\documentclass[reqno]{amsart} \usepackage{amsfonts} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2004(2004), No. 138, pp. 1--8.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2004 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2004/138\hfil Elliptic systems involving critical Sobolev exponents] {Existence results for elliptic systems involving critical Sobolev exponents} \author[Mohammed Bouchekif, Yasmina Nasri\hfil EJDE-2004/138\hfilneg] {Mohammed Bouchekif, Yasmina Nasri} % in alphabetical order \address{Mohammed Bouchekif \hfill\break Departement of Mathematics, University of Tlemcen B. P. 119 Tlemcen 13000, Algeria} \email{m\_bouchekif@mail.univ-tlemcen.dz} \address{Yasmina Nasri \hfill\break Departement of Mathematics, University of Tlemcen B. P. 119 Tlemcen 13000, Algeria} \email{y\_nasri@mail.univ-tlemcen.dz} \date{} \thanks{Submitted July 6, 2004. Published November 25, 2004.} \subjclass[2000]{35J20, 35J50, 35J60} \keywords{Elliptic system; critical Sobolev exponent; variational method; \hfill\break\indent moutain pass theorem} \begin{abstract} In this paper, we study the existence and nonexistence of positive solutions of an elliptic system involving critical Sobolev exponent perturbed by a weakly coupled term. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \section{Introduction} We establish conditions for existence and nonexistence of nontrivial solutions to the system \begin{equation} \begin{gathered} -\Delta u=(\alpha +1)u^{\alpha }v^{\beta +1} +\mu (\alpha '+1)u^{\alpha '}v^{\beta '+1} \quad \text{in }\Omega \\ -\Delta v=(\beta +1)u^{\alpha +1}v^{\beta }+\mu (\beta '+1)u^{\alpha '+1}v^{\beta '} \quad \text{in } \Omega \\ u>0,\quad v>0 \quad \text{in }\Omega \\ u=v=0 \quad \text{on }\partial \Omega , \end{gathered} \label{Smu} \end{equation} where $\Omega $ is a bounded regular domain of $\mathbb{R}^{N}$ $(N\geq 3)$ with smooth boundary $\partial \Omega $, $\mu \in \mathbb{R}$, $\alpha $, $\beta $, $\alpha '$, $\beta '$ are positive constants such that $\alpha +\beta =\frac{4}{N-2}$ and $0\leq \alpha '+\beta '<\frac{4}{N-2}$. In the scalar case, the problem \begin{equation} \label{Pmu} \begin{gathered} -\Delta u=u^{p}+\mu u^{q} \quad \text{in }\Omega \\ u>0 \quad \text{in }\Omega \\ u=0\quad \text{on }\partial \Omega , \end{gathered} \end{equation} has been considered by several authors. The paper of Brezis-Nirenberg \cite{7} has drawn our attention. In \cite{7}, they have obtained the following results: Suppose that $\Omega $ is a bounded domain in $\mathbb{R}^{N}$, $N\geq 3$, $p=\frac{N+2}{N-2}$, $q=1 $ and let $\lambda _{1}>0$ denote the first eigenvalue of the operator $-\Delta $ with homogeneous Dirichlet boundary conditions. \begin{enumerate} \item If $N\geq 4$, then for any $\mu \in (0,\lambda _{1})$ there exists a solution