\documentclass[reqno]{amsart} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2004(2004), No. 142, pp. 1--9.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2004 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2004/142\hfil Uniqueness of positive solutions] {Uniqueness of positive solutions for a class of ODE's with Dirichlet boundary conditions} \author[Yulian An \& Ruyun Ma\hfil EJDE-2004/142\hfilneg] {Yulian An, Ruyun Ma} % in alphabetical order \address{Yulian An \hfill\break School of Mathematics, Physics \& Software Engineering, Lanzhou Transportation University, Lanzhou 730070, China} \email{yulian\_an@tom.com} \address{Ruyun Ma \hfill\break Department of Mathematics, Northwest Normal University, Lanzhou 730070, China} \email{mary@nwnu.edu.cn} \date{} \thanks{Submitted August 18, 2004. Published November 29, 2004.} \thanks{Supported by grants: 10271095 form the NSFC, and GG-110-10736-1003, NWNU-KJCXGC-\hfill\break\indent 212 from the Foundation of Excellent Young Teacher of the Chinese Education Ministry} \subjclass[2000]{34B15} \keywords{Boundary value problem; positive solutions; uniqueness;\hfill\break\indent shooting method; Sturm comparison theorem} \begin{abstract} We study the uniqueness of positive solutions of the boundary-value problem \begin{gather*} u''+a(t)u'+f(t,u)=0 ,\quad t\in (0,b)\\ u(0)=0,u(b)=0\,, \end{gather*} where $00. \label{e2.2} \end{gather} For a given number $\alpha>0$, we know from the assumptions $a\in C^1[0,\infty)$ and $f\in C^1([0, \infty)\times [0, \infty), [0, \infty))$ that \eqref{e2.1}-\eqref{e2.2} has a unique solution $u(t,\alpha)$ defined on $(0,T_{\alpha})$, where $T_{\alpha}$ is either $+\infty$ or a positive number such that $u$ can not be further continued to the right of $T_{\alpha}$. If $\alpha>0$, then $u(0,\alpha)=0,\ u'(0,\alpha)=\alpha>0$. Therefore, there exists a positive number $\epsilon\in (0,T_{\alpha}) $ such that $$ u(t,\alpha)>0,\quad t\in (0,\ \epsilon). $$ When $u(t,\alpha)$ vanishes at some $t_0\in (0,T_{\alpha})$, we define $b(\alpha)$ to be the first zero of $u(t,\alpha)$ in $(0, T_{\alpha})$. More precisely, $b(\alpha)$ is a function of $\alpha$ which has the properties $$ u(t,\alpha)>0,\quad t\in (0, b(\alpha));\quad u(b(\alpha),\alpha)=0. $$ If $u(t,\alpha)$ is positive in $(0, T_{\alpha})$, then we define $b(\alpha)=T_{\alpha}$. Denote $$ N:=\{\alpha:\alpha>0,\; b(\alpha)0$, if we can prove there exists at most one $\alpha \in N$ such that $b=b(\alpha)$, then we conclude the uniqueness of positive solutions of the problem \eqref{e1.1}-\eqref{e1.2}. We