\documentclass[reqno]{amsart} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2004(2004), No. 124, pp. 1--17.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2004 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2004/124\hfil Anti-periodic solutions] {Anti-periodic solutions for second order differential inclusions} \author[J.-F. Couchouron, R. Precup\hfil EJDE-2004/124\hfilneg] {Jean-Fran\c{c}ois Couchouron, Radu Precup} % in alphabetical order \address{Jean-Fran\c{c}ois Couchouron \hfill\break Universit\'{e} de Metz, Math\'{e}matiques INRIA Lorraine \\ Ile du Saulcy, 57045 Metz, France} \email{Jean-Francois.Couchouron@loria.fr} \address{Radu Precup \hfill\break University Babe\c{s}-Bolyai \\ Faculty of Mathematics and Computer Science \\ 3400 Cluj, Romania} \email{r.precup@math.ubbcluj.ro} \date{} \thanks{Submitted May 10, 2004. Published October 18, 2004.} \subjclass[2000]{45N05, 47J35, 34G25} \keywords{Anti-periodic solution; nonlinear boundary-value problem; \hfill\break\indent dissipative operator; multivalued mapping; fixed point} \begin{abstract} In this paper, we extend the existence results presented in \cite{CKP} for $L^{p}$ spaces to operator inclusions of Hammerstein type in $W^{1,p}$ spaces. We also show an application of our results to anti-periodic boundary-value problems of second-order differential equations with nonlinearities depending on $u'$. \end{abstract} \maketitle \newtheorem{theorem}{Theorem}[section] \newtheorem{corollary}[theorem]{Corollary} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \numberwithin{equation}{section} \section{Introduction} This paper concerns the second-order boundary-value problem \begin{gather*} -u''(t)\in Au(t)+f( t,u( t) ,u'( t) ) \quad\text{for a.e. }t\in [ 0,T] \\ u( 0) =-u( T) ,\quad u'( 0) =-u'( T) , \end{gather*} where $00$ there exists $\nu _{\rho }\in L^{q}( a,b;\mathbb{R}_{+}) $ such that $| \psi( t,x) | _{Y}\leq \nu _{\rho }( t) $ a.e. on $[ a,b] $, for all $x\in D$ with $| x| _{X}\leq \rho $. \end{itemize} \section{A General Existence Principle} The aim of this section is to extend the general existence principles given in \cite{CP} for inclusions in $L^{p}( 0,T;E) $, to inclusions in $W^{1,p}( 0,T;E) $. Here again $E$ a Banach space with norm $|\cdot|$. This extension allows us to consider boundary-value problems for second order differential inclusions with $u'$ dependence perturbations and, by this, it complements the theory from \cite{CK}, \cite{CKP} and \cite{CP}. Let $p\in [ 1,\infty ] $ and $q\in \lbrack 1,\infty \lbrack $. Let $r\in ]1,\infty ]$ be the conjugate exponent of $q$, that is $1/q+1/r=1$. Let $g:[ 0,T] \times E^{2}\to 2^{E}$ and let $G:W^{1,p}( 0,T;E) \to 2^{L^{q}( 0,T;E) }$ be the Nemytskii set-valued operator associated to $g$, $p$ and $q$, given by \begin{equation} G( u) =\{w\in L^{q}( 0,T;E) : w( s) \in g( s,u( s) ,u'( s) ) \text{ a.e. on }[ 0,T] \}. \label{eq1.6'} \end{equation} Also consider a single-valued nonlinear operator \[ S:L^{q}( 0,T;E) \to W^{1,p}( 0,T;E) . \] We have the following existence principle for the operator inclusion \begin{equation} u\in SG( u) ,\quad u\in W^{1,p}( 0,T;E) . \label{eq1.7} \end{equation} \begin{theorem} \label{thm2.1} Let $K$ be a closed convex subset of $W^{1,p}( 0,T;E) $, $U$ a convex relatively open subset of $K$ and $u_{0}\in U$. Assume \begin{itemize} \item[(H1)] $SG:\overline{U}\to P_{a}( K) $ has closed graph and maps compact sets into relatively compact sets \item[(H2)] $M\subset \overline{U}$, $M$ closed, $M\subset \overline{\mathop{\rm conv}} ( \{ u_{0}\} \cup SG( M) )$ implies that $M$ is compact \item[(H3)] $u\notin (1-\lambda )u_{0}+\lambda SG(u)$ for all $\lambda \in ]0,1[$ and $u\in \overline{U}\setminus U$. \end{itemize} Then \eqref{eq1.7} has a solution in $\overline{U}$. \end{theorem} \begin{proof} Let $D=\overline{\mathop{\rm conv}}( \{ u_{0}\} \cup SG(\overline{U}) ) $. Clearly $u_{0}\in D\subset K$. Let $P:K\to \overline{U}$ be given by $P( u) =u$ if $u\in \overline{U}$ and $P( u) =\overline{u}$ if $u\in K\setminus \overline{U}$, where $\overline{u}=( 1-\lambda ) u_{0}+\lambda u\in \overline{U}\setminus U$, $\lambda \in ]0,1[$. Note $P$ is single-valued, continuous and maps closed sets into closed sets. Let $\widetilde{N}:D\to P_{a}( K) $, $\widetilde{N}(u) =SGP( u) $. It is easy to see that $\widetilde{N}(D) \subset D$, the graph of $\widetilde{N}$ is closed and $\widetilde{N}$ maps compact sets into relatively compact sets. Let $D_{0}$ be a closed convex set with $D_{0}=\overline{\mathop{\rm conv}}( \{ u_{0}\} \cup \widetilde{N}( D_{0}\cap D) ) $ whose existence is guaranteed by Lemma \ref{lm1.3}. Since $\widetilde{N}( D) \subset D$ we have $D_{0}\subset D$ and so $D_{0}=\overline{\mathop{\rm conv}}( \{u_{0}\} \cup \widetilde{N}( D_{0}) ) $. Using the definition of $P$, we obtain \[ P( D_{0}) \subset \mathop{\rm conv}( \{u_{0}\} \cup D_{0}) =\overline{\mathop{\rm conv}}( \{u_{0}\} \cup \widetilde{N}( D_{0}) ) \\ =\overline{\mathop{\rm conv}}( \{ u_{0}\} \cup SG(P( D_{0}) ) ) . \] In addition, since $D_{0}$ is closed, $P( D_{0}) $ is also closed. Now (H2) guarantees that $P( D_{0}) $ is compact. Since $SG$ maps compact sets into relatively compact sets, we have that $\widetilde{ N}( D_{0}) $ is relatively compact. Then Mazur's Lemma guarantees that $D_{0}$ is compact. Now apply the Eilenberg-Montgomery Theorem with $\Xi =\Theta =D_{0}$, $\Phi =\widetilde{N}$ and $\Gamma =\,$identity of $D_{0}$, to deduce the existence of a fixed point $u\in D_{0}$ of $\widetilde{ N}$. If $u\notin \overline{U}$, then $P( u) =( 1-\lambda ) u_{0}+\lambda u=( 1-\lambda ) u_{0}+\lambda SG( P( u) ) $ for some $\lambda \in ]0,1[$. Since $P( u) \in \overline{U}\setminus U$, this contradicts (H3). Thus $u\in \overline{U}$, so $u=SG( u) $ and the proof is complete. \end{proof} \begin{remark} \label{rmk2.1} \rm Additional regularity for the solutions of \eqref{eq1.7} depends on the values of $S$. In particular if the values of $S$ are in $C_{a}^{1}$ then so are all solutions of \eqref{eq1.7}. \end{remark} In what