\documentclass[reqno]{amsart} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2004(2004), No. 125, pp. 1--8.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2004 Texas State University - San Marcos.} \vspace{8mm}} \begin{document} \title[\hfilneg EJDE-2004/125\hfil n-dimensional pendulum-like equations] {Existence of solutions to n-dimensional pendulum-like equations} \author[P. Amster, P. De N\'apoli, M.C. Mariani\hfil EJDE-2004/125\hfilneg] {Pablo Amster, Pablo L. De N\'apoli, Mar\'ia Cristina Mariani} % in alphabetical order \address{Pablo Amster \hfill\break Universidad de Buenos Aires\\ FCEyN - Departamento de Matem\'atica \\ Ciudad Universitaria, Pabell\'on I\\ (1428) Buenos Aires, Argentina\\ and Consejo Nacional de Investigaciones Cient\'\i ficas y T\'ecnicas (CONICET)} \email{pamster@dm.uba.ar} \address{Pablo L. De N\'apoli \hfill\break Universidad de Buenos Aires\\ FCEyN - Departamento de Matem\'atica \\ Ciudad Universitaria, Pabell\'on I\\ (1428) Buenos Aires, Argentina} \email{pdenapo@dm.uba.ar} \address{Mar\'ia Cristina Mariani \hfill\break Department of Mathematical Sciences\\ New Mexico State University\\ Las Cruces, NM 88003-0001, USA} \email{mmariani@nmsu.edu} \date{} \thanks{Submitted June 3, 2004. Published October 20, 2004.} \subjclass[2000]{35J25, 35J65} \keywords{Pendulum-like equations; boundary value problems; \hfill\break\indent topological methods} \begin{abstract} We study the elliptic boundary-value problem \begin{gather*} \Delta u + g(x,u) = p(x) \quad \hbox{in } \Omega \\ u\big|_{\partial \Omega} = \hbox{\rm constant}, \quad \int_{\partial\Omega} \frac {\partial u}{\partial \nu} = 0, \end{gather*} where $g$ is $T$-periodic in $u$, and $\Omega \subset \mathbb{R}^n$ is a bounded domain. We prove the existence of a solution under a condition on the average of the forcing term $p$. Also, we prove the existence of a compact interval $I_p \subset \mathbb{R}$ such that the problem is solvable for $\tilde p(x) = p(x) + c$ if and only if $c\in I_p$. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \section{Introduction} Existence and multiplicity of periodic solutions to the one-dimensional pendulum like equation \begin{gather} \label{pend} u''+ g(t,u) = p(t) \\ \label{per} u(0)-u(T) = u'(0)-u'(T) = 0 \end{gather} where $g$ is $T$-periodic in $u$ have been studied by many authors; see e.g. \cite{FM} and for the history and a survey of the problem see \cite{M1,M2}. In this work, we consider a generalization of this problem to higher dimensions. With this aim, note that the boundary condition \eqref{per} can be written as $$ u(0) = u(T) = c,\quad \int_0^T u '' = 0 $$ where $c$ is a non-fixed constant. Thus, by the divergence Theorem, \eqref{pend}-\eqref{per} can be generalized to a boundary-value problem for an elliptic PDE in the following way: \begin{equation} \label{1} \begin{gathered} \Delta u + g(x,u) = p(x) \quad \hbox{in } \Omega \\ u\big|_{\partial \Omega} = \hbox{\rm constant},\quad \int_{\partial\Omega} \frac {\partial u}{\partial \nu} = 0, \end{gathered} \end{equation} where $\Omega \subset \mathbb{R}^n$ is a bounded $C^{1,1}$ domain. We shall assume that $p\in L^2(\Omega)$, and that $g \in L^\infty \big( \Omega\times \mathbb{R}\big)$ is $T$-periodic in $u$. For simplicity we shall assume also that $\frac{\partial g}{\partial u} \in L^\infty ( \Omega\times \mathbb{R})$. This kind of problems have been considered for example in \cite{BB}, where the authors study a model describing the equilibrium of a plasma confined in a toroidal cavity. Under appropriate conditions this model can be reduced to the nonhomogeneous boundary-value problem \begin{equation} \begin{gathered} \Delta u + h(x,u) = 0 \quad \hbox{in } \Omega \\ u\big|_{\partial \Omega} = \hbox{\rm constant},\quad -\int_{\partial\Omega} \frac {\partial u}{\partial \nu} = I. \end{gathered} \end{equation} The authors prove the existence of at least one solution $u\in H^2$ of the problem for any $h$ satisfying the following assumptions: \begin{itemize} \item[(A1)] $h:\overline\Omega\times \mathbb{R} \to [0,+\infty)$ is continuous, nondecreasing on $u$, with $h(x,u)=0$ for $u\le 0$. \item[(A2)] $\lim_{u\to +\infty} \int_\Omega {h(x,u)}dx >I$. \item[(A3)] $\lim_{u\to +\infty} \frac {h(x,u)}{u^r} =0$ for some $r \in\mathbb{R}$ (with $r \le \frac{n}{n-2}$ when $n>2$). \end{itemize} On the other hand, for the particular case $h(x,u)= [u]_+^p$ and $\Omega = B_1(0)$, Ortega has proved in \cite{O2} that if $n >2$ and $p\ge \frac{n}{n-2}$ then there exists a finite constant $I_p$ such that the problem has no solutions for $I>I_p$. In the second section we obtain a solution of \eqref{1} by variational methods under a condition on the average of the forcing term $p$. In the third section we prove by topological methods that for a given $p$ there exists a nonempty closed and bounded interval $I_p$ such that problem \eqref{1} is solvable for $\tilde p = p + c$ if and only if $c\in I_p$. A similar result for the one-dimensional case has been proved by Castro \cite{C}, using variational methods, and by Fournier and Mawhin \cite{FM}, using topological methods. \section{Solutions by variational methods} For fixed $x\in \Omega$, define $a_g(x)$ as the average of $g$ with respect to $u$, namely: $$ a_g(x) = \frac 1T \int_0^T g(x,u)du\,. $$ For $\varphi \in L^1(\Omega)$ denote by $\overline\varphi$ the average of $\varphi$, i.e. $$ \overline\varphi = \frac 1{|\Omega|}\int_\Omega \varphi(x) dx. $$ \begin{theorem} \label{teo1} If \begin{equation} \label{av} \overline p = \overline{a_g}, \end{equation} then \eqref{1} admits at least one solution $u\in H^2(\Omega)$. \end{theorem} \begin{proof} Let $\mathbb{R} + H_0^1(\Omega) = \{ u\in H^1(\Omega): u\big|_{\partial\Omega} = \hbox{\rm constant} \}$, and consider the functional $\mathcal{I}:\mathbb{R} + H_0^1(\Omega) \to \mathbb{R}$ given by $$ \mathcal{I}(u) = \int_\Omega \Big(\frac{|\nabla u(x)|^2}2 - G(x,u(x)) + p(x)u(x)\Big) dx, $$ where $$ G(x,u) = \int_0^u g(x,s)ds. $$ By standard results, $\mathcal{I}$ is weakly lower semicontinuous in $\mathbb{R} + H_0^1(\Omega)$. We remark that $u$ is a critical point of $\mathcal{I}$ if and only if \begin{equation} \label{*} \int_\Omega (\nabla u.