denote the {\it variation} of $u(t,\alpha)$ by $$ \phi (t,\alpha)=\partial u(t,\alpha)/\partial \alpha, \quad t\in [0, T_{\alpha}). $$ Then $\phi(t,\alpha)$ satisfies \begin{gather} \phi''+a(t)\phi'+f_u(t,u)\phi=0,\quad t\in [0, T_{\alpha}) \label{e2.3} \\ \phi(0)=0,\quad \phi'(0)=1, \label{e2.4} \end{gather} where the notation $f_u(t,u)$ denotes $\partial f(t,u)/\partial u$. Let $L$ be the linear operator \begin{equation} L(\phi)=\phi''+a(t)\phi'+f_u(t,u)\phi,\quad t\in [0, T_{\alpha}) \label{e2.5} \end{equation} and \begin{equation} G_h(t)=u(t,\alpha)+\frac{h-1}{2}\frac{v(t)}{v'(t)}u'(t,\alpha) ,\quad t\in [0, T_{\alpha}) \label{e2.6} \end{equation} where $$ v(t)=\int_0^t\exp\big(-\int_0^\tau a(s)ds\big)d\tau %\label{e2.7} $$ and accordingly $$ v'(t)= \exp\big(-\int_0^t a(s)ds\big). $$ It is easy to check that $$ v''(t)+a(t)v'(t)=0, \quad t\in [0, T_{\alpha}). $$ A different function $G_h(t)$ has been used by Erbe and Tang \cite{e1}. However, the function $G_h(t)$ defined by \eqref{e2.6} is first introduced here. Differentiating $G_h(t)$ with respect to $t$, we get \begin{align*} G_h'(t)&=u'(t,\alpha)+\frac{h-1}{2}(\frac{v(t)}{v'(t)})'u'(t,\alpha)+ \frac{h-1}{2}\frac{v(t)}{v'(t)}u''(t,\alpha)\\ &=u'(t,\alpha)+\frac{h-1}{2}(\frac{v(t)}{v'(t)})'u'(t,\alpha)\\ &\quad + \frac{h-1}{2}\frac{v(t)}{v'(t)}(-f(t,u(t,\alpha))-a(t)u'(t,\alpha))\\ &=\big(1+\frac{h-1}{2}(\frac{v(t)}{v'(t)})'-\frac{h-1}{2}a(t)\frac{v(t)}{v'(t)}\big)u'(t,\alpha) -\frac{h-1}{2}\frac{v(t)}{v'(t)}f(t,u(t,\alpha)) \end{align*} and \begin{align*} G_h''(t) &=[\frac{h-1}{2}(\frac{v}{v'})''-\frac{h-1}{2}a'(t)\frac{v}{v'} -\frac{h-1}{2}a(t)(\frac{v}{v'})']u'\\ &\quad +(1+\frac{h-1}{2}(\frac{v}{v'})'-\frac{h-1}{2}a(t)\frac{v}{v'})(-f(t,u)-a(t)u')\\ &\quad -\frac{h-1}{2}(\frac{v}{v'})'f(t,u)-\frac{h-1}{2}\frac{v}{v'}f_u(t,u)u' -\frac{h-1}{2}\frac{v}{v'}f_t(t,u)\\ &=[-a(t)-\frac{h-1}{2}a(t)(\frac{v}{v'})'+a^2(t)\frac{h-1}{2}\frac{v}{v'}]u'\\ &\quad -[1+(h-1)(\frac{v}{v'})'-\frac{h-1}{2}a(t)\frac{v}{v'}]f(t,u) -\frac{h-1}{2}\frac{v}{v'}f_u(t,u)u'\\ &\quad -\frac{h-1}{2}\frac{v}{v'}f_u(t,u). \end{align*} where $f_t(t,u)$ denotes $\partial f(t,u)/\partial t$. So we have \begin{align*} L(G_h(t))&= G_h''(t)+a(t)G_h'(t)+f_u(t,u)G_h(t)\\ &= G_h''(t)+a(t)(1+\frac{h-1}{2}(\frac{v}{v'})'-\frac{h-1}{2}a(t)\frac{v}{v'})u'\\ &\quad -\frac{h-1}{2}\frac{v}{v'}a(t)f(t,u) +f_u(t,u)u+\frac{h-1}{2}\frac{v}{v'}f_u(t,u)u'\\ &=f_u(t,u)u-[1+(h-1)(\frac{v}{v'})']f(t,u)-\frac{h-1}{2}\frac{v}{v'}f_u(t,u). \end{align*} Denote $L_h(t)=L(t,u,\alpha)=L(G_h(t))$, then $$ L_h(t)=f_u(t,u)u-[1+(h-1)(\frac{v}{v'})']f(t,u)-\frac{h-1}{2}\frac{v}{v'}f_u(t,u). %\label{e2.8} $$ Note that when $h=1$, we simply have $G_1(t)=u(t,\alpha),$ and $L_1(t)=uf_u(t,u)-f(t,u)$. We will use the following assumptions: \begin{itemize} \item[(A1)] $f(t,0)\equiv 0$, and $uf_u(t,u)>f(t,u)>0$ for all $t>0$, $u>0$ \item[(A2)] $a(t)\le 0$, $a(t)v(t)+v'(t)\ge 0$, for all $t\ge 0$ \item[(A3)] If $\alpha>0$ and $h\ge 1$, and there exists a $\widetilde{t}\in (0, b(\alpha))$, such that $L_h(\widetilde{t}, \alpha)\ge 0$, then $L_h(t,\alpha)\ge 0$ for all $t\in [\widetilde{t},\ b(\alpha))$ \item[(A4)] $(v(t)/v'(t))'f(t,u)+(v(t)/2v'(t))f_u(t,u)>0$, for all $t> 0$, $u>0$. \end{itemize} The main result of this paper is as follows. \begin{theorem} \label{thm1} Assume (A1)-(A4) hold. Then \eqref{e1.1}-\eqref{e1.2} has at most one positive solution. \end{theorem} \begin{example} \label{ex1} \rm Let $f(t,u)=u^p$ $(p>1)$, $a(t)\equiv -1$. Then $$ a(t)v(t)+v'(t)=1>0,\quad L_h(t)=u^p[p-1-(h-1)e^{-t}]. $$ Obviously, (A1), (A2) are satisfied. Since $e^{-t}$ is strictly decreasing for $t>0$, (A3) is satisfied. Meanwhile, $$ (\frac{v}{v'})'f(t,u)+\frac{v}{2v'}f_u(t,u)=e^{-t}u^p>0,\quad t>0,\; u>0. $$ (A4) is also satisfied. \end{example} \begin{example} \label{ex2} \rm Let $f(t,u)=t^lu^p$ $(l>0,\,p>1)$ and $a(t)\equiv 0$. Then $$ a(t)v(t)+v'(t)=1>0,\quad L_h(t)=t^lu^p[p-h-(h-1)l/2] $$ and $$ (\frac{v}{v'})'f(t,u)+\frac{v}{2v'}f_u(t,u)=t^lu^p(1+\frac{l}{2t^2})>0, \quad t>0,\ u>0. $$ Obviously, (A1)-(A4) are satisfied. \end{example} \section{Preliminary Results} \begin{lemma} \label{lem2} Suppose $f(t,0)\equiv 0$ for all $t\ge 0$, and \begin{equation} \phi(b(\alpha),\alpha)\neq 0, \quad \alpha \in N. \label{e3.1} \end{equation} Then one of the following cases must occur \begin{itemize} \item[(i)] $N$ is an open interval \item[(ii)] $N=(0, j_1)\cup(j_2, \infty)$ with $00$ for all $(0,j_1)$;\ $b'(\alpha)<0$ for all $(j_2, \infty)$. \end{itemize} \end{lemma} \begin{proof} From the definition of $b(\alpha)$, we have that $u'(b(\alpha),\alpha)\le 0$ and for all $\alpha\in N$, \begin{equation} u(b(\alpha),\alpha)=0. \label{e3.2} \end{equation} If $u'(b(\alpha),\alpha)=0$, then \eqref{e3.2} with the assumption $f(t,0)\equiv 0$ for $t\geq 0$ imply $$ u(t, \alpha)\equiv 0, \quad t>0 $$ However this contradicts the fact $u'(0,\alpha)=\alpha>0$. Therefore, we must have \begin{equation} u'(b(\alpha),\alpha)<0. \label{e3.3} \end{equation} By the Implicit Function Theorem, $b(\alpha)$ is well-defined as a function of $\alpha$ in $N$ and $b(\alpha)\in C^1(N)$. Furthermore, it follows from \eqref{e3.3} that $N$ is an open set. Differentiating both sides of the identity \eqref{e3.2} with respect to $\alpha$, we obtain \begin{equation} u'(b(\alpha),\alpha)b'(\alpha) +\phi(b(\alpha),\alpha)=0. \label{e3.4} \end{equation} Combining this with \eqref{e3.1}, it follows that $b'(\alpha)\neq 0$. We note that if $\bar \alpha\in (0,\infty)\setminus N$ with $\{\alpha_n\}\subset N$ and $\alpha_n\to\bar\alpha$ as $n\to\infty$, then $$ b(\alpha_n)\to+\infty. $$ Otherwise, on the contrary , we may suppose that $b(\alpha_n)\to t_1$ as $n\to\infty$. Let $n\to \infty$, we have from $u(b(\alpha_n),\alpha_n)=0$ that $u(t_1,\bar \alpha)=0$. However this contradicts $\bar\alpha\notin N$. If $N$ be not an open interval, and let $J_1=(j_0,j_1)$ and $J_2=(j_2,j_3)$ be two distinct components of $N$ with $00$ in $J_1$, and $b'(\alpha)<0$ in $J_2$. Meanwhile $$ \lim_{\alpha\to j_0^+}b(\alpha)<+\infty,\quad \lim_{\alpha\to j_3^-}b(\alpha)<+\infty $$ It follows that $j_0=0$ and $j_3=+\infty$. Therefore $N=(0,j_1)\cup(j_2,\infty)$ with $b'(\alpha)>0$ in $(0,j_1)$, and $b'(\alpha)<0$ in $(j_2,\infty)$. The proof is completed. \end{proof} \begin{lemma} \label{lem3} Let $\alpha\in N $, and let $f(t,u)$ satisfy (A1). Then $\phi(t,\alpha)$ has at least one zero in $(0,b(\alpha))$. \end{lemma} \begin{proof} Note that $L(\phi)=0$, i.e., \begin{equation} \phi''+a(t)\phi'+f_u(t,u)\phi=0 \label{e3.5} \end{equation} Meanwhile, \begin{equation} G_h''(t)+a(t)G_h'(t)+f_u(t,u)G_h(t)=L_h(t) \label{e3.6} \end{equation} Multiply both sides of \eqref{e3.6} by $\exp\big(\int_0^t a(s)ds\big)\phi(t,\alpha)$, and multiply both sides of \eqref{e3.5} by $\exp\big(\int_0^t a(s)ds\big)G_h(t)$, then subtract the resulting identities, we have \begin{equation} \big[\exp\big(\int_0^t a(s)ds\big)(G_h'\phi-G_h\phi')\big]' = \exp\big(\int_0^t a(s)ds\big)\phi(t,\alpha)L_h(t). \label{e3.7} \end{equation} Set $h=1$ in \eqref{e3.7}, we get \begin{equation} \big[\exp\big(\int_0^t a(s)ds\big)(u'\phi-u\phi')\big]'=\exp\big(\int_0^t a(s)ds\big)\phi(t,\alpha)(f_u(t,u)u-f(t,u)) \label{e3.8} \end{equation} Suppose on the contrary that $\phi(t,\alpha)$ does not vanish in $(0,b(\alpha))$. Then we know from \eqref{e2.4} that $$ \phi(t,\alpha)>0, \quad t\in (0, b(\alpha)). $$ This implies that the right hand side of \eqref{e3.8} is positive in $(0,b(\alpha))$, and accordingly \begin{equation} \big[\exp\big(\int_0^t a(s)ds\big)(u'\phi-u\phi')\big]'>0, \quad t\in (0,b(\alpha)). \label{e3.9} \end{equation} Since $$ \exp\big(\int_0^t a(s)ds\big)(u'\phi-u\phi')\Big|_{t=0}=0 $$ we have form \eqref{e3.9} that \begin{equation} \exp\big(\int_0^t