follows $K$ will be a closed linear subspace of $W^{1,p}(0,T;E) $, $u_{0}=0$ and $U$ will be the open ball of $K$, \[ U=\{u\in K:\| u\| 0$ such that \[ | S( w_{1}) ( t) -S( w_{2}) ( t) | \leq \int_{0}^{T}k( t,s) | w_{1}( s) -w_{2}( s) | ds \] for a.e. $t\in [ 0,T] $, and $| S( w_{1}) '-S( w_{2})'| _{p}\leq L| w_{1}-w_{2}| _{q}$ for all $w_{1},w_{2}\in L^{q}( 0,T;E) $ \item[(S2)] $S:L^{q}( 0,T;E) \to K$ and for every compact convex subset $C$ of $E$, $S$ is sequentially continuous from $L_{w}^{1}( 0,T;C) $ to $W^{1,p}(0,T;E) $. (Here $L_{w}^{1}( 0,T;C) $ stands for $L^{1}( 0,T;C) $ endowed with the weak topology of $L^{1}(0,T;E)$) \item[(G1)] $g:[ 0,T] \times E^{2}\to P_{kc}( E) $ \item[(G2)] $g( .,z) $ has a strongly measurable selection on $[ 0,T] $, for every $z\in E^{2}$ \item[(G3)] $g( t,.) $ is upper semicontinuous for a.e. $t\in [ 0,T]$ \item[(G4)] If $1\leq p<\infty $, then $| g( t,z_{1},z_{2}) | \leq \nu ( t) $ for a.e. $t\in [ 0,T] $ and all $z_{1},z_{2}\in E$ with $| z_{1}| \leq \mu _{0}R$; if $p=\infty $, then $| g( t,z_{1},z_{2}) | \leq \nu (t)$ for a.e. $t\in [ 0,T] $ and all $z_{1},z_{2}\in E$ with $| z_{1}| \leq \mu _{\infty }R$ and $| z_{2}| \leq \mu _{\infty }R$. Here $\nu \in L^{q}( 0,T;\mathbb{R}_{+}) $. \item[(G5)] For every separable closed subspace $E_{0}$ of the space $E$, there exists a $( q,\infty) $-Carath\'{e}odory function $\omega :[ 0,T]\times [ 0,\mu _{0}R] \to \mathbb{R}_{+}$, $\omega (t,0) =0$, such that for almost every $t\in [ 0,T]$, \[ \beta _{E_{0}}( g( t,M,E_{0}) \cap E_{0}) \leq \omega ( t,\beta _{E_{0}}( M) ) \] for every set $M\subset E_{0}$ satisfying $| M| \leq \mu _{0}R$, and $\varphi =0$ is the unique solution in $L^{\infty }( 0,T;[ 0,\mu _{0}R] ) $ to the inequality \begin{equation} \varphi ( t) \leq \int_{0}^{T}k( t,s) \omega ( s,\varphi ( s) ) ds\;\,\,\;\text{a.e. on }[ 0,T] . \label{2.3} \end{equation} Here $\beta _{E_{0}}$ is the ball measure of non-compactness on $E_{0}$. (Recall that for a bounded set $A\subset E_{0}$, $\beta _{E_{0}}( A) $ is the infimum of $\varepsilon >0$ for which $A$ can be covered by finitely many balls of $E_{0}$ with radius not greater than $\varepsilon$) \item[(SG)] For every $u\in \overline{U}$ the set $SG( u) $ is acyclic in $K.\medskip $ \end{itemize} \begin{remark} \label{rm2.2} \rm If $S$ has values in $C_{a}^{1}$ then a sufficient condition for (S1) is to exist a function $\theta \in L^{r}( 0,T;\mathbb{R}_{+}) $ such that \[ | S( w_{1}) '-S( w_{2}) ^{\prime }| _{p}\leq \int_{0}^{T}\theta ( s) | w_{1}( s) -w_{2}( s) | ds \] for all $w_{1},w_{2}\in L^{q}( 0,T;E)$. \end{remark} Indeed, using Proposition 1.1 and H\"{o}lder's inequality, we immediately see that (S1) is satisfied with $k( t,s) =\frac{1}{2}T^{\frac{p-1}{p}}\theta ( s) $ and $L=| \theta | _{r}$. \begin{remark} \rm In case that $k( t,.) \in L^{\infty }( 0,T) $ for a.e. $t\in [ 0,T] $, we may assume that $\omega $ in (G5) is a $( 1,\infty ) $-Carath\'{e}odory function (in order that the integral in (\ref{2.3}) be defined). \end{remark} As in \cite{CP} we can prove the following existence result. \begin{theorem} \label{thm2.2} Assume (S1)-(S2), (G1)-(G5) and (SG) hold. In addition assume (H3). Then \eqref{eq1.7} has at least one solution $u$ in $K\subset W^{1,p}(0,T;E)$ with $\| u\| \leq R$. \end{theorem} The proof is based on Theorem \ref{thm2.1} and consists in showing that conditions (H1)-(H2) are satisfied. We shall use the following analog of \cite[lemma 4.4]{CP}. \begin{lemma} \label{lm2.3} Assume (S1), (S2). Let $M$ be a countable subset of $L^{q}( 0,T;E)$ such that $M( t) $ is relatively compact for a.e. $t\in [ 0,T] $ and there is a function $\nu \in L^{q}( 0,T;\mathbb{R}_{+}) $ with $| u( t) | \leq \nu ( t) $ a.e. on $[ 0,T] $, for every $u\in M$. Then the set $S( M) $ is relatively compact in $W^{1,p}( 0,T;E) $. In addition $S$ is continuous from $M$ equipped with the relative weak topology of $L^{q}( 0,T;E) $ to $W^{1,p}( 0,T;E) $ equipped with its strong topology. \end{lemma} \begin{proof} Let $M=\{ u_{n}:n\geq 1\} $ and let $\varepsilon >0$ be arbitrary. As in the proof of \cite[lemma 4.3]{CP}, we can find functions $\widehat{u}_{n,k}$ with values in a compact $\overline{B}_{k}\subset E$ ($\overline{B}_{k}$ being a closed ball of a $k$dimensional subspace of $E$) such that \[ | u_{n}-\widehat{u}_{n,k}| _{q}\leq \varepsilon \] for every $n\geq 1$. Then assumption (S1) implies \begin{gather} | S( u_{n}) -S( \widehat{u}_{n,k})| _{p}\leq | | k( t,.) | _{r}| _{p}| u_{n}-\widehat{u}_{n,k}| _{q}\leq \varepsilon | | k( t,.) |_{r}| _{p}, \label{eq17bis} \\ | S( u_{n}) '-S( \widehat{u}_{n,k})'| _{p}\leq L| u_{n}-\widehat{u} _{n,k}| _{q}\leq \varepsilon L. \label{eq17} \end{gather} On the other hand, according to Theorem \ref{thm1.5}, the set $\{\widehat{u}_{n,k}:n\geq 1\}\subset L^{q}( 0,T;E) $ is weakly relatively compact in $L^{q}(0,T;E) $. Then assumption (S2) guarantees that $\{S(\widehat{u}_{n,k}) :n\geq 1\}$ is relatively compact in $W^{1,p}( 0,T;E) $. Hence from (\ref{eq17bis}) and (\ref{eq17}) we see that $\{ S( \widehat{u}_{n,k}) :n\geq 1\} $ is a relatively compact $\varepsilon \varrho $-net of $S( M) $ with respect to the norm $|\cdot| _{1,p}$, where $\varrho =\max\{ L,| | k( t,.) |_{r}| _{p}\} $. Since $\varepsilon $ was arbitrary we conclude that $S(M) $ is relatively compact in $W^{1,p}( 0,T;E)$. Now suppose that the sequence $( w_{m}) _{m}$ converges weakly in $L^{q}( 0,T;E) $ to $w$ and $w_{m}\in M$ for all $m\geq 1$. In view of the relative compactness of $S( M) $, we may assume that $( S( w_{m}) ) _{m}$ converges in $K$ towards some function $v\in K$. We have to prove \[ v=S( w) . \] For an arbitrary number $\varepsilon >0$, we have already seen that the proof of \cite[lemma 4.3]{CP} provides a compact set $P_{\varepsilon }$ and a sequence $( w_{m}^{\varepsilon }) _{m}$ of $P_{\varepsilon } $-valued functions satisfying, \begin{equation} | w_{m}-w_{m}^{\varepsilon }| _{q}\leq \varepsilon \label{gngene} \end{equation} for every $m\geq 1$. Now the sequence $( w_{m}^{\varepsilon }) _{m}$ being