of \eqref{Pmu}. \item If $N=3$, there exists $\mu ^{\ast }\in (0,\lambda _{1})$ such that for any $\mu \in (\mu ^{\ast },\lambda _{1})$ problem \eqref{Pmu} admits a solution. \item If $N=3$ and $\Omega $ is a ball, then $\mu ^{\ast }=\frac{\lambda _{1}}{4}$ and for $\mu \leq \frac{\lambda _{1}}{4}$ problem \eqref{Pmu} has no solution. \end{enumerate} They have also obtained the following results for $10$. \item[(c)] When $N=3$, We distinguish two cases:\newline (i) If $30$ there is a solution of \eqref{Pmu}. \newline (ii) If $10$ when $\Omega $ is strictly starshaped. \end{itemize} In the vectorial case, Alves et al. \cite{1} and Bouchekif and Nasri \cite{4} have extended the results of \cite{7} to elliptic system. A number of works contributed to study the elliptic system for example: Boccardo and de Figueiredo \cite{3}, de Th\'{e}lin and V\'{e}lin \cite{11} and Conti et al. \cite{8}. Our aim is to generalize the results of \cite{7} to an elliptic system when the lower order perturbation of $u^{\alpha +1}v^{\beta +1}$ for each equation is weakly coupled i. e. \begin{equation*} -\overset{\rightarrow }{\Delta }U=\nabla H+\mu \nabla G, \end{equation*} where \begin{equation*} \overset{\rightarrow }{\Delta }= \begin{pmatrix} \Delta \\ \Delta \end{pmatrix} ,\quad H(u,v)=u^{\alpha +1}v^{\beta +1},\quad U= \begin{pmatrix} u \\ v\end{pmatrix}, \end{equation*} $G(u,v)=u^{\alpha '+1}v^{\beta '+1}$ and $\mu $ is a real parameter. Our main results are stated as follows : \begin{theorem} \label{thm1} If $\alpha +\beta =\frac{4}{N-2}$; $0\leq \alpha '+\beta'<\frac{4}{N-2}$; $\mu \leq 0$ and $\Omega $ is a starshaped domain, then \eqref{Smu} has no solution. \end{theorem} \begin{theorem} \label{thm2} We suppose that $N\geq 4$ and $\alpha +\beta =\frac{4}{N-2}$. We have: \begin{itemize} \item If $0<\alpha '+\beta '<\frac{4}{N-2}$, then\ for every $ \mu >0$ problem \eqref{Smu} has at least one solution. \item If $\alpha '+\beta '=0$, then $\ $for every $0<\mu<\lambda _{1}$ problem \eqref{Smu} has a solution. \end{itemize} \end{theorem} \begin{theorem} \label{thm3} Assume that $N=3$ and $\alpha +\beta =4$. We distinguish two cases: \begin{itemize} \item If $2<\alpha '+\beta '<4$, then for every $\mu >0$ problem \eqref{Smu} has a solution. \item If $0<\alpha '+\beta '\leq 2$, then for every $\mu $ large enough there exists a solution to problem \eqref{Smu}. \end{itemize} \end{theorem} The paper is organized as follows. Section 2 contains some preliminaries and notations. Section 3 contains the proof of nonexistence result. Section 4 deals with the existence theorems proofs. \section{Preliminaries} \begin{lemma}[Pohozaev identity \cite{10}] \label{lem1} Suppose that $(u,v)\in [C^{2}(\Omega )] ^{2}$ is the solution to the problem \begin{gather*} -\Delta u=\frac{\partial F}{\partial u}(u,v)\quad \text{in } \Omega \\ -\Delta v=\frac{\partial F}{\partial v}(u,v)\quad \text{in } \Omega \\ u=v=0\quad \text{on }\partial \Omega , \end{gather*} where $\Omega $ is a bounded domain in $\mathbb{R}^{N}$ $(N\geq 3)$ with smooth boundary $\partial \Omega $, $F\in C^{1}(\mathbb{R}^{2})$, $F(0,0)=0$, then we have \begin{equation} \label{e1} \int_{\partial \Omega }(| \frac{\partial u}{\partial \nu }| ^{2} +| \frac{\partial v}{\partial \nu }|^{2})x\nu d\sigma +(N-2)\big[ \int_{\Omega }(u \frac{\partial F}{\partial u}+v\frac{\partial F}{\partial v})dx\big] =2N\int_{\Omega }F(u,v)dx \end{equation} where $\nu $ denotes the exterior unit normal. \end{lemma} We shall use the following version of the Brezis-Lieb lemma \cite{6}. \begin{lemma} \label{lem2} Assume that $F\in C^{1}(\mathbb{R}^{N})$ with $F(0) =0$ and $|\frac{\partial F}{\partial u_{i}}| \leq C| u| ^{p-1}$. Let $(u_{n})\subset L^{p}(\Omega )$ with $1\leq p<\infty $. If $(u_{n})$ is bounded in $L^{p}(\Omega )$ and $u_{n}\to u$ a.e. on $\Omega $, then \[ \lim_{n\to \infty}(\int_{\Omega }F(u_{n})-F(u_{n}-u))=\int_{\Omega }F(u). \] \end{lemma} Let us define: \begin{gather*} S_{\alpha +\beta +2}=S_{\alpha +\beta +2}(\Omega ):=\inf_{u\in H_{0}^{1}(\Omega )\backslash \{0\}}\frac{\int_{\Omega }|\nabla u|^{2}dx}{ (\int_{\Omega }|u|^{\alpha +\beta +2}dx)^{\frac{2}{\alpha +\beta +2}}} \\ S_{\alpha ,\beta }=S_{\alpha ,\beta }(\Omega ):=\inf_{(u,v)\in \left[ H_{0}^{1}(\Omega )\right] ^{2}\backslash \{(0,0)\}}\frac{\int_{\Omega }(|\nabla u|^{2}+|\nabla v|^{2})dx}{(\int_{\Omega }|u|^{\alpha +1}|v|^{\beta +1}dx)^{\frac{2}{\alpha +\beta +2}}}. \end{gather*} \begin{lemma}[\cite{1}] \label{llem3} Let $\Omega $ be a domain in $\mathbb{R}^{N}$ (not necessarily bounded) and $\alpha +\beta \leq \frac {4 }{N-2}$, then we have \[ S_{\alpha ,\beta }=\Big[ \big(\frac{\alpha +1}{\beta +1}\big) ^{\frac{\beta +1}{\alpha +\beta +2}} +\big(\frac{\alpha +1}{\beta +1}\big)^{\frac{-\alpha -1}{\alpha +\beta +2}}\Big] S_{\alpha +\beta +2}. \] Moreover, if $S_{\alpha +\beta +2}$ is attained at $\omega _{0}$, then $ S_{\alpha ,\beta }$ is attained at $(A\omega _{0},B\omega _{0})$ for any real constants $A$ and $B$ such that $\frac{A}{B}=(\frac{ \alpha +1}{\beta +1})^{1/2}$. \end{lemma} We adopt the following notation: \begin{itemize} \item For $p>1$, $\Vert u\Vert _{p}=[\int_{\Omega }|u|^{p}dx]^{\frac{1}{p}}$; \item $H_{0}^{1}(\Omega )$ is the Sobolev space endowed with the norm $\Vert u\Vert _{1,2}=[\int_{\Omega }|\nabla u|^{2}dx]^{1/2}$; \item $\Vert (u,v)\Vert _{E}^{2}:=\Vert u\Vert _{1,2}^{2}+\Vert v\Vert _{1,2}^{2};$ \item $E:=[H_{0}^{1}(\Omega )]^{2}$; \item $E'$ denotes the dual of $E$; \item $2^{\ast }:=\frac{2N}{N-2}$ is the critical Sobolev exponent; \item $u^{+}:=\max (u,0)$ and $u^{-}=u^{+}-u$. \end{itemize} The functional associated to problem \eqref{Smu} is written as \begin{equation} \label{e2} J(u,v):=\frac{1}{2}\| (u,v)\| _{E}^{2}-\int_{\Omega }(u^{+})^{\alpha +1}(v^{+})^{\beta +1}dx -\mu \int_{\Omega }(u^{+})^{\alpha '+1}( v^{+})^{\beta '+1}dx. \end{equation} \section{Nonexistence result} Theorem \ref{thm1} is a direct consequence of the Pohozaev identity. \begin{proof}[Proof of Theorem \protect\ref{thm1}] Arguing by contradiction. Suppose that problem \eqref{Smu} has a solution $(u,v)\neq (0,0)$, applying Lemma \ref{lem1} and putting \begin{equation*} F(u,v)=H(u,v)+\mu G(u,v), \end{equation*} the expression \eqref{e1} becomes \begin{equation*} \int_{\partial \Omega }\big(| \frac{\partial u}{\partial \nu }| ^{2}+| \frac{% \partial v}{\partial \nu }| ^{2}\big)x\nu \,d\sigma =\mu \left[ 2N-(N-2)(\alpha '+\beta '+2)\right] \int_{\Omega }| u| ^{\alpha '+1}| v| ^{\beta '+1}dx. \end{equation*} Since $2N-(N-2)(\alpha '+\beta '+2)>0$ and the fact that $\Omega $ is starshaped with respect to the origin, we get \begin{equation*} 0\leq \int_{\partial \Omega }(| \frac{\partial u}{\partial \nu } | ^{2}+| \frac{\partial v}{\partial \nu }| ^{2})x\nu\, d\sigma <0. \end{equation*} A contradiction. Hence \eqref{Smu} has no a solution for $\mu\leq 0$. \end{proof} \section{Existence results} The proof of Theorems \ref{thm2} and \ref{thm3} are based on the following Ambrosetti-Rabinowitz result \cite{2}. \begin{lemma}[Mountain Pass Theorem] \label{lem4} Let $J$ be a $C^{1}$ functional on a Banach space $E$. Suppose there exits a neighborhood $V$ of $0$ in $E$ and a positive constant $\rho $ such that \begin{itemize} \item[(i)] $J(u,v)\geq \rho $ for every $U$ in the boundary of $V$. \item[(ii)] $J(0,0)<\rho $ and $J(\varphi ,\psi)<0$ for some $\Psi:=(\varphi ,\psi )\notin V$. \end{itemize} We set \[ c=\inf_{\phi \in \Gamma }\max_{t\in [ 0,1] }J(\phi (t)) \] with $\Gamma =\{\phi\in C([ 0,1] ,E):\phi (0)=0,\, \phi (1)=\Psi\}$. Then there exists a sequence $(u_{n},v_{n})$ in $E$ such that $J(u_{n},v_{n})\to c$ and $J'(u_{n},v_{n})\to 0$ in $E'$. \end{lemma} \begin{proof} Using Holder's inequality and Sobolev injection, we obtain that \begin{align*} J(u,v)&=\frac{1}{2}\| (u,v)\| _{E}^{2}-\int_{\Omega }(u^{+})^{\alpha +1}(v^{+}) ^{\beta +1}dx-\mu \int_{\Omega }(u^{+})^{\alpha ^{\prime }+1}(v^{+})^{\beta '+1}dx \\ &\geq \frac{1}{2}\| (u,v)\| _{E}^{2}-A\|(u,v)\| _{E}^{2^{\ast }}-B\| (u,v) \| _{E}^{\alpha '+\beta '+2} \end{align*} where $A$ and $B$ are positive constants. If $\alpha '+\beta '>0$ then $(i)$ is satisfying for small norm $\| (u,v)\| _{E}=R$. If $\alpha '+\beta '=0$, we have% \begin{equation*} J(u,v)\geq \frac{1}{2}\big(1-\frac{\mu }{\lambda _{1}}\big) \| (u,v)\| _{E}^{2}-A\| (u,v) \| _{E}^{2^{\ast }} \end{equation*} and condition $(i)$ is still satisfied for $\mu <\lambda _{1}$ and $R<( \frac{1-\frac{\mu }{\lambda _{1}}}{2A})^{\frac{1}{2^{\ast }-2}}$. For any $(\varphi ,\psi )\in E$ with $\varphi \neq 0$ and $\psi \neq 0$, we have that $\lim_{t\to +\infty }J(t\varphi ,t\psi )=-\infty $. Thus, there are many $(\varphi ,\psi )$ satisfying $(ii)$. It will be important to use with a special $(\varphi ,\psi ):=(t_{0}\varphi_{0},t_{0}\psi _{0})$ for some $t_{0}>0$ chosen large enough so that $(\varphi ,\psi )\notin V$, $J(\varphi,\psi )<0$ and $\sup_{t\geq 0}J(t\varphi ,t\psi )<\frac{2^{\ast } }{N} (\frac{S_{\alpha ,\beta }}{2^{\ast }})^{N/2}$. Then there exists a sequence $(u_{n},v_{n})\in E$ such that $J(u_{n},v_{n})\to c$ and $J'(u_{n},v_{n})\to 0$ in $E'$. \end{proof} \begin{lemma} \label{lem5} Suppose $\mu >0$ and let $(u_{n},v_{n})$ be a sequence in $E$ such that \break $J(u_{n},v_{n})\to c$ and $ J'(u_{n},v_{n})\to 0$ in $ E'$ with \[ c<\frac{2^{\ast }}{N}(\frac{S_{\alpha ,\beta }}{2^{\ast }})^{N/2} =\frac{2}{N-2}(\frac{S_{\alpha ,\beta }}{2^{\ast}}) ^{N/2} \] Then $(u_{n},v_{n})$ is relatively compact in $E$. \end{lemma} \begin{proof} We show that the sequence $(u_{n},v_{n})$ is bounded in $E$. Since $(u_{n},v_{n})$ satisfies: \begin{equation} \frac{1}{2}\Vert (u_{n},v_{n})\Vert _{E}^{2}-\int_{\Omega }(u_{n}^{+})^{\alpha +1}(v_{n}^{+})^{\beta +1}dx-\mu \int_{\Omega }(u_{n}^{+})^{\alpha '+1}(v_{n}^{+})^{\beta '+1}dx=c+o(1) \label{e3} \end{equation} and \begin{equation} \begin{aligned} &\| (u_{n},v_{n})\| _{E}^{2}-2^{\ast }\int_{\Omega }(u_{n}^{+})^{\alpha +1}(v_{n}^{+})^{\beta +1}dx -\mu (\alpha '+\beta '+2)\int_{\Omega }( u_{n}^{+})^{\alpha '+1}(v_{n}^{+})^{\beta '+1}dx\\ &=\langle \varepsilon _{n},(u_{n},v_{n})\rangle \end{aligned} \label{e4} \end{equation} with $\varepsilon _{n}\rightarrow 0$ in $E'$. Combining (4.1) and (4.2), we obtain \begin{equation} \begin{aligned} &(\frac{2^{\ast }}{2}-1)\int_{\Omega }(u_{n}^{+}) ^{\alpha +1}(v_{n}^{+})^{\beta +1}dx+\mu (\frac{\alpha '+\beta '}{2})\int_{\Omega }(u_{n}^{+}) ^{\alpha '+1}(v_{n}^{+})^{\beta '+1}dx\\ &\leq c+o(1)+\| \varepsilon _{n}\| _{E'}\| (u_{n},v_{n})\| _{E}. \end{aligned} \label{e5} \end{equation} From this inequality, we obtain \begin{gather*} \int_{\Omega }(u_{n}^{+})^{\alpha +1}(v_{n}^{+})^{\beta +1}dx\leq C\,, \\ \int_{\Omega }(u_{n}^{+})^{\alpha '+1}(v_{n}^{+})^{\beta ^{\prime }+1}dx\leq C\,. \end{gather*} Where $C$ is any generic positive constant. Therefore, the sequence $(u_{n},v_{n})$ is bounded in $E$. By the Sobolev embedding Theorem, there exists a subsequence again denoted by $(u_{n},v_{n})$ such that \begin{itemize} \item $(u_{n},v_{n})\to (u,v)$ weakly in $E$ \item $(u_{n},v_{n})\to (u,v)$ strongly in $L^{r}\times L^{q}$ for $2\leq r,q<2^{\ast }$ \item $( u_{n},v_{n})\to (u,v)$ a. e. on $\Omega$. \end{itemize} Since $w_{n}:=u_{n}^{\alpha }v_{n}^{\beta +1}$ and $t_{n}:=u_{n}^{\alpha +1}v_{n}^{\beta }$ are bounded sequences in $[L^{\frac{2^{\ast }}{2^{\ast }-1}}(\Omega )]^{2}$, these sequences converge to $w:=u^{\alpha }v^{\beta +1}$ and to $t:=u^{\alpha +1}v^{\beta }$ respectively. Passing to the limit, we obtain \begin{gather*} -\Delta u=(\alpha +1)(u^{+})^{\alpha }(v^{+})^{\beta +1}+\mu (\alpha '+1)(u^{+})^{\alpha '}(v^{+})^{\beta '+1} \\ -\Delta v=(\beta +1)(u^{+})^{\alpha +1}(v^{+})^{\beta } +\mu (\beta '+1)(u^{+})^{\alpha '+1}(v^{+})^{\beta '} \end{gather*} i.e \begin{equation*} \Vert (u,v)\Vert _{E}^{2}=2^{\ast }\int_{\Omega }(u^{+})^{\alpha +1}(v^{+})^{\beta +1}dx+\mu (\alpha '+\beta '+2) \int_{\Omega }(u^{+})^{\alpha '+1}(v^{+})^{\beta '+1}dx \end{equation*} Moreover, \begin{equation*} J(u,v)=(\frac{2^{\ast }}{2}-1)\int_{\Omega }(u^{+})^{\alpha +1}(v^{+})^{\beta +1}dx+\mu (\frac{\alpha '+\beta '}{2} )\int_{\Omega }(u^{+})^{\alpha '+1}(v^{+})^{\beta '+1}dx\geq 0. \end{equation*} We put \begin{equation*} u=u_{n}+\varphi _{n},\text{\ }v=v_{n}+\psi _{n}\quad \text{and}\quad H(u_{n},v_{n})=u_{n}^{\alpha +1}v_{n}^{\beta +1} \end{equation*} Applying Lemma \ref{lem2} for $H(u_{n},v_{n})$ and the following two relations (Brezis-Lieb \cite{6}) \begin{gather*} \Vert u_{n}\Vert ^{2}=\Vert u-\varphi _{n}\Vert ^{2}=\Vert u\Vert ^{2}+\Vert \varphi _{n}\Vert ^{2}+o(1)\,, \\ \Vert v_{n}\Vert ^{2}=\Vert v-\varphi _{n}\Vert ^{2}=\Vert v\Vert ^{2}+\Vert \psi _{n}\Vert ^{2}+o(1), \end{gather*} we obtain \begin{equation} J(u,v)+\frac{1}{2}\Vert (\varphi _{n},\psi _{n})\Vert _{E}^{2}-\int_{\Omega }H(\varphi _{n}^{+},\psi _{n}^{+})dx=c+o(1) \label{e7} \end{equation}% and \begin{equation} \begin{aligned} \| (\varphi _{n},\psi _{n})\| _{E}^{2}+\|(u,v)\| _{E}^{2} &=2^{\ast }\big[ \int_{\Omega }(H(u^{+},v^{+})+H(\varphi _{n}^{+},\psi _{n}^{+}) )dx\big]\\ &\quad +\mu (\alpha '+\beta '+2)\int_{\Omega }(u^{+})^{\alpha '+1}(v^{+})^{\beta'+1}dx+o(1). \end{aligned} \label{e8} \end{equation} From this equality, we deduce \begin{equation*} \Vert (\varphi _{n},\psi _{n})\Vert _{E}^{2}=2^{\ast }\int_{\Omega }H(\varphi _{n}^{+},\psi _{n}^{+})dx+o(1). \end{equation*} We may therefore assume that \begin{equation*} \Vert (\varphi _{n},\psi _{n})\Vert _{E}^{2}\rightarrow k\quad \text{and} \quad 2^{\ast }\int_{\Omega }H(\varphi _{n}^{+},\psi _{n}^{+})dx\rightarrow k. \end{equation*}% By the Sobolev inequality, \begin{equation*} \Vert (\varphi _{n},\psi _{n})\Vert _{E}^{2}\geq S_{\alpha ,\beta }\Big(% \int_{\Omega }\left( \varphi _{n}^{+}\right) ^{\alpha +1}(\psi _{n}^{+})^{\beta +1}dx\Big)^{\frac{2}{2^{\ast }}}. \end{equation*} In the limit, $k\geq S_{\alpha ,\beta }(\frac{k}{2^{\ast }})^{2/2^{\ast }}$. It follows that either $k=0$ or $k\geq 2^{\ast }(\frac{S_{\alpha ,\beta }}{2^{\ast }})^{N/2}$. We show that $(u_{n},v_{n})\to (u,v)$ strongly in $E$ i. e. $(\varphi_{n},\psi _{n})\to (0,0)$ strongly