\nabla \varphi - g(x,u)\varphi + p\varphi) dx = 0 \end{equation} for any $\varphi\in \mathbb{R}+ H_0^1(\Omega)$. In this case, if $c=u\big|_{\partial\Omega}$ then $u$ is a weak solution of the problem \begin{equation} \label{**} \Delta u + g(x,u) = p(x),\quad u\big|_{\partial\Omega} = c. \end{equation} It follows that $u\in H^2(\Omega)$. We claim that $\int_{\partial\Omega} \frac {\partial u}{\partial \nu} =0$. Indeed, taking $\varphi \equiv 1$ in \eqref{*} we obtain: $$ \int_\Omega g(x,u)dx = \int_\Omega p(x)dx. $$ Integrating (\ref{**}) over $\Omega$, we deduce that $$ \int_{\partial\Omega} \frac {\partial u}{\partial \nu} = \int_{\Omega} \Delta u = 0. $$ Thus, any critical point of $\mathcal{I}$ is a weak solution of \eqref{1}. To prove the existence of critical points of $\mathcal{I}$, let $\{u_n\} \subset \mathbb{R}+ H_0^1(\Omega)$ be a minimizing sequence, and let $c_n = u_n\big|_{\partial\Omega}$. For any $u\in \mathbb{R}+ H_0^1(\Omega)$ it holds that $$ \mathcal{I} (u + T) - \mathcal{I} (u) = T \int_\Omega p(x) dx - \int_\Omega [G(x,u+T)-G(x,u)] dx. $$ For fixed $x$, we have $$ G(x,u(x)+T)-G(x,u(x)) = \int_{u(x)}^{u(x)+T} g(x,s)ds = \int_{0}^{T} g(x,s)ds = Ta_g(x), $$ and from \eqref{av} we deduce that $\mathcal{I} (u + T) = \mathcal{I} (u)$. Hence, we may assume that $c_n\in [0,T]$. By Poincar\'e's inequality we have that $$ \|u_n - c_n\|_{L^2} \le C \|\nabla u_n \|_{L^2}, $$ and then $$ I(u_n) = \frac 12 \|\nabla u_n \|_{L^2}^2 + \int_\Omega pu_n dx - \int_\Omega G(x,u_n)dx \ge \frac 12 \|\nabla u_n \|_{L^2}^2 - r \| \nabla u_n \|_{L^2} - s $$ for some constants $r,s$. Thus, $\{u_n\}$ is bounded, and by classical results $\mathcal{I}$ has a minimum on $\mathbb{R}+ H_0^1(\Omega)$. \end{proof} \section{The maximal interval $I_p$} Fix $p\in L^2(\Omega)$ such that $\overline p = \overline{a_g}$ and consider the problem \begin{equation}\label{2} \begin{gathered} \Delta u + g(x,u) = p(x) + c \quad \hbox{in }\Omega \\ u\big|_{\partial \Omega} = \hbox{\rm constant} \quad \int_{\partial\Omega} \frac {\partial u}{\partial \nu} = 0 \end{gathered} \end{equation} with $c\in \mathbb{R}$. It is easy to establish a necessary condition on $c$ for the solvability of \eqref{2}: indeed, if $u$ is a solution of \eqref{2} then $$ \frac 1{|\Omega|} \int_\Omega g(x,u(x)) dx = \overline p + c.$$ Thus, if we define $g_u(x) = g(x,u(x))$, we obtain: $$ c = \overline {g_u} - \overline {a_g}. $$ Furthermore, if $$ g_+(x) = \sup_{0\le u\le T}g(x,u), \quad g_-(x) = \inf_{0\le u\le T}g(x,u), $$ it follows that $\overline {g_-}\le \overline {g_u}\le \overline {g_+}$, and hence $$ \overline {g_-}-\overline {a_g} \le c \le \overline {g_+}-\overline {a_g}.