a(s)ds\big)(u'\phi-u\phi')\Big|_{t=b(\alpha)}>0. \label{e3.10} \end{equation} On the other hand $$ \exp\big(\int_0^t a(s)ds\big)(u'\phi-u\phi')\big|\,_{t=b(\alpha)} =\exp\big(\int_0^{b(\alpha)} a(s)ds\big)u'(b(\alpha),\alpha)\phi(b(\alpha),\alpha)\le 0 $$ which contradicts \eqref{e3.10}. Therefore, $\phi(t,\alpha)$ has at least one zero in $(0, b(\alpha))$. \end{proof} \section{Proof of Theorem \ref{thm1}} We note that for any $\alpha \in N$, \eqref{e3.4} holds. If we can show that \begin{equation} \phi(b(\alpha),\alpha) <0,\quad \alpha \in N \label{e4.1} \end{equation} then from \eqref{e4.1}, \eqref{e3.3} and \eqref{e3.4}, it follows that $b'(\alpha)<0$. Combining this with Lemma \ref{lem2}, we conclude that $N$ is an open interval and $ b'(\alpha)<0$ for all $\alpha\in N$. So $b(\alpha)$ is a strictly decreasing function in $N$. Thus, for any given $b>0$, there is at most one $\alpha \in N$ such that $b(\alpha)=b$. If such $\alpha $ exists exactly, then $u(t,\alpha)$, which is the unique solution of the initial value problem \eqref{e2.1}-\eqref{e2.2}, must be the positive solution of boundary value problem \eqref{e1.1}-\eqref{e1.2}. Combining this with the uniqueness of solution of the initial value problem, we know that the positive solution of \eqref{e1.1}-\eqref{e1.2} is unique. \begin{proof}[Proof of Theorem \ref{thm1}] We need only to prove \eqref{e4.1}. To this end, we divide the proof into six steps. \noindent{\it Step 1.}\ We show that there exists unique $c(\alpha)\in (0,b(\alpha))$ such that \begin{equation} u'(c(\alpha),\alpha)=0 \label{e4.2} \end{equation} and \begin{equation} u'(t,\alpha)>0 \mbox{ on } [0, c(\alpha));\quad u'(t,\alpha)<0 \mbox{ on } (c(\alpha),b(\alpha)] \label{e4.3} \end{equation} In fact, if $\tau\in (0, b(\alpha))$ such that $u'(\tau,\alpha)=0$. Then from \eqref{e2.1} and (A1), we have that $$ u''(\tau)=f(\tau, u(\tau, \alpha))<0 $$ which means that $\tau$ is a local maximum of $u(t,\alpha)$. Combining this with the fact $u(0, \alpha)=u(b(\alpha),\alpha)=0$, it concludes that there exists unique $c(\alpha)\in (0, b(\alpha))$ such that \eqref{e4.2} and \eqref{e4.3} hold. \noindent{\it Step 2.} We show that \begin{equation} \phi(t,\alpha)> 0,\quad t \in (0, c(\alpha)]. \label{e4.4} \end{equation} From the facts that $u(t,\alpha)>0$ and $u'(t,\alpha)>0$ on $(0, c(\alpha))$, we have that $$ G_h(t)>0,\quad t\in (0, c(\alpha)] % \label{e4.5} $$ whenever $h\ge 1$. Since \begin{align*} L_h(c(\alpha)) &=\big[f_u(t,u)u-\big(1+({h}-1)(\frac{v}{v'})'\big)f(t,u) -\frac{h-1}{2}\frac{v}{v'}f_u(t,u)\big]_{t=c(\alpha)}\\ &=\big[f_u(t,u)u-\big(1-(\frac{v}{v'})'\big)f(t,u)+\frac{v}{2v'}f_u(t,u)\\ &\quad -h\ \big((\frac{v}{v'})'f(t,u) +\frac{v}{2v'}f_u(t,u)\big)\big]_{t=c(\alpha)}\\ \end{align*} Combing it with (A4), we can choose $\bar{h}\in (1, \infty)$ so large such that $$ L_{\bar{h}}(c(\alpha))<0 %\label{e4.6} $$ which together with (A3) implies that \begin{equation} L_{\bar{h}}(t)<0,\quad t\in (0, c(\alpha)]. \label{e4.7} \end{equation} Suppose on the contrary that \eqref{e4.4} is not true, and let $t_2$ be the first zero of $\phi(t, \alpha)$ in $(0,c(\alpha)]$. Then \begin{equation} \phi(t, \alpha)>0\ \mbox{on}\ t\in (0, t_2), \ \ \phi(t_2, \alpha)=0. \label{e4.8} \end{equation} Note that $\phi(t,\alpha)$ and $G_{\bar h}(t)$ satisfy $$ \big[\exp\big(\int_0^t a(s)ds\big)(G'_{\bar h}\phi-G_{\bar h}\phi')\big]' =\exp\big(\int_0^t a(s)ds\big)\phi(t,\alpha)L_{\bar h}(t) %\eqno\eqref{e4.9} $$ which together with \eqref{e4.7}, \eqref{e4.8} imply \begin{equation} \big[\exp\big(\int_0^t a(s)ds\big)(G'_{\bar h}\phi-G_{\bar h}\phi')\big]'<0, \quad t\in (0, t_2) \label{e4.10} \end{equation} Since $G_{\bar h}(0)=u(0,\alpha)=0$, it follows that $$ \big[\exp\big(\int_0^t a(s)ds\big)(G'_{\bar h}\phi-G_{\bar h}\phi')\big]_{t=0}=0 %\label{e4.11} $$ which and \eqref{e4.10} yield \begin{equation} \big[\exp\big(\int_0^t a(s)ds\big)(G'_{\bar h}\phi-G_{\bar h}\phi')\big]_{t=t_2}<0. \label{e4.12} \end{equation} On the other hand, since $\phi'(t_2)\leq 0$ and $G_{\bar h}(t_2)>0$, we have \begin{align*} &\big[\exp\big(\int_0^t a(s)ds\big)(G'_{\bar h}\phi-G_{\bar h}\phi')\big]_{t=t_2}\\ &= \exp\big(\int_0^{t_2} a(s)ds\big)(-G_{\bar h}(t_2)\phi'(t_2)) \geq 0 \end{align*}% \label{e4.13} This contradicts \eqref{e4.12}. Therefore \eqref{e4.4} holds. \noindent{\it Step 3.} We show that if $h>1$ then $G_h(t)$ has exactly one zero $\tau_h$ in $(c(\alpha), b(\alpha))$. If $h>1$, we have from the definition of $G_h(t)$ that $$ G_h(c(\alpha))=u(c(\alpha))>0,\quad G_h(b(\alpha))<0 %\label{e4.14} $$ which implies that $G_h(t)$ with $h>1$ must have zeros in $(c(\alpha), b(\alpha))$. Next we show that $G_h(t)$ with $h>1$ has at most one zero in $(c(\alpha), b(\alpha))$. For any given $h>1$, let $G_h(t)=0$ for some $t\in (c(\alpha), b(\alpha))$. Then $$ u(t,\alpha)+\frac{h-1}{2}\frac{v(t)}{v'(t)}u'(t,\alpha)=0 $$ and consequently $$ \frac{u'(t)}{u(t)}= \frac{2}{1-h}\frac{v'(t)}{v(t)}. % \label{e4.15} $$ Set $$ w_1(s)=\frac{u'(s)}{u(s)},\quad s\in (c(\alpha),b(\alpha)) $$ and $$ w_2(s)=\frac{2}{1-h}\frac{v'(s)}{v(s)}, \quad s\in (c(\alpha), b(\alpha)) $$ By (A2), we have \begin{gather*} w_1'(s)=\frac{-a(s)u'u-f(s,u)u-u'^2}{u^2}<0,\quad s\in (c(\alpha),\ b(\alpha)) \\ w_2'(s)=\frac{2}{1-h}\frac{-v'(a(s)v+v')}{v^2}\ge 0,\quad s\in (c(\alpha),\ b(\alpha)). \end{gather*} Hence, $w_1(s)$ and $w_2(s)$ intersect at most once in $(c(\alpha), b(\alpha))$, and accordingly $G_h(t)$ $(h>1)$ has at most one zero in $(c(\alpha), b(\alpha))$. \noindent{\it Step 4.