1},y_{2})^{T}=0$ has two distinct solutions $\widetilde{y}=(\ln y_{-},\ln\frac{(\overline{b}_{1}-\overline{a}_{1}y_{-})f(\ln y_{-})}{\overline{c}})$ and $\widehat{y}=(\ln y_{+},\ln\frac{(\overline{b}_{1}-\overline{a}_{1}y_{+})f(\ln y_{+})}{\overline{c}})$. Choose $C>0$ such that $$ C>\max\Big\{\big|\ln\frac{(\overline{b}_{1}-\overline{a}_{1}y_{-})f(\ln y_{-})}{\overline{c}}\big|,\big|\ln\frac{(\overline{b}_{1} -\overline{a}_{1}y_{+})f(\ln y_{+})}{\overline{c}}\big|\Big\}. \eqno(3.19) $$ Let $$ \Omega_{1}=\Big\{y=(y_{1}(k),y_{2}(k))\in X : y_{1}(k)\in (\ln l_{-}, \ln u_{-}),\; \max_{k\in I_{\omega}}|y_{2}(k)|