$$ In particular, $$ \inf_{[0,T]\times\mathbb{R}} {g} -\overline {a_g} \le c \le \sup_{[0,T]\times\mathbb{R}}-\overline {a_g}. $$ In the next theorem we obtain also a sufficient condition. More precisely, if we define $$ I_p = \{ c \in \mathbb{R}: \hbox{ \eqref{2} admits a solution in } H^2(\Omega) \},$$ we shall prove that $I_p$ is a nonempty compact interval. From Theorem \ref{teo1}, it follows that $$ I_p = [\alpha_p, \beta_p], $$ where $$ \overline {g_-} - \overline{a_g} \le \alpha_p \le 0 \le \beta_p \le \overline {g_+} - \overline{a_g}. $$ \begin{theorem} \label{teo2} Assume that $\overline p = \overline{a_g}$ and define $$E = \{ u \in \mathbb{R}+ H^2 \cap H_0^1(\Omega): \Delta u + g(x,u) = p + \overline {g_u} - \overline {a_g}\}. $$ Then the set $$ E_g := \{ \overline {g_u}: u\in E\}\subset \mathbb{R} $$ is a nonempty compact interval. Furthermore, $E_g = \overline {a_g}+ I_p$. \end{theorem} For the proof of this theroem, we need Lemmas \ref{lem3}, \ref{lem4}, \ref{lem5}, \ref{lem6}, \ref{lem7} and Theorem \ref{teo8} below. \begin{lemma}[Poincar\'e-Wirtinger inequality] \label{lem3} There exists a constant $c\in\mathbb{R}$ such that $$ \| u - \overline u\|_{L^2} \le c\| \nabla u\|_{L^2} $$ for all $u\in H^1(\Omega)$. \end{lemma} The proof of the above lemma can be found in \cite{Ke}. \begin{lemma} \label{lem4} Assume that $\overline p = \overline{a_g}$. Then for any $r\in \mathbb{R}$ the problem \begin{gather*} \Delta u + g(x,u) = p + \overline {g_u} - \overline {a_g} \\ u\big|_{\partial \Omega} = \hbox{\rm constant},\quad \int_{\partial\Omega} \frac {\partial u}{\partial \nu} = 0 \end{gather*} admits at least one solution $u$ such that $\overline u = r$. \end{lemma} \begin{proof} For $u\in H^1(\Omega)$ define $Tu= v$ as the unique solution of the problem \begin{equation} \label{3} \begin{gathered} \Delta v = p + \overline {g_u} - \overline {a_g} - g(x,u) \\ v\big|_{\partial \Omega} = \hbox{\rm constant},\quad \overline v = r. \end{gathered} \end{equation} Then $T:H^1(\Omega)\to H^1(\Omega)$ is well defined and compact. Indeed, if $u_0 $ is the unique element of $H^2\cap H_0^1(\Omega)$ such that $$ \Delta u_0 = p + \overline {g_u} - \overline {a_g} - g(x,u), $$ it is clear that $v = u_0 - \overline {u_0} + r$ is the unique solution of \eqref{3}, and compactness follows immediately from the compactness of the mapping $u\to u_0$. Moreover, integrating the equation, it is immediate that $$ \int_{\partial\Omega} \frac {\partial v}{\partial \nu} = \int_{\Omega} \Delta v = 0. $$ Then $$ \int_\Omega\Delta v(v-r) + \int_\Omega |\nabla v|^2= (v\big|_{\partial\Omega} -r) \int_{\partial\Omega} \frac {\partial v}{\partial \nu} = 0, $$ and we deduce that $$ \|v-r\|_{H^1} \le c \|\Delta v\|_{L^2} \le C $$ for some constant $C$. Thus, the proof follows from Schauder Theorem. \end{proof} \begin{lemma} \label{lem5} Let $p, E, E_g$ be as in Theorem \ref{teo2} and $$E_T = \{ u\in E: u\big|_{\partial\Omega} \in [0,T]\}.