}\ Let $\theta(\alpha)$ be the first zero of $\phi(t,\alpha)$ in $(c(\alpha), b(\alpha))$. We show that there exists an unique $p\in (1, \infty)$ such that the unique zero, $\tau_p$, of $G_p(t)$ in $(c(\alpha), b(\alpha)]$ satisfying \begin{gather} \tau_p=\theta(\alpha) \label{e4.16} \\ G_p(t)>0 \mbox{ on } (0, \theta(\alpha)),\quad G_p(\theta(\alpha))=0,\quad G_p(t)<0 \mbox{ on } (\theta(\alpha), b(\alpha)], \label{e4.17} \\ \phi(t,\alpha)>0\mbox{ on }(0, \theta(\alpha)), \quad \phi(\theta(\alpha),\alpha)=0. \label{e4.18} \end{gather} Note that for $t\in (c(\alpha), b(\alpha))$, $u'(t,\alpha)<0$. From the definition of $G_h(t)$, we have that for any fixed $\tau \in (c(\alpha), b(\alpha))$, $G_h(\tau)$ is continuous and strictly decreasing with respect to $h$. Since $G_1(\tau)=u(\tau,\alpha)>0$ and $\lim_{h\to +\infty}G_h(\tau)=-\infty$, there must be a unique $h>1$ such that $$ G_{h}(\tau)=0. $$ In particular, for $\theta(\alpha)\in (c(\alpha), b(\alpha))$, there exists a unique number $p\in (1, \infty)$ such that $$ G_p(\theta(\alpha))=0 $$ i.e. $\tau_p=\theta(\alpha)$. Equations \eqref{e4.17} and \eqref{e4.18} can be deduced from the fact that both $G_p$ has unique zero in $(c(\alpha), b(\alpha))$ and $\theta(\alpha)$ is the first zero of $\phi(t, \alpha)$ in $(c(\alpha), b(\alpha))$. \noindent{\it Step 5.}\ We show that there exists $t_3\in (0,\theta(\alpha)]$ such that \begin{equation} L_p(t_3)\ge 0. \label{e4.19} \end{equation} Suppose on the contrary that $L_p(t)< 0$ on $(0, \theta(\alpha)]$. Note that $\phi(t,\alpha)$ and $G_p(t)$ satisfy \begin{equation} \big[\exp\big(\int_0^t a(s)ds\big)(G_p'\phi-G_p\phi')\big]' =\phi(t,\alpha)L_p(t)\exp\big(\int_0^t a(s)ds\big). \label{e4.20} \end{equation} Since the right-hand side of \eqref{e4.20} is negative on $(0,\theta(\alpha))$, $$ \big[\exp\big(\int_0^t a(s)ds\big)(G_p'\phi-G_p\phi')\big]'<0, \quad t\in (0, \theta(\alpha)) %\label{e4.21} $$ This and $$ \exp\big(\int_0^t a(s)ds\big)(G_p'\phi-G_p\phi')\Big|_{t=0}=0 $$ imply that \begin{equation} \exp\big(\int_0^t a(s)ds\big)(G_p'\phi-G_p\phi')\Big|_{t=\theta(\alpha)}<0 \label{e4.22} \end{equation} On the other hand, we have from \eqref{e4.16} and the definitions of $p$ and $\theta(\alpha)$ that $$ \exp\big(\int_0^t a(s)ds\big)(G_p'\phi-G_p\phi')\Big|_{t=\theta(\alpha)}= 0 $$ This contradicts \eqref{e4.22}. Therefore, \eqref{e4.19} holds for some $t_3\in (0, \theta(\alpha)]$. \noindent{\it Step 6.