in $E$. Suppose that $k\geq 2^{\ast }(\frac{S_{\alpha ,\beta }}{2^{\ast }})^{N/2}$. Since \begin{equation*} J(u,v)+\frac{k}{N}=c \end{equation*} and $J(u,v)\geq 0$, then $\frac{k}{N}\leq c$ i.e. $c\geq \frac{ 2^{\ast }}{N}% (\frac{S_{\alpha ,\beta }(\Omega )}{2^{\ast } })^{N/2}$ in contradiction with the hypothesis. Thus $k=0$ and $(u_{n},v_{n})\to (u,v)$ strongly in $E$. \end{proof} \begin{proof}[Proof of Theorem \protect\ref{thm2}] It suffices to apply the mountain pass theorem with the value $c<\frac{2^{\ast }}{N}(\frac{S_{\alpha ,\beta }(\Omega )}{2^{\ast }})^{N/2}$. We have to show that this geometric condition on $c$ is satisfied. Following the method in \cite{7}. Without loss of generality we assume that $0\in \Omega $, we use the test function \begin{equation*} \omega _{\varepsilon }(x)=\frac{\varphi (x)}{(\varepsilon +\left\vert x\right\vert ^{2})^{\frac{N-2}{2}}}\,,\quad \varepsilon >0 \end{equation*}% where $\varphi $ is a cut-off positive function such that $\varphi \equiv 1$ in a neighborhood of $0$. Let $A$ and $B$ be positive constants such that \begin{equation*} \frac{A}{B}=(\frac{\alpha +1}{\beta +1})^{1/2} \end{equation*} then $(A\omega _{\varepsilon },B\omega _{\varepsilon })$ is a solution of \begin{gather*} -\Delta u=(\alpha +1)u^{\alpha }v^{\beta +1}\quad \text{in }\mathbb{R}^{N} \\ -\Delta v=(\beta +1)u^{\alpha +1}v^{\beta }\quad \text{in }\mathbb{R}^{N} \\ u(x)=0,\quad v(x)=0\quad \mbox{as }|x|\rightarrow +\infty \end{gather*} By \cite[lemma 1]{7}, we obtain \begin{equation*} \sup_{t\geq 0}J(tA\omega _{\varepsilon },tB\omega _{\varepsilon }) \leq \frac{2^{\ast }}{N}\big(\frac{S_{\alpha ,\beta }}{2^{\ast }}\big)^{N/2} +O\big(\varepsilon ^{\frac{N-2}{2}}\big)-\mu K\varepsilon ^{\theta } \end{equation*} where $K$ is a positive constant independent of $\varepsilon $, and $\theta:=(4-(\alpha '+\beta ')(N-2))/4$. For $\theta <\frac{N-2}{2}$ if $N>4$ the inequality is satisfying for all $0\leq \alpha '+\beta '<\frac{4}{N-2}$. Thus we obtain \begin{equation*} \sup_{t\geq 0} J(tA\omega _{\varepsilon },tB\omega _{\varepsilon }) <\frac{2^{\ast }}{N}\big(\frac{S_{\alpha ,\beta }}{ 2^{\ast }}\big)^{N/2}\quad \text{for }\varepsilon >0\text{ small enough}. \end{equation*} Then problem \eqref{Smu} has a solution for every $\mu >0$. For $N=4$, we distinguish two cases. Case 1: We have $\theta <1$ for all $% \alpha '+\beta '>0$.\newline Case 2: If $\alpha '+\beta '=0$, we obtain \begin{equation*} \sup_{t\geq 0} J(tA\omega _{\varepsilon },tB\omega _{\varepsilon }) \leq (\frac{S_{\alpha ,\beta }}{4}) ^{2}+O(\varepsilon )-\mu K\varepsilon | \log \varepsilon|, \end{equation*} so for $\varepsilon >0$ small enough, $\sup_{t\geq 0}J(tA\omega _{\varepsilon },tB\omega _{\varepsilon })<(\frac{ S_{\alpha ,\beta }}{4})^{2}$. Note that the maximum principle ensures the positivity