$$ Then: \begin{enumerate} \item $E_T \subset \mathbb{R}+ H_0^1(\Omega)$ is compact. \item $E_g = \{ \overline {g_u}: u\in E_T\}$. \end{enumerate} \end{lemma} \begin{proof} Let $\{ u_n\} \subset E_T$ and $c_n = u_n\big|_{\partial\Omega} \in [0,T]$. >From standard elliptic estimates it follows that $\| u_n\|_{H^2} \le C$ for some constant $C$. Taking a subsequence we may assume that $u_{n} \to u$ in $\mathbb{R}+H_0^1(\Omega)$. >From the equalities $$ \Delta u_{n} = p +\overline {g_{u_{n}}} - \overline {a_g} -g(x,u_{n}) $$ it follows easily that $u\in E_T$, and (1) is proved. Moreover, for any $u\in E$ there exists $k\in\mathbb{Z}$ such that $u_T: = u + kT \in E_T$. As $g_{u_T} = g_u$, the proof of (2) follows. \end{proof} To complete the proof of Theorem \ref{teo2}, it suffices to show that $I_p$ is connected. Indeed, it is clear that $u$ is a solution of \eqref{2} if and only if $u \in E$ with $c = \overline{g_u}-\overline{a_g}$, and by continuity of the mapping $u\to \overline{g_u}$ it follows that $I_p$ is compact. \begin{remark} \rm >From Lemma \ref{lem4}, $E$ is infinite. In particular, if $I_p = \{ 0\}$ then \eqref{1} admits a continuum of solutions. \end{remark} To apply the method of upper and lower solutions to our problem, we shall first prove an associated maximum principle: \begin{lemma} \label{lem6} Let $\lambda > 0$ and assume that $u\in H^{2}(\Omega)$ satisfies: \begin{gather*} \Delta u - \lambda u \ge 0,\\ u\big|_{\partial \Omega} = \hbox{\rm constant},\quad \int_{\partial\Omega} \frac{\partial u}{\partial \nu} \le 0. \end{gather*} Then $u\le 0$. \end{lemma} \begin{proof} If $u\big|_{\partial \Omega} = c\le 0$ the result follows by the classical maximum principle. If $c>0$, let $ \Omega^+ = \{ x\in \Omega: u(x) > 0\}$ and $u^+(x) = \max\{ u(x), 0\}$. Then $$ 0 \le \int_{\Omega}\lambda u.u^+ \le \int_{\Omega} \Delta u.u^+ =-\int_{\Omega^+} |\nabla u|^2 + c\int_{\partial\Omega} \frac{\partial u}{\partial \nu} < 0\,, $$ a contradiction. \end{proof} \begin{lemma} \label{lem7} Let $\theta \in L^2(\Omega)$ and $\lambda>0$. Then the problem \begin{gather*} \Delta u - \lambda u = \theta \quad \hbox{in }\Omega \\ u\big|_{\partial \Omega} = \quad \hbox{\rm constant}, \quad \int_{\partial\Omega} \frac {\partial u}{\partial \nu} = 0 \end{gather*} admits a unique solution $u_\theta\in H^{2}(\Omega)$. Furthermore, the mapping $\theta\to u_\theta$ is continuous. \end{lemma} \begin{proof} Let $\mathcal{J}:\mathbb{R}+H_0^1(\Omega)\to \mathbb{R}$ be the functional $$ \mathcal{J}(u) = \int_\Omega \frac {|\nabla u|^2}2 + \frac {\lambda u^2}2 + \theta u. $$ It is immediate that $\mathcal{J}$ is weakly lower semicontinuous and coercive, then it has a minimum $u$. Furthermore, $u\in H^{2}(\Omega)$ and $\int_{\partial\Omega} \frac {\partial u}{\partial \nu} = 0$. Integrating the equation, we also obtain that $-\lambda \overline u = \overline \theta$. By standard elliptic estimates and Lemma \ref{lem3}, there exists a constant $c$ such that $$ \|w-\overline w\|_{H^{2}} \le c \| \Delta w - \lambda w\|_{L^2} $$ for any $w\in H^{2}\cap (\mathbb{R} + H_0^{1})$ such that $\int_{\partial\Omega} \frac {\partial w}{\partial \nu} =0$; thus, uniqueness follows. Finally, if $\theta_1$, $\theta_2 \in L^2(\Omega)$ then $$ \| u_{\theta_1}-u_{\theta_2}\|_{H^{2}} \le |\Omega|.