}\ We show that $\theta(\alpha)$ is the unique zero of $\phi(t, \alpha)$ in $(c(\alpha), b(\alpha)]$. Suppose on the contrary that there exists $\tau_1\in (\theta(\alpha), b(\alpha)]$ such that $$ \phi(\tau_1, \alpha)=0, \quad \phi(t, \alpha)<0\quad \mbox{on } (\theta(\alpha), \tau_1) $$ and \begin{equation} \phi'(\tau_1, \alpha)>0. \label{e4.23} \end{equation} (Note that if $\phi'(\tau_1, \alpha)=0$, then $\phi\equiv 0$. This contradicts \eqref{e2.4}) We have from (A3) and \eqref{e4.19} that $$ L_p(t)\ge 0,\quad t\in [\theta(\alpha), b(\alpha)). %\label{e4.24} $$ Integrating both sides of \eqref{e4.20} from $\theta(\alpha)$ to $\tau_1$, we get \begin{equation} -\exp\big(\int_0^{\tau_1} a(s)ds\big)G_p(\tau_1)\phi'(\tau_1,\alpha) =\int_{\theta(\alpha)}^{\tau_1}\exp\big(\int_0^t a(s)ds\big)\phi(t,\alpha)L_p(t)dt. %\label{e4.25} \end{equation} This together with the fact $\phi(t,\alpha)<0$ on $(\theta(\alpha), \tau_1) $ implies that \begin{equation} -\exp\big(\int_0^{\tau_1} a(s)ds\big)G_p(\tau_1(\alpha))\phi'(\tau_1,\alpha)\leq 0. \label{e4.26} \end{equation} On the other hand, we have from the fact $G_p(\tau_1)<0$ and \eqref{e4.23} that $$ -\exp\big(\int_0^{\tau_1} a(s)ds\big)G_p(\tau_1)\phi'(\tau_1,\alpha)> 0. $$ This contradicts \eqref{e4.26}. Therefore, $\phi(t,\alpha)$ has not zero point in $(\theta(\alpha), b(\alpha)]$, and consequently $\phi(b(\alpha), \alpha)<0$. \end{proof} \begin{thebibliography}{00} \bibitem{c1} C. V. Coffman; \emph{Uniqueness of the positive radial solution on an annulus of the Dirichlet problem for $\Delta u-u+u^3=0$}, J. Differential Equations, 128(1996), 379-386. \bibitem{e1} L. Erbe and M. Tang; \emph{Uniqueness of positive radial solutions of $\Delta u+f(|x|, u)=0$}, Differential and Integral Equations, 11(1998),725-743. \bibitem{e2} L. Erbe and M. Tang; \emph{Uniqueness theorems for positive solutions of quasilinear elliptic equations in a ball}, J. Differential Equations, 138(1997), 351-379. \bibitem{f1} C. C. Fu and S. S. Lin; \emph{Uniqueness of positive radial solutions for semilinear elliptic equations on annular domains}. Nonlinear Anal., 44(6) (2001), 749--758. \bibitem{n1} W. M. Ni and R. D. Nussbaum; \emph{Uniqueness and nonuniqueness for positive radial solutions of $\Delta u+f(u,r)=0$}, Comm. Pure Appl. Math., 38(1) (1985), 67--108. \end{thebibliography} \end{document}