weakly relatively compact in $L^{q}( 0,T,E) , $ a suitable subsequence $( w_{m_{j}}^{\varepsilon }) _{j}$ must be weakly convergent in $L^{q}( 0,T,E) $ towards some $w^{\varepsilon }$. Then Mazur's Lemma and (\ref{gngene}) provide \begin{equation} | w-w^{\varepsilon }| _{q}\leq \varepsilon . \label{gifge} \end{equation} The triangle inequality yields \begin{equation} \begin{aligned} | v-S( w) | _{p} & \leq | v-S(w_{m_{j}}) | _{p}+| S( w_{m_{j}}) -S(w_{m_{j}}^{\varepsilon }) | _{p} \\ &\quad +| S( w_{m_{j}}^{\varepsilon }) -S( w^{\varepsilon }) | _{p}+| S( w^{\varepsilon }) -S(w) | _{p} \end{aligned} \label{eqw} \end{equation} and \begin{equation} \begin{aligned} | v'-S( w) '| _{p} & \leq |v'-S( w_{m_{j}}) '| _{p}+| S(w_{m_{j}}) '-S( w_{m_{j}}^{\varepsilon })'| _{p} \\ &\quad +| S( w_{m_{j}}^{\varepsilon }) '-S(w^{\varepsilon }) '| _{p} +| S( w^{\varepsilon}) '-S( w) '| _{p}. \end{aligned} \label{ShifSge} \end{equation} Passing to the limit when $j$ goes to infinity in (\ref{eqw}), (\ref{ShifSge}) and using assumption (S2) we obtain \begin{gather} | v-S( w) | _{p}\leq \limsup_{j}| S(w_{m_{j}}) -S( w_{m_{j}}^{\varepsilon }) | _{p}+| S( w^{\varepsilon }) -S( w) | _{p}, \label{eqv} \\ | v'-S( w) '| _{p}\leq \limsup_{j}| S( w_{m_{j}}) '-S(w_{m_{j}}^{\varepsilon }) ' | _{p}+| S(w^{\varepsilon }) '-S( w) '| _{p}\,. \label{hSginf} \end{gather} According to (\ref{gngene}) and (\ref{gifge}) we deduce from (\ref{eqv}), (\ref{hSginf}) and assumption (S1) that \[ | v-S( w) | _{p}\leq 2\varepsilon | | k( t,.) | _{r}| _{p},\quad | v'-S(w) '| _{p}\leq 2\varepsilon L. \] Hence $| v-S( w) | _{1,p}\leq 2\,\varepsilon \varrho $. Since $\varepsilon $ was arbitrary we must have $v=S( w) $ and the proof is complete. \end{proof} \begin{proof}[Proof of Theorem \ref{thm2.2}] (a) First we show that $G( u) \neq \emptyset $ \ and so $SG( u) \neq \emptyset $ for every $u\in \overline{U}$. Indeed, since $g$ takes nonempty compact values and satisfies (G2)-(G3), for each strongly measurable function $u: [ 0,T] \to E^{2}$ there exists a strongly measurable selection $w$ of $g( .,u( .) ) $ (see \cite{deimling}, Proof of Proposition 3.5 (a)). Next, if $u\in L^{p}( 0,T;E^{2}) $, (G4) guarantees $w\in L^{q}( 0,T;E) $. Hence $w\in G( u) $. \\ (b) The values of $SG$ are acyclic according to assumption (SG). \\ (c) The graph of $SG$ is closed. To show this, let $( u_{n},v_{n}) \in \,$graph $( SG) $, $n\geq 1$, with $| u_{n}-u| _{1,p}$, $| v_{n}-v| _{1,p}$ $\to 0$ as $n\to \infty $. Let $\ v_{n}=S(w_{n}) $, $w_{n}\in L^{q}( 0,T;E) ;w_{n}\in G(u_{n}) $. Since $|u_{n}-u| _{1,p}\to 0$, we may suppose that for every $t\in [ 0,T] $, there exists a compact set $C\subset E^{2}$ with $\{ ( u_{n}( t) ,u_{n}'( t) ); n\geq 1\} \subset C$. Furthermore, since $g$ is upper semicontinuous by (G3) and has compact values, we have that $g( t,C) $ is compact. Consequently, $\{ w_{n}( t) :n\geq 1\} $ is relatively compact in $E$. If we also take into account (G4) we may apply Theorem \ref{thm1.5} to conclude that (at least for a subsequence) $( w_{n}) $ converges weakly in $L^{q}( 0,T;E) $ to some $w$. As in \cite[p. 57]{frigon}, since $g$ has convex values and satisfies (G3), we can show that $w\in G( u) $. Furthermore, by using Lemma \ref{lm2.3} and a suitable subsequence we deduce $S( w_{n}) \to S( w) $. Thus $v=S( w) $ and so $( u,v) \in $ graph $( SG) $. \\ (d) We show that $SG( M) $ is relatively compact for each compact $M\subset \overline{U}$. Let $M\subset \overline{U}$ be a compact set and $(v_{n}) $ be any sequence of elements of $SG( M) $. We prove that $(v_{n}) $ has a convergent subsequence. Let $u_{n}\in M$ and $w_{n}\in L^{q}( 0,T;E) $ with \[ v_{n}=S( w_{n}) \quad\text{and}\quad w_{n}\in G( u_{n}) . \] The set $M$ being compact, we may assume that $| u_{n}-u| _{1,p}\to 0$ for some $u\in \overline{U}$. As above, there exists a $w\in G( u) $ with $w_{n}\to w$ weakly in $L^{q}(0,T;E) $ (at least for a subsequence) and $S( w_{n}) \to S( w) $. Hence $v_{n}\to $ $S( w) $ as we wished. Now (c) and (d) guarantee (H1). \\ (e) Finally, we check (H2). Suppose $M\subset \overline{U}$ is closed and $M\subset \overline{\mathop{\rm conv}}(\{ 0\}\cup SG( M) )$. To prove that $M$ is compact it suffices that every sequence $( u_{n}^{0}) $ of $M$ has a convergent subsequence. Let $M_{0}=\{ u_{n}^{0}:n\geq 1\} $. Clearly, there exists a countable subset $M_{1}=\{ u_{n}^{1}:n\geq 1\} $ of $M$, $w_{n}^{1}\in G( u_{n}^{1}) $ and $v_{n}^{1}=S( w_{n}^{1}) $ with $M_{0}\subset \overline{\mathop{\rm conv}}( \{ 0\} \cup V^{1}) $, where $V^{1}=\{ v_{n}^{1}:n\geq 1\} $. Furthermore, there exists a countable subset $M_{2}=\{ u_{n}^{2}:n\geq 1\} $ of $M$, $w_{n}^{2}\in G( u_{n}^{2}) $ and $v_{n}^{2}=S(w_{n}^{2}) $ with $M_{1}\subset \overline{\mathop{\rm conv}}( \{ 0\} \cup V^{2}) $, where $V^{2}=\{v_{n}^{2}:n\geq 1\} $, and so on. Hence for every $k\geq 1$ we find a countable subset $M_{k}=\{ u_{n}^{k}:n\geq 1\} $ of $M$ and correspondingly $w_{n}^{k}\in G( u_{n}^{k}) $ and $v_{n}^{k}=S( w_{n}^{k}) $ such that $M_{k-1}\subset \overline{ \mathop{\rm conv}}( \{ 0\} \cup V^{k}) $, with $V^{k}=\{ v_{n}^{k}:n\geq 1\} $. Let $M^{\ast }=\bigcup_{k\geq 0}M_{k}$. It is clear that $M^{\ast }$ is countable, $M_{0}\subset M^{\ast}\subset M$ and $M^{\ast }\subset \overline{\mathop{\rm conv}}(\{ 0\} \cup V^{\ast }) $, where $V^{\ast }=\bigcup_{k\geq 1}V^{k}$. Since $M^{\ast }$, $V^{\ast }$ and $W^{\ast }:=\{w_{n}^{k}:n\geq 1,\,k\geq 1\} $ are countable sets of strongly measurable functions, we may suppose that their values belong to a separable closed subspace $E_{0}$ of $E$. Since $| w_{n}^{k}( t)| \leq \nu ( t) $ where $\nu \in L^{q}( 0,T) $, then \cite[Lemma 4.3]{CP} guarantees \[ \beta _{E_{0}}( M^{\ast }( t) ) \leq \beta_{E_{0}}( V^{\ast }( t) ) =\beta _{E_{0}}( S( W^{\ast }) ( t) ) \leq \int_{0}^{T}k( t,s) \beta _{E_{0}}( W^{\ast }(s) ) ds, \] while (G5) gives \begin{equation} \beta _{E_{0}}( W^{\ast }( s) ) \leq \beta _{E_{0}}( g( s,M^{\ast }( s) ,E_{0}) \cap E_{0}) \leq \omega ( s,\beta _{E_{0}}( M^{\ast }( s) ) ) . \label{eqAA} \end{equation} It