|\overline \theta_1-\overline\theta_2| + c \|\theta_1-\theta_2\|_{L^{2}}, $$ and the proof is complete. \end{proof} Now we have the following result. \begin{theorem} \label{teo8} If $\varphi \in L^{2}(\Omega)$ and there exist $\alpha, \beta\in H^{2}(\Omega)$ with $\alpha\le \beta$ such that \begin{gather*} \Delta \beta + g(\cdot,\beta)\le \varphi(x)\le \Delta \alpha + g(\cdot,\alpha),\\ \beta\big|_{\partial \Omega} = \quad \hbox{\rm constant}, \quad \alpha\big|_{\partial \Omega} = \quad \hbox{\rm constant},\\ \int_{\partial\Omega} \frac {\partial \beta}{\partial \nu} \ge 0 \ge \int_{\partial\Omega} \frac {\partial \alpha}{\partial \nu}, \end{gather*} then the problem \begin{gather*} \Delta u + g(x,u) = \varphi(x) \\ u\big|_{\partial \Omega} = \quad \hbox{\rm constant},\quad \int_{\partial\Omega} \frac {\partial u}{\partial \nu} = 0 \end{gather*} admits at least one solution $u\in H^{2}(\Omega)$ such that $\alpha\le u\le \beta$. \end{theorem} \begin{proof} Let $\lambda\ge R$, where $R = \|\frac{\partial g}{\partial u}\|_{L^\infty}$. For fixed $v \in L^2(\Omega)$ define $Tv = u$ as the unique solution of the problem \begin{gather*} \Delta u - \lambda u = \varphi - g(x,v) - \lambda v \quad \hbox{in }\Omega \\ u\big|_{\partial \Omega} = \quad \hbox{\rm constant}, \quad \int_{\partial\Omega} \frac {\partial u}{\partial \nu} =0. \end{gather*} By the lemmas above, the mapping $T:L^2(\Omega)\to L^2(\Omega)$ is well defined and compact. Moreover for $\alpha\le v\le \beta$, we have $$ \Delta u - \lambda u = \varphi - g(x,v) - \lambda v \ge \varphi - g(x,\beta) - \lambda \beta \ge \Delta \beta - \lambda \beta. $$ Hence, $$ \Delta (u-\beta) - \lambda (u-\beta) \ge 0 $$ and $$ (u-\beta)\big|_{\partial \Omega} = \quad \hbox{\rm constant},\quad \int_{\partial\Omega} \frac {\partial (u- \beta)}{\partial \nu} \le 0. $$ From Lemma \ref{lem6}, we deduce that $u\le \beta$. In the same way, we obtain that $u\ge \alpha$ and the result follows by Schauder Theorem. \end{proof} \begin{proof}[Proof of Theorem \ref{teo2}] Let $P\in H^2(\Omega)$ be any solution of the problem \begin{gather*} \Delta P = p - \overline{a_g} \\ P\big|_{\partial \Omega} = \quad \hbox{\rm constant},\quad \int_{\partial\Omega} \frac {\partial P}{\partial \nu} =0. \end{gather*} Taking $v = u - P$, problem \eqref{2} is equivalent to the problem \begin{gather*} \Delta v + \tilde g (x, v) = c + \overline{a_g} \\ P\big|_{\partial \Omega} = \quad \hbox{\rm constant},\quad \int_{\partial\Omega} \frac {\partial P}{\partial \nu} =0\,, \end{gather*} where $\tilde g(x,v) := g(x,v+P(x))$ is continuous and $T$-periodic in $v$. Thus, we may assume without loss of generality that $p$ is continuous. Let $c_1, c_2 \in I_p$, $c_1 < c_2$, and take $u_1, u_2 \in E$ such that $\overline{g_{u_i}} = c_i - \overline{a_g}$. As $u_i \in C(\overline \Omega)$, adding $kT$ for some integer $k$ if necessary, we may suppose that $u_1 \le u_2$. For $c\in [c_1,c_2]$ we have that $$ \Delta u_1 + g(x,u_1) = p + c_1 - \overline {a_g} \le p + c - \overline {a_g} \le p + c_2 - \overline {a_g} = \Delta u_2 + g(x,u_2). $$ From the previous theorem, there exists $u\in E$ such that $\overline{g_{u}} = c-\overline{a_g} $. The proof is complete. \end{proof} \begin{remark}\rm Using fixed point methods, Lemma \ref{lem7} can be generalized; thus, it is easy to see that Theorem \ref{teo2} is still valid for the more general problem \begin{gather*} \Delta u + \langle b(x),\nabla u \rangle + g(x,u) = p(x) \quad \hbox{in } \Omega \\ u\big|_{\partial \Omega} = \hbox{\rm constant},\quad \int_{\partial\Omega} \frac {\partial u}{\partial \nu} = 0\,, \end{gather*} where $b$ is a $C^1$-field such that $\hbox{div }b =0$. However, for $b\neq 0$ the problem is no longer variational, and then the claim of Theorem \ref{teo1} is not necessarily true. Indeed, in the particular case $n=1$, it is well known that for the pendulum equation $$ u'' + a u' + b\; \sin u = f (t), $$ where $a$ is a positive constant, there exists a family of $T$-periodic functions $f$ such that $\int_0^T f = 0$ for which the equation has no periodic solutions (see \cite{A,O,OST}). \end{remark} \begin{remark} \rm As in \cite{FM}, it can be proved that for any $c$ in the interior of $I_p$ there exist at least two solutions of \eqref{2} which are essentially different (i.e. not differing by a multiple of $T$). \end{remark} \subsection*{Acknowledgement} The authors would like to thank the anonymous referee for his/her careful reading of the original manuscript and the fruitful remarks. \begin{thebibliography}{00} \bibitem{A} Alonso J.; \emph{Nonexistence of periodic solutions for a damped pendulum equation}. Diff. and Integral Equations, 10 (1997), 1141-1148. \bibitem{BB} Berestycki B., Brezis H.; \emph{On a free boundary problem arising in plasma physics}. Nonlinear Analysis 4, 3 (1980), pp 415-436. \bibitem{C} Castro A.; \emph{Periodic solutions of the forced pendulum equation}. Differential equations (Proc. Eighth Fall Conf., Oklahoma State Univ., Stillwater, Okla., 1979), pp. 149--160, Academic Press, New York-London-Toronto, Ont., 1980. \bibitem{FM} Fournier G., Mawhin J.; \emph{On periodic solutions of forced pendulum-like equations}. Journal of Differential Equations 60 (1985) 381-395. \bibitem{Ke} Kesavan, S.; \emph{Topics in Functional Analysis and Applications}. John Wiley \& Sons, Inc., New York, NY, 1989. \bibitem{M1} Mawhin J.; \emph{Periodic oscillations of forced pendulum-like equations}, Lecture Notes in Math, 964, Springer, Berlin 1982, 458-476. \bibitem{M2} Mawhin J.; \emph{Seventy-five years of global analysis around the forced pendulum equation}, Proc. Equadiff 9, Brno 1997. \bibitem{O} Ortega R.; \emph{A counterexample for the damped pendulum equation}. Bull. de la Classe des Sciences, Ac. Roy. Belgique, LXXIII (1987), 405-409. \bibitem {O2} Ortega R.; \emph{Nonexistence of radial solutions of two elliptic boundary value problems}. Proc. of the Royal Society of Edinburgh 114A (1990) 27-31. \bibitem{OST} Ortega R., Serra E., Tarallo M.; \emph{Non-continuation of the periodic oscillations of a forced pendulum in the presence of friction}. Proc. of Am. Math. Soc. Vol. 128, 9 (2000), 2659-2665. \end{thebibliography} \end{document}