of solution. \end{proof} \begin{proof}[Proof of Theorem \protect\ref{thm3}] In three dimension the situation is different. We have \begin{equation*} \sup_{t\geq 0} J(tA\omega _{\varepsilon },tB\omega _{\varepsilon }) \leq 2(\frac{S_{\alpha ,\beta }}{6})^{3/2}+O(\varepsilon ^{1/2}) -\mu K\varepsilon ^{\theta }. \end{equation*} In this case we distinguish two cases. \begin{itemize} \item[(i)] $0<\theta <\frac{1}{2}$ if $2<\alpha '+\beta '<4$, \item[(ii)] $\theta \geq \frac{1}{2}$ if $0<\alpha '+\beta '\leq 2$. \end{itemize} In case (i) we have the same conclusion as in the previous proof for $(N\geq 4)$. So for the case $0<\alpha '+\beta '\leq 2$, the existence of positive solution is assured for $\mu $ large enough. It follows that $\sup_{t\geq 0}J(tA\omega _{\varepsilon},tB\omega _{\varepsilon }) <2(\frac{S_{\alpha ,\beta }}{6})^{3/2}$. Thus \eqref{Smu} has a solution. \end{proof} \begin{thebibliography}{99} \bibitem{1} C. O. Alves, D. C. de Morais Filho and M. A. S. Souto; \emph{On Systems of Elliptic equations involving subcritical or critical Sobolev exponents}, Nonlinear Anal. N. 5, Ser. Theory Methods, 42 (2000), 771--787. \bibitem{2} A. Ambrosetti and P.H. Rabinowitz;\ \emph{Dual variational methods in critical point theory and applications}, J. Funct. Anal., 14 (1973), 349-381. \bibitem{3} L. Boccardo, D.G. de Figueiredo: \emph{Some remarks on system of quasilinear elliptic equations}, Nonlinear diff. eq. appl. 9 (2002), pp. 309-323. \bibitem{4} M. Bouchekif and Y. Nasri; \emph{On a class of elliptic system involving critical Sobolev exponent}, Preprint Tlemcen 2004. \bibitem{5} H. Brezis; \emph{Some Variational Problems with Lack of Compactness}, Proceedings of Symposia in Pure Mathematics, Vol. 45 (1986), 165-201. \bibitem{6} H. Brezis and E. Lieb; \emph{A relation between point wise convergence of functions and convergence of functionals}, Proc. A.M.S. Vol. 48, No. 3 (1993), 486-499. \bibitem{7} H. Brezis and L. Nirenberg; \emph{Positive Solutions of Nonlinear Elliptic Equations Involving Critical Exponents}, Comm. Pure Appl. Math, Vol. 36 (1983), 437-477. \bibitem{8} M. Conti, L. Merizzi and S. Terracini; \emph{On the existence of many solutions for a class of superlinear elliptic system}, J. Diff. Eq. 167 (2000), 357--387. \bibitem{9} S. I. Pohozaev; \emph{Eigenfunctions of the equation $\Delta u+\lambda f(u)=0$}, Nonlinearity Doklady Akad. Nauk SSRR 165, (1965), 9-36. \bibitem{10} P. Pucci and J. Serrin; \emph{A general variational identity}, Indiana University Mathematics Journal, (1986), 681-703. \bibitem{11} F. de Th\'{e}lin and J. V\'{e}lin; \emph{Existence and nonexistence of nontrivial solutions for some nonlinear elliptic systems}, Revista Mathematica Universidad complutense de Madrid, vol. 6 (1993), 153-193. \end{thebibliography} \end{document}