follows that \[ \beta _{E_{0}}( M^{\ast }( t) ) \leq \int_{0}^{T}k( t,s) \omega ( s,\beta _{E_{0}}( M^{\ast }( s) ) ) ds. \] Moreover the function $\varphi ( t) =\beta _{E_{0}}( M^{\ast }( t))$ belongs to $L^{\infty }(0,T;[ 0,\mu _{0}R] )$. Consequently, $\varphi \equiv 0$, and so \[ \varphi ( t) =\beta _{E_{0}}( M^{\ast }( t) ) =0 \] a.e. on $[ 0,T] $. Let $( v_{i}^{\ast }) $ be any sequence of $V^{\ast }$ and let $( w_{i}^{\ast }) $ be the corresponding sequence of $W^{\ast }$, with $v_{i}^{\ast }=S( w_{i}^{\ast }) $ for all $i\geq 1$. Then, as at step (c), $( w_{i}^{\ast }) $ has a weakly convergent subsequence in $L^{q}( 0,T;E) $, say to $w$. Also (\ref{eqAA}) together with $\omega ( t,0) =0$ implies that the set $\{w_{i}^{\ast }( t) :i\geq 1\}$ is relatively compact for a.e. $t\in [ 0,T] $. From Lemma \ref{lm2.3} we then have that the corresponding subsequence of $( S( w_{i}^{\ast }) ) =( v_{i}^{\ast }) $ converges to $S( w) $ in $W^{1,p}( 0,T;E) $. Hence $V^{\ast }$ is relatively compact. Now Mazur's Lemma guarantees that the set $\overline{ \mathop{\rm conv}}( \{ 0\} \cup V^{\ast }) $ is compact and so its subset $M^{\ast }$ is relatively compact too. Thus $M_{0}$ possesses a convergent subsequence as we wished. Now the result follows from Theorem \ref{thm2.1}. \end{proof} \section{The Anti-Periodic Solution Operator} For the rest of this paper $E$ will be a real Hilbert space of inner product $(.,.) $ and norm $|.| $. Consider the anti-periodic boundary value problem \begin{equation} \begin{gathered} -u''-\varepsilon u'\in Au+g( t,u,u') \quad\text{a.e. on }[0,T] \\ u( 0) =-u( T) ,\quad u'( 0)=-u'( T) , \end{gathered} \label{eq2.0} \end{equation} in $E$, where $\varepsilon \in \mathbb{R}$ and $A:D( A) \subset E\to 2^{E}\setminus \{\emptyset \}$ is an odd m-dissipative nonlinear operator. Let us consider the \textit{anti-periodic solution operator} associated to $A$ and $\varepsilon $, \[ S:L^{2}( 0,T;E) \to H^{2}( 0,T;E) \cap C_{a}^{1} \] defined by $S( w) :=u$, where $u$ is the unique solution of \begin{equation} \begin{gathered} -u''-\varepsilon u'\in Au+w\quad\text{a.e. on }[0,T]\\ u( 0) =-u( T) ,\quad u'( 0)=-u'( T) \,. \end{gathered} \label{eqB} \end{equation} The operator $S$ is well defined as it follows from Theorem \ref{thm3.1} in Aftabizadeh-Aizicovici-Pavel \cite{AAP}. It is clear that any fixed point $u$ of $N:=SG$, where $G$ is the Nemytskii set-valued operator given by (\ref{eq1.6'}) with $p=q=2$, is a solution for (\ref{eq2.0}). \begin{theorem} \label{thm3.1} The above operator $S$ satisfies \emph{(S1)} and \emph{(S2)} for $p=q=2$ and $K=\overline{C_{a}^{1}}$ in $H^{1}(0,T;E)$ with norm $\| u\| =| u'| _{2}$. \end{theorem} \begin{proof} (I) We first show that $S$ satisfies (S1). Let $w_{1},w_{2}\in L^{2}(0,T;E) $ and denote $u_{i}=S( w_{i}) $, $i=1,2$. Then $-u_{i}''-\varepsilon u_{i}'=v_{i}+w_{i}$, where $v_{i}( t) \in Au_{i}( t) $ a.e. on $[ 0,T]$. One has \[ -( u_{1}-u_{2}) ''( t) -\varepsilon ( u_{1}-u_{2}) '( t) =( v_{1}-v_{2}) ( t) +( w_{1}-w_{2}) ( t) . \] Multiplying by $( u_{1}-u_{2}) ( t) $ and using that $A$ dissipative, we obtain \begin{equation} \begin{aligned} &-( | u_{1}( t) -u_{2}( t) |^{2}) ''+2| u_{1}'( t) -u_{2}'( t) | ^{2}-\varepsilon ( |u_{1}( t) -u_{2}( t) | ^{2}) ' \\ &\leq 2( w_{1}( t) -w_{2}( t) ,u_{1}(t) -u_{2}( t) ) . \end{aligned} \label{eq2.10} \end{equation} Consequently, \begin{equation} | u_{1}( t) -u_{2}( t) | ^{2} \leq 2\int_{0}^{T}G( t,s) ( w_{1}( s) -w_{2}(s) ,u_{1}( s) -u_{2}( s) ) ds. \label{eq2.10'} \end{equation} Here $G$ is the Green function of the differential operator $-u''-\varepsilon u'$ corresponding to the anti-periodic boundary conditions. This yields \begin{equation} | S( w_{1}) ( t) -S( w_{2}) (t) | \leq m\int_{0}^{T}| w_{1}( s) -w_{2}(s) | ds \label{eq2.11} \end{equation} where $m=2\max_{( t,s) \in [ 0,T] ^{2}}G(t,s) $. From (\ref{eq2.10}) by integration we obtain \[ \int_{0}^{T}| u_{1}'-u_{2}'| ^{2}ds\leq \int_{0}^{T}( w_{1}-w_{2},u_{1}-u_{2}) ds. \] This together with (\ref{eq2.11}) yields \[ | S( w_{1}) '-S( w_{2})'| _{2}\leq \sqrt{mT}| w_{1}-w_{2}| _{2}. \] (II) The fact that $S$ satisfies (S2) is achieved in several steps: (1) We first show that the graph of $S$ is sequentially closed in $L_{w}^{2}( 0,T;E) \times H^{1}( 0,T;E) $. In this order, let $w_{j}\to w$ weakly in $L^{2}( 0,T;E) $ and $S( w_{j}) \to u$ strongly in $H^{1}( 0,T;E) $. Then $( w_{j}-w,S( w_{j}) -S( w) )\to 0$ strongly in $L^{1}( 0,T;\mathbb{R}) $. Now (\ref{eq2.10'}) implies \[ | S( w_{j}) ( t) -S( w) ( t) | \to 0\text{ \ \ as }j\to \infty . \] Hence $S( w) =u$.\\ (2) For each positive integer $n$ we let \[ J_{n}=\big( J-\frac{1}{n}A\big) ^{-1},\quad A_{n}=n( J_{n}-J) , \] where $J$ is the identity map of $E$. We also consider the operator $S_{n}:L^{2}( 0,T;E) $ $\to $ $H^{2}( 0,T;E)\cap C_{a}^{1}$, given by $S_{n}( w) =u_{n}$, where $u_{n}$ is the unique solution of \begin{equation} \begin{gathered} -u_{n}''-\varepsilon u_{n}'=A_{n}u_{n}+w\quad\text{a.e. on }[0,T] \\ u_{n}( 0) =-u_{n}( T) ,\quad u_{n}'(0) =-u_{n}'( T)\, . \end{gathered} \label{eqN} \end{equation} Then \[ -| u_{k}''| ^{2}-\varepsilon ( u_{k}',u_{k}'') =( A_{k}u_{k},u_{k}')'-( ( A_{k}u_{k}) ',u_{k}')+( w,u_{k}'') . \] Since $A_{k}$ is dissipative, we have \[ ( ( A_{k}u_{k}) ',u_{k}') =\lim_{h\to 0}\frac{1}{h^{2}}( A_{k}u_{k}( t+h) -A_{k}u_{k}( t) ,u_{k}( t+h) -u_{k}(t) ) \leq 0\,. \] Hence \[ | u_{k}''| ^{2}\leq -(A_{k}u_{k},u_{k}') '-( w,u_{k}'') -\frac{\varepsilon }{2}( | u_{k}'|^{2}) '. \] By integration, since $A_{k}$ is odd and $u_{k}$ is anti-periodic, it follows \[ | u_{k}''| _{2}^{2}=\int_{0}^{T}| u_{k}''| ^{2}dt\leq -\int_{0}^{T}( w,u_{k}'') dt\leq \frac{1}{2}( | w| _{2}^{2} +|u_{k}''| _{2}^{2}) \,. \] Consequently, \begin{equation} | u_{k}''| _{2}\leq | w| _{2}. \label{eq10} \end{equation} Using $2| u'| ^{2}=( | u| ^{2}) ''-2( u'',u) $ and $( | u| ^{2}) '=2( u',u) $ we obtain \begin{equation} \label{eq11} \begin{aligned} &2\int_{0}^{T}| u_{k}'-u_{m}'| ^{2}dt\\ &= (| u_{k}-u_{m}| ^{2}) '( T) -(| u_{k}-u_{m}| ^{2}) '( 0) -2\int_{0}^{T}( u_{k}''-u_{m}'',u_{k}-u_{m}) dt \\ &= -2\int_{0}^{T}( u_{k}''-u_{m}'' ,u_{k}-u_{m}) dt\,. \end{aligned} \end{equation} On the other hand \begin{align*} &( u_{k}''-u_{m}'',u_{k}-u_{m}) \\ &=-\big( A_{k}u_{k}-A_{m}u_{m},u_{k}-u_{m}\big) -\varepsilon (u_{k}'-u_{m}',u_{k}-u_{m}) \\ & =-\big( A_{k}u_{k}-A_{m}u_{m},\,J_{k}u_{k}-J_{m}u_{m}+\frac{1}{k} A_{k}u_{k}-\frac{1}{m}A_{m}u_{m}\big) -\varepsilon ( u_{k}'-u_{m}',u_{k}-u_{m}) \end{align*} and since $A_{k}u_{k}\in AJ_{k}u_{k}$, $A_{m}u_{m}\in AJ_{m}u_{m}$ and $A$ is dissipative, we obtain \[ -( u_{k}''-u_{m}'',u_{k}-u_{m}) \leq ( A_{k}u_{k}-A_{m}u_{m},\,\frac{1}{k}A_{k}u_{k}-\frac{1}{m}A_{m}u_{m}) +\frac{\varepsilon }{2}( | u_{k}-u_{m}| ^{2})'. \] From (\ref{eqN}) and (\ref{eq10}), also applying Proposition 1.1 to $u_{k}'$, we see that \[ | A_{k}u_{k}| _{2} \leq | u_{k}''|_{2}+| w| _{2}+| \varepsilon | | u_{k}'| _{2} \leq | u_{k}''| _{2}+| w| _{2}+|\varepsilon | \frac{T}{2}| u_{k}''| _{2} \leq ( 2+| \varepsilon | \frac{T}{2}) | w| _{2}. \] Then \[ -\int_{0}^{T}( u_{k}''-u_{m}^{\prime \prime },u_{k}-u_{m}) dt\leq 2( 2+| \varepsilon | \frac{T}{2} ) ^{2}| w| _{2}^{2}( \frac{1}{k}+\frac{1}{m}) . \] This together with (\ref{eq11}) shows that \begin{equation} \int_{0}^{T}| u_{k}'-u_{m}'| ^{2}dt\leq 2( 2+| \varepsilon | \frac{T}{2}) ^{2}| w| _{2}^{2}( \frac{1}{k}+\frac{1}{m}) . \label{eq12} \end{equation} Thus there exists $u\in K$ with $u_{k}\to u$ in $K$. From (\ref{eq12}), letting $m\to \infty $ we have \begin{equation} | u_{k}'-u'| _{2}^{2}\leq \frac{2}{k}( 2+| \varepsilon | \frac{T}{2}) ^{2}| w| _{2}^{2}. \label{eq*} \end{equation} Now we show that $u$ is the solution of (\ref{eqB}). Since $( u_{k}'') $ is bounded in $L^{2}( 0,T;E) $ and $( u_{k}'') $ converges to $w^{\prime }=u''$ in $\mathcal{D}'( 0,T;E) $, we may conclude that \begin{equation} u_{k}''\to u''\quad \text{weakly in }L^{2}( 0,T;E) . \label{eq13} \end{equation} Let $\mathcal{A}$ be the realization of $A$ in $L^{2}( 0,T;E) $, i.e., $\mathcal{A}:L^{2}( 0,T;E) \to 2^{L^{2}( 0,T;E) }$, \[ \mathcal{A}u=\{ v\in L^{2}( 0,T;E) :v( t) \in Au( t) \text{ a.e. on }[ 0,T] \} . \] Then $( \mathcal{A}_{k}u) ( t) =A_{k}u( t) $ a.e. on $[ 0,T] $, so that (\ref{eq13}) implies that \[ \mathcal{A}_{k}u_{k}\to -u''-\varepsilon u^{\prime }-w\;\;\,\text{weakly in }L^{2}( 0,T;E) . \] Since $u_{k}\to u$ strongly in $L^{2}( 0,T;E) $ and $\mathcal{A}$ is $m$-dissipative in $L^{2}( 0,T;E) $, this implies (see Barbu \cite{B}, Proposition II. 3.5) $u\in D( \mathcal{A}) $ and $[ u,-u''-\varepsilon u'-w] \in \mathcal{A}$. Thus, $u$ is the solution of (\ref{eqB}), i.e., $u=S( w) $. Now from (\ref{eq*}) we see that for each bounded set $M\subset L^{2}( 0,T;E) $ and every $\epsilon >0$, there exists a $k_{0}$ such that \begin{equation} \| S_{k}( w) -S( w) \| \leq \epsilon \;\;\; \text{for all }k\geq k_{0}\text{ and }w\in M. \label{eq**} \end{equation} Hence $S_{k_{0}}( M) $ is an $\epsilon $-net for $S( M) $. \\ (3) Now we consider a compact convex subset $C$ of $E$ and a countable set $M\subset L^{2}( 0,T;C) $. We shall prove that for each $n$, the set $S_{n}( M) $ is relatively compact in $K$, equivalently, the set $S_{n}( M) '$ is relatively compact in $L^{2}( 0,T;E) $. Then, also taking into account (\ref{eq**}), by Hausdorff's Theorem we shall deduce that $S( M) $ is relatively compact in $K$ as desired. We shall apply Theorem \ref{thm1.4} to $S_{n}( M) '$. From (\ref{eq**}) and assumption (S1) we see that for each $n$ and any bounded $M\subset L^{2}( 0,T;E) $, the set $S_{n}( M) $ is bounded in $K$. In addition, using \[ u_{n}( t) =\int_{0}^{T}G( t,s) [ A_{n}u_{n}( s) +w( s) ] ds \] and the Lipschitz property of $A_{n}$, we obtain \begin{align*} | \tau _{h}u_{n}'-u_{n}'| _{2}^{2} &\leq \int_{0}^{T}\Big( \int_{0}^{T}| G_{t}( t+h,s) -G_{t}( t,s) | [ 2n| u_{n}( s) | +|w( s) | ] ds\Big) ^{2}dt \\ &\leq ( 2n| u_{n}| _{2}+| w| _{2}) ^{2}\int_{0}^{T}\int_{0}^{T}| G_{t}( t+h,s) -G_{t}(t,s) | ^{2}dsdt. \end{align*} This implies \begin{equation} \sup_{w\in M}| \tau _{h}S_{n}( w) '-S_{n}(w) '| _{L^{2}( 0,T-h;E) }\to 0\quad \text{as }h\to 0. \label{eqA} \end{equation} We claim that $S_{n}( M) '( t) $ is relatively compact in $E$ for every $t\in [ 0,T] $. Indeed, for any $w\in M$, the unique solution $u_{n}=S_{n}(w) $ of (\ref{eqN}) satisfies \[ -u_{n}''-\varepsilon u_{n}^{\prime }+nu_{n}=nJ_{n}u_{n}+w\;\,\,\;\text{a.e. on }[ 0,T] . \] If we denote by $\widetilde{G}$ the Green function of the operator $-u''-\varepsilon u'+nu$ corresponding to the boundary conditions $u( 0) =-u( T) $, $u'( 0) =-u^{\prime }( T) $, then \begin{equation} u_{n}( t) =\int_{0}^{T}\widetilde{G}( t,s) [ nJ_{n}u_{n}( s) +w( s) ] ds. \label{eq80} \end{equation} Using a result by Heinz, the nonexpansivity of $J_{n}$ and the inclusion $M( s) \subset C$ a.e. on $[ 0,T] $, from (\ref{eq80}), we obtain \begin{equation} \beta _{0}( S_{n}( M) ( t) ) \leq n\int_{0}^{T}\widetilde{G}( t,s) \beta _{0}( S_{n}( M) ( s) ) ds. \label{eq81} \end{equation} Here $\beta _{0}$ is the ball measure of non-compactness corresponding to a suitable separable closed subspace of $E$. Let \[ \varphi ( t) =\beta _{0}( S_{n}( M) ( t) ) \,,\;\,\,v( t) =\int_{0}^{T}\widetilde{G}( t,s) \varphi ( s) ds.\, \] We have \[ -v''-\varepsilon v'+nv=\varphi ,\quad v( 0)=-v( T) ,\quad v'( 0) =-v'(T) . \] According to (\ref{eq81}), $\varphi \leq nv$. Hence $-v''-\varepsilon v'\leq 0$. Also since $v\geq 0$ we have $v( 0) =v( T)=0$. The maximum principle for the operator $-u''-\varepsilon u'$ implies $v\leq 0$ on $[0,T] $. Hence $v\equiv 0$. Thus $\beta _{0}( S_{n}( M) ( t) ) =0$ for all $t\in [ 0,T] $, that is $S_{n}( M) ( t) $ is relatively compact in $E$. As a result, $S_{n}(M) $ is relatively compact in $C( [ 0,T] ;E) $. Next from (\ref{eq80}) we have \[ u_{n}'( t) =\int_{0}^{T}\widetilde{G}_{t}(t,s) [ nJ_{n}u_{n}( s) +w( s) ] ds, \] whence $S_{n}( M) '( t) $ is relatively compact in $E$. This together with (\ref{eqA}) via Theorem \ref{thm1.4} implies that $S_{n}( M) '$ is relatively compact in $L^{2}(0,T;E) $. \end{proof} \section{Superlinear Inclusions} In this section we establish an existence result for the anti-periodic problem \begin{equation} \begin{gathered} -u''-\varepsilon u'-s( u) \in Au+h(t,u,u') \quad\text{a.e. on }[0,T] \\ u( 0) =-u( T) ,\quad u'( 0)=-u'( T) \end{gathered} \label{eq2.1} \end{equation} in the Hilbert space $E$, where $\varepsilon >0$, $A:D( A)\subset E\to 2^{E}\setminus \{\emptyset \}$ is odd $m$-dissipative, $s:E\to E$ is continuous with a possible superlinear growth, and $h:[0,T]\times E^{2}\to 2^{E}$. Let $G:H^{1}( 0,T;E) \to 2^{L^{2}( 0,T;E) }$ be the Nemytskii set-valued operator associated with $g(t,x,y)=s(x)+h( t,x,y)$, that is \[ G( u) =\{v\in L^{2}( 0,T;E) :v=s( u) +w, \text{ }w\in \,\text{sel }_{L^{2}}h( .,u,u')\}, \] and let $S$ be the anti-periodic solution operator associated to $A$ and $\varepsilon $, already defined in Section 3. The next result concerns condition (H3) and gives sufficient conditions to obtain a priori bounds of solutions. \begin{theorem} \label{thm4.1} Assume that the following conditions hold: \begin{itemize} \item[(i)] There exist two even real functions $\phi $, $\psi $ such that $\psi \in C^{1}( E;\mathbb{R}) $ and $A=-\partial \phi$ and $s=\psi '$, where $\partial \phi $ stands for the subdifferential of $\phi $ \item[(ii)] There are $a,b\in \mathbb{R}_{+}$ and $\alpha ,\gamma \in [1,2[$, $\beta \in [0,2[$ with $\beta +\gamma <2$ such that \begin{equation} -( z,y) \leq a| y| ^{\alpha }+b| x| ^{\beta}| y| ^{\gamma } \label{eq2.4} \end{equation} for all $x,y\in E$, $z\in h( t,x,y) $, and for a.e. $t\in [0,T] $. \end{itemize} Then there exists a constant $R>0$ such that $\| u\| =| u'| _{2}0$, $s:E\to E$, $A:E\to 2^{E}$ and $h:[ 0,T] \times E^{2}\to 2^{E}$. Assume: \begin{itemize} \item[(i)] $s=\psi '$ for some even function $\psi \in C^{1}(E;\mathbb{R}) $, and $s$ sends bounded sets into bounded sets \item[(ii)] $A$ is an m-dissipative mapping with $A=-\partial \phi $ for some even real function $\phi$ \item[(iii)] $h:[ 0,T] \times E^{2}\to P_{kc}(E) ,$\ $h( .,z) $ has a strongly measurable selection on $[ 0,T] $ for every $z\in E^{2}$, $h( t,.) $ is upper semicontinuous for a.e. $t\in [ 0,T] $, and for each $\tau >0$ there exists $\nu \in L^{2}( 0,T) $ with $| h( t,z) | \leq \nu ( t) \;$for a.e. $t\in [ 0,T] $ and all $z=( z_{1},z_{2}) \in E^{2}$ with $|z_{1}| \leq \tau ;$ in addition there are $a,b\in \mathbb{R}_{+}$ and $\alpha ,\gamma \in \lbrack 1,2[$ and $\beta \in \lbrack 0,\infty [$ such that \[ -( z,y) \leq a| y| ^{\alpha }+b| x| ^{\beta}| y| ^{\gamma } \] for all $x,y\in E$, $z\in h( t,x,y) $, and for a.e. $t\in [0,T]$ \item[(iv)] There exists $R>0$ with \begin{equation} \varepsilon R^{2}\geq aT^{\frac{2-\alpha }{2}}R^{\alpha }+b\frac{1}{2^{\beta }}T^{\frac{2+\beta -\gamma }{2}}R^{\beta +\gamma } \label{eq2.100} \end{equation} such that for every separable closed subspace $E_{0}$ of $E$, there exists a $( 1,\infty) $-Carath\'{e}odory function $\omega :[ 0,T]\times \mathbb{R}_{+}\to \mathbb{R}_{+}$ such that for almost every $t\in [ 0,T]$, \[ \beta _{E_{0}}( g( t,M,E_{0}) \cap E_{0}) \leq \omega ( t,\beta _{E_{0}}( M) ) \] (where $g( t,x,y) =s( x) +h( t,x,y) $) for every bounded set $M\subset E_{0}$, and $\varphi =0$ is the unique solution in $L^{\infty}( 0,T;\mathbb{R}_{+}) $ to the inequality \begin{equation} \varphi ( t) \leq m\int_{0}^{T}\omega ( s,\varphi ( s) ) ds\quad \text{a.e. on }[ 0,T] \label{eq2.200} \end{equation} \item[(v)] $SG$ has acyclic values. \end{itemize} Then \eqref{eq2.1} has at least one solution $u\in H^{2}(0,T;E) \cap C_{a}^{1}$ with $\| u\| \leq R$. \end{theorem} \begin{remark} \label{rmk4.2} \rm (a) Note that we do not assume $\beta +\gamma <2$, so the perturbation term $h( t,u,u') $ can have a superlinear growth in $u;$ inequality \eqref{eq2.100} guarantees that $\| u\| \neq R$ for each solution of \eqref{eq2.5} and $\lambda \in ]0,1[$. This does not exclude the existence of solutions with $\|u\| >R$. \\ (b) However, according to Theorem \ref{thm4.1}, if $\beta +\gamma <2$, then there exists a sufficiently large constant $R_{0}>0$ such that \eqref{eq2.100} holds with equality. In this case $R_{0}$ is a bound for all solutions to \eqref{eq2.5}. \\ (c) Sufficient conditions for (v) can be found in \cite{CP}. For example (v) always holds if $A$ is single-valued. \end{remark} \section{Applications} In this section we are concerned with two applications of Theorem \ref{thm4.2} to partial differential inclusions. \noindent(I) First we look for a function $u=u( t,x) =u(t) ( x) $ solving the problem \begin{equation} \begin{gathered} -u_{tt}-\varepsilon u_{t}+\sigma \Delta _{x}^{-1}( | u| ^{p-2}u) +u\in h( t,u,u_{t}) \quad \text{a.e. on }[0,T] \\ u( t,.) \in H_{0}^{1}( \Omega ) \quad \text{for a.e. }t\in [ 0,T] \\ u( 0,x) =-u( T,x) ,\quad u_{t}( 0,x) =-u_{t}( T,x) \quad \text{a.e. on }\Omega . \end{gathered} \label{eqPI} \end{equation} Here $\Omega $ is a bounded domain of $\mathbb{R}^{n}$, $n\geq 3$, $20$, $\sigma \in \mathbb{R}$ and $\Delta _{x}:H_{0}^{1}( \Omega ) \to H^{-1}(\Omega ) $ is the Laplacian. Also by $|\cdot|$ we mean here the absolute value of a real number. In this setting we let $E=H_{0}^{1}( \Omega ) $ with the inner product $( u,v) _{H_{0}^{1}( \Omega ) }=\int_{\Omega }\nabla u\cdot \nabla vdx$ and norm $| u| _{H_{0}^{1}( \Omega ) }=( \int_{\Omega }| \nabla u| ^{2}dx) ^{ \frac{1}{2}}$, $A( u) =-u$ with $D( A) =H_{0}^{1}( \Omega ) $ and $s( u) =-\sigma \Delta _{x}^{-1}( | u| ^{p-2}u) $. Note that the conditions (i) and (ii) in Theorem \ref{thm4.2} hold with \[ \phi ( u) =\frac{1}{2}\int_{\Omega }| \nabla u| ^{2}dx\quad\text{and}\quad \psi ( u) =\frac{\sigma }{p} \int_{\Omega }| u| ^{p}dx. \] Also note that for any bounded $M\subset H_{0}^{1}( \Omega ) $ the set $s( M) $ is relatively compact in $H_{0}^{1}( \Omega ) $, that is $\beta _{H_{0}^{1}( \Omega ) }( s( M) ) =0$. Here $\beta _{H_{0}^{1}( \Omega ) }$ is the ball measure of non-compactness in $H_{0}^{1}( \Omega ) $. Indeed, since $p<2^{\ast }$ we may choose an $\theta >0$ with $p\leq 2^{\ast}-\frac{\theta }{( 2^{\ast }) '}$, where $( 2^{\ast}) '=\frac{2n}{n+2}$. This guarantees that $( 2^{\ast}) '\leq \frac{2^{\ast }-\theta }{p-1}$. Next the embedding of $H_{0}^{1}( \Omega ) $ into $L^{2^{\ast }-\theta }(\Omega ) $ being compact, we have that $M$ is relatively compact in $L^{2^{\ast }-\theta }( \Omega ) $. Then the set $M_{p}:=\{| u| ^{p-2}u:u\in M\} $ is relatively compact in $L^{\frac{2^{\ast }-\theta }{p-1}}( \Omega ) $ and using the continuous embeddings \[ L^{\frac{2^{\ast }-\theta }{p-1}}( \Omega ) \subset L^{( 2^{\ast }) '}( \Omega ) \subset H^{-1}( \Omega ) \] we find that $M_{p}$ is relatively compact in $H^{-1}( \Omega ) $. Thus, $s( M) =-\sigma \Delta _{x}^{-1}( M_{p}) $ is relatively compact in $H_{0}^{1}( \Omega ) $ as desired. From Theorem \ref{thm4.2} one obtains the following result. \begin{theorem} \label{thm5.1} Let $h:[ 0,T] \times H_{0}^{1}( \Omega ) \times H_{0}^{1}( \Omega ) \to P_{kc}( H_{0}^{1}(\Omega ) ) $ be such that $h( .,u,v) $ has a strongly measurable selection on $[ 0,T] $ for every $u,v\in H_{0}^{1}( \Omega )$, $h(t,.) $ is upper semicontinuous for a.e. $t\in [ 0,T] $, and for each $\tau >0$ there exists $\nu \in L^{2}(0,T) $ such that $| h( t,u,v) |_{H_{0}^{1}( \Omega ) }\leq \nu ( t)$ for a.e. $t\in [ 0,T] $ and all $u,v\in H_{0}^{1}(\Omega ) $ with $| u| _{H_{0}^{1}( \Omega )}\leq \tau $. Assume there are $a,b,a_{0}\in \mathbb{R}_{+}$ and $\alpha,\gamma \in \lbrack 1,2[$ and $\beta \in \lbrack 0,\infty \lbrack $ such that \[ -( w,v) _{H_{0}^{1}( \Omega ) }\leq a| v|_{H_{0}^{1}( \Omega ) }^{\alpha } +b| u|_{H_{0}^{1}( \Omega ) }^{\beta }| v| _{H_{0}^{1}(\Omega ) }^{\gamma } \] for all $u,v\in H_{0}^{1}( \Omega ) $, $w\in h( t,u,v) $ and for a.e. $t\in [ 0,T] $, and that for each bounded $M\subset H_{0}^{1}( \Omega ) $, \[ \beta _{H_{0}^{1}( \Omega ) }( h( t,M,H_{0}^{1}(\Omega ) ) ) \leq a_{0}\beta _{H_{0}^{1}( \Omega) }( M) . \] In addition assume that there exists $R>0$ with \[ \varepsilon R^{2}\geq aT^{\frac{2-\alpha }{2}}R^{\alpha }+b\frac{1}{2^{\beta }}T^{\frac{2+\beta -\gamma }{2}}R^{\beta +\gamma }. \] Then for $a_{0}<\frac{1}{mT}$, \eqref{eqPI} has at least one solution $u\in H^{2}( 0,T;H_{0}^{1}( \Omega ) ) $ with \[ | u'| _{2}=( \int_{0}^{T}| u'(t) | _{H_{0}^{1}( \Omega ) }^{2}dt) ^{\frac{1}{2}} \leq R. \] \end{theorem} \begin{proof} For any bounded $M$, since $\beta _{H_{0}^{1}( \Omega ) }(s( M) ) =0$, one has \[ \beta _{H_{0}^{1}( \Omega ) }( g( t,M,H_{0}^{1}( \Omega ) ) ) \leq a_{0}\beta _{H_{0}^{1}( \Omega) }( M) . \] Recall that the space $H_{0}^{1}( \Omega ) $ is separable. It follows that the unique solution $\varphi \in L^{\infty }(0,T;\mathbb{R}_{+}) $ of (\ref{eq2.200}) with $\omega( t,\tau ) =a_{0}\tau $ is $\varphi =0$ provided that $a_{0}mT<1$. Thus Theorem \ref{thm4.2} applies. \end{proof} \begin{corollary} \label{coro5.2} For every $f\in L^{\infty }( 0,T;H_{0}^{1}( \Omega ) )$ the problem \begin{gather*} -u_{tt}-\varepsilon u_{t}+\sigma \Delta _{x}^{-1}( | u|^{p-2}u) +u =f( t,x) \quad \text{a.e. on }[0,T]\times \Omega \\ u( t,.) \in H_{0}^{1}( \Omega ) \quad \text{for a.e. } t\in [ 0,T] \\ u( 0,x) =-u( T,x) ,\quad u_{t}( 0,x)=-u_{t}( T,x) \quad \text{a.e. on }\Omega . \end{gather*} has at least one solution $u\in H^{2}(0,T;H_{0}^{1}( \Omega ) )$ with \[ | u'| _{2}\leq \frac{| f| _{\infty }\sqrt{T}}{\varepsilon }. \] Here $| f| _{\infty }=\mathop{\rm ess\, sup}_{t\in [ 0,T]} | f( t) | _{H_{0}^{1}( \Omega ) }$. \end{corollary} \begin{proof} In this case $h( t,u,v) =f( t) :=f( t,.) $. Consequently all the assumptions of Theorem \ref{thm5.1} are satisfied for $a=0$, $b=| f| _{\infty }$, $\alpha =1$, $\beta =0$, $\gamma =1$, $a_{0}=0$, $\nu ( t) =| f( t) |_{H_{0}^{1}( \Omega ) }$ and $R=\frac{| f| _{\infty }\sqrt{T}}{\varepsilon }$. \end{proof} \noindent (II) For the next application we look for a function $u=u(t,x) $ solving the problem \begin{equation} \begin{gathered} -u_{tt}-\varepsilon u_{t}+\sigma | u| _{L^{2}( \Omega) }^{p-2}u -\Delta _{x}u\in h( t,u,u_{t}) \quad \text{a.e. on }[0,T]\times \Omega \\ u( t,.) \in H_{0}^{1}( \Omega ) \quad \text{for a.e. }t\in [ 0,T] \\ u( 0,x) =-u( T,x) ,\quad u_{t}( 0,x)=-u_{t}( T,x) \quad \text{a.e. on }\Omega . \end{gathered} \label{eqPII} \end{equation} Here again $\Omega $ is a bounded domain of $\mathbb{R}^{n}$, $p>2$, $\varepsilon >0$ and $\sigma \in \mathbb{R}$, but we need no upper bound for $p$. Now we let $E=L^{2}( \Omega ) $, $A=\Delta _{x}$ be the Laplace operator with $D( A) =H^{2}( \Omega ) \cap H_{0}^{1}( \Omega ) $ and $s( u) =-\sigma |u| _{L^{2}( \Omega ) }^{p-2}u$. We note that the conditions (i) and (ii) in Theorem \ref{thm4.2} hold with \[ \phi ( u) =\begin{cases} \frac{1}{2}\int_{\Omega }| \nabla u| ^{2}dx, &u\in H^{1}(\Omega ) \\ +\infty ,& \text{otherwise.} \end{cases} \] and $\psi ( u) =-\frac{\sigma }{p}|u| _{L^{2}( \Omega ) }^{p}$. From Theorem \ref{thm4.2} one obtains the following result. \begin{theorem} \label{thm5.3} Let $h:[ 0,T] \times L^{2}( \Omega ) \times L^{2}( \Omega ) \to P_{kc}( L^{2}( \Omega ) ) $\ be such that $h( .,u,v) $ has a strongly measurable selection on $[ 0,T] $ for every $u,v\in L^{2}( \Omega ) ,$\ $h( t,.) $ is upper semicontinuous for a.e. $t\in [ 0,T] $, and for every $\tau >0$ there exists $\nu \in L^{2}( 0,T) $ such that $| h( t,u,v) | _{L^{2}( \Omega ) }\leq \nu ( t) \;$for a.e. $t\in [ 0,T] $ and all $u,v\in L^{2}( \Omega ) $ with $| u| _{L^{2}( \Omega ) }\leq \tau $. Assume there are $a,b,a_{0}\in \mathbb{R}_{+}$ and $\alpha ,\gamma \in \lbrack 1,2[$ and $\beta \in \lbrack 0,\infty \lbrack $ such that \[ -( w,v) _{L^{2}( \Omega ) }\leq a| v| _{L^{2}( \Omega ) }^{\alpha }+b| u| _{L^{2}(\Omega ) }^{\beta }| v| _{L^{2}( \Omega ) }^{\gamma } \] for all $u,v\in L^{2}( \Omega ) $, $w\in h( t,u,v) $ and for a.e. $t\in [ 0,T] $, and that for each bounded $M\subset L^{2}( \Omega ) $, \[ \beta _{L^{2}( \Omega ) }( h( t,M,L^{2}( \Omega ) ) ) \leq a_{0}\beta _{L^{2}( \Omega ) }(M) . \] In addition assume that there exists $R>0$ with \[ \varepsilon R^{2}\geq aT^{\frac{2-\alpha }{2}}R^{\alpha }+b\frac{1}{2^{\beta }}T^{\frac{2+\beta -\gamma }{2}}R^{\beta +\gamma }. \] Then for sufficiently small $| \sigma | $ and $a_{0}$ \eqref{eqPII} has a solution $u\in H^{2}( 0,T;L^{2}( \Omega )) $ with \[ | u'| _{2}=\Big( \int_{0}^{T}| u'( t) | _{L^{2}( \Omega ) }^{2}dt\Big) ^{1/2}\leq R. \] \end{theorem} \begin{proof} For any $u,v\in L^{2}( \Omega ) $ with $| u|_{L^{2}( \Omega ) },| v| _{L^{2}( \Omega )}\leq \eta $, we have \begin{align*} | s( u) -s( v) | _{L^{2}( \Omega) } &=| \sigma | | | u| _{L^{2}( \Omega ) }^{p-2}u-| v| _{L^{2}( \Omega ) }^{p-2}v|_{L^{2}( \Omega ) } \\ &\leq | \sigma | ( | | u| _{L^{2}(\Omega ) }^{p-2}( u-v) | _{L^{2}( \Omega )} +| ( | u| _{L^{2}( \Omega ) }^{p-2}-|v| _{L^{2}( \Omega ) }^{p-2}) v| _{L^{2} (\Omega ) }) \\ &\leq | \sigma | ( \eta ^{p-2}| u-v|_{L^{2}( \Omega ) }+( p-2) \eta ^{p-2}| u-v| _{L^{2}( \Omega ) }) \\ &=| \sigma | ( p-1) \eta ^{p-2}| u-v|_{L^{2}( \Omega ) }. \end{align*} Hence for any bounded $M\subset L^{2}( \Omega ) $ one has \[ \beta _{L^{2}( \Omega ) }( g( t,M,L^{2}( \Omega ) ) ) \leq [ | \sigma | ( p-1)| M| ^{p-2}+a_{0}] \beta _{L^{2}( \Omega )}( M) \] where, as above, $g( t,u,v) =s( u) +h(t,u,v) $, and $| M| =\sup_{u,v\in M}|u-v| _{L^{2}( \Omega ) }$. It is easily seen that the unique solution $\varphi \in $ $L^{\infty }( 0,T;\mathbb{R}_{+}) $ of (\ref{eq2.200}) with \[ \omega ( t,\tau ) =[ | \sigma | ( p-1) \eta ^{p-2}+a_{0}] \tau \] where $\eta =R\max \{ 1,\sqrt{T}/2\} $, is $\varphi =0$ provided that $| \sigma | $ and $a_{0}$ are small enough. Thus Theorem \ref{thm4.2} applies. \end{proof} \begin{corollary} \label{coro5.4} For every $f\in L^{\infty }( 0,T;L^{2}( \Omega ) ) $, if $| \sigma | $ is sufficiently small the problem \begin{gather*} -u_{tt}-\varepsilon u_{t}+\sigma | u| _{L^{2}( \Omega ) }^{p-2}u-\Delta _{x}u=f( t,x) \quad \text{a.e. on }[0,T]\times \Omega \\ u( t,.) \in H_{0}^{1}( \Omega ) \quad \text{for a.e. }t\in [ 0,T] \\ u( 0,x) =-u( T,x) ,\quad u_{t}( 0,x)=-u_{t}( T,x) \quad \text{a.e. on }\Omega . \end{gather*} has at least one solution $u\in H^{2}( 0,T;L^{2}( \Omega )) $ with $| u'| _{2}\leq \frac{| f|_{\infty }\sqrt{T}}{\varepsilon }$. Here $| f| _{\infty }= \mathop{\rm ess\,sup}_{t\in [ 0,T] }| f( t) | _{L^{2}( \Omega ) }$. \end{corollary} \begin{thebibliography}{99} \bibitem{AAP} A. R. Aftabizadeh, S.\ Aizicovici and N.H.\ Pavel, \textit{Anti-periodic boundary value problems for higher order differential equations in Hilbert spaces}, Nonlinear Anal. \textbf{18 }(1992), 253-267. \bibitem{AAP2} A.R. Aftabizadeh, S.\ Aizicovici and N.H.\ Pavel, \textit{On a class of second-order anti-periodic boundary value problems}, J.\ Math. Anal.\ Appl. \textbf{171} (1992), 301-320. \bibitem{AP} S.\ Aizicovici and N.H.\ Pavel, \textit{Anti-periodic solutions to a class of nonlinear differential equations in Hilbert spaces}, J. Funct. Anal. \textbf{99} (1991), 387-408. \bibitem{APV} S. Aizicovici, N.H. Pavel and I.I. Vrabie, \textit{ Anti-periodic solutions to strongly nonlinear evolution equations in Hilbert spaces}, An. \c{S}tiin\c{t}. Univ. Al.I. Cuza Ia\c{s}i Mat. \textbf{44 }(1998), 227-234. \bibitem{B} V. Barbu, ``Nonlinear Semigroups and Differential Equations in Banach Spaces'', Ed. Academiei \& Noordhoff International Publishing, Bucure\c{s}ti-Leyden, 1976. \bibitem{CPa} Z.\ Cai and N.H.\ Pavel, \textit{Generalized periodic and anti-periodic solutions for the heat equation in} $R^{1}$, Libertas Math. \textbf{10} (1990), 109-121. \bibitem{Coron} J.-M.\ Coron, \textit{Periodic solutions of a nonlinear wave equation without assumption of monotonicity}, Math. Ann. \textbf{262 } (1983), 272-285. \bibitem{CK} J.-F. Couchouron and M.\ Kamenski, \textit{A unified topological point of view for integro-differential inclusions,\ }in ``Differential Inclusions and Optimal Control'' (eds. J. Andres, L. G\'{o}rniewicz and P. Nistri)\textit{, }Lecture Notes in Nonlinear Anal., Vol. 2, 1998, 123-137. \bibitem{CKP} J.-F. Couchouron, M.\ Kamenski and R.\ Precup, \textit{A nonlinear periodic averaging principle,} Nonlinear Anal. \textbf{54} (2003), 1439-1467. \bibitem{CP} J.-F.\ Couchouron and R.\ Precup, \textit{Existence principles for inclusions of Hammerstein type involving noncompact acyclic multivalued maps,} Electronic J.\ Differential Equations \textbf{2002} (2002), No. 04, 1-21. \bibitem{deimling} K. Deimling, ``Multivalued Differential Equations'', Walter de Gruyter, Berlin-New York, 1992. \bibitem{diestel} J. Diestel, W.M. Ruess and\ W. Schachermayer, \textit{Weak compactness in} $L^{1}(\mu ,\,X)$, Proc. Amer. Math. Soc. \textbf{118} (1993), 447-453. \bibitem{em} S. Eilenberg and D. Montgomery, \textit{Fixed point theorems for multivalued transformations,} Amer. J. Math. \textbf{68 } (1946), 214-222. \bibitem{pf} P.M. Fitzpatrick and W.V. Petryshyn, \textit{Fixed point theorems for multivalued noncompact acyclic mappings,} Pacific J. Math. \textbf{54 }(1974), 17-23. \bibitem{frigon} M. Frigon, \textit{Th\'{e}or\`{e}mes d'existence de solutions d'inclusions diff\'{e}rentielles}, in ``Topological Methods in Differential Equations and Inclusions'' (eds. A. Granas and M. Frigon), NATO\ ASI\ Series C, Vol. 472, Kluwer Academic Publishers, Dordrecht-Boston-London, 1995, 51-87. \bibitem{guo} D. Guo, V. Lakshmikantham and X. Liu, ``Nonlinear Integral Equations in Abstract Spaces'', Kluwer Academic Publishers, Dordrecht-Boston-London, 1996. \bibitem{H} A. Haraux, \textit{Anti-periodic solutions of some nonlinear evolution equations,} Manuscripta Math. \textbf{63} (1989), 479-505. \bibitem{hp} S. Hu and N.S. Papageorgiou, ``Handbook of Multivalued Analysis, Vol. I: Theory'', Kluwer Academic Publishers, Dordrecht-Boston-London, 1997. \bibitem{O} H. Okochi, \textit{On the existence of periodic solutions to nonlinear abstract parabolic equations,} J. Math. Soc. Japan \textbf{40} (1988), 541-553. \bibitem{O2} H.\ Okochi, \textit{On the existence of anti-periodic solutions to nonlinear evolution equations associated with odd subdifferential operators,} J.\ Funct.\ Anal. \textbf{91} (1990), 246-258. \end{thebibliography} \end{document}