\documentclass[reqno]{amsart} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2004(2004), No. 147, pp. 1--18.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2004 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2004/147\hfil Generalized scalar curvature type equation] {Generalized scalar curvature type equation on complete Riemannian manifolds} \author[M. Benalili, Y. Maliki\hfil EJDE-2004/147\hfilneg] {Mohammed Benalili, Youssef Maliki} % in alphabetical order \address{Mohammed Benalili \hfill\break Facult\'{e} des Sciences, Dept. de Math\'{e}matiques, B. P. 119, Universit\'{e} Aboubekr Belka\"{\i}d, Tlemcen, Algerie} \email{m\_benalili@mail.univ-tlemcen.dz} \address{Youssef Maliki \hfill\break Facult\'{e} des Sciences, Dept. de Math\'{e}matiques, B. P. 119, Universit\'{e} Aboubekr Belka\"{\i}d, Tlemcen, Algerie} \email{m-youssef@mail.univ-tlemcen.dz} \date{} \thanks{Submitted November 26, 2004. Published December 13, 2004.} \subjclass[2000]{58J05} \keywords{Complete manifolds; p-Laplacian; critical Sobolev exponent} \begin{abstract} In this work, we investigate positive solutions for a quasilinear elliptic equation on complete manifold $M$. This equation extends to the $p$-Laplacian the equation of the prescribed scalar curvature. A minimizing sequence is constructed which converges to a non trivial solution belonging to $C^{1,\alpha }(K)$ for any compact set $K\subset M$ and some $\alpha \in (0,1)$. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \allowdisplaybreaks \section{Introduction} Let $(M,g)$ be a complete Riemannian manifold of dimension $n\geq 3$, with bounded geometry, $R(x)$ its scalar curvature and $p\in (1,n)$. Let $H_{1}^{p}(M)$ be the standard Sobolev space endowed with the norm \begin{equation*} \Vert u\Vert _{H_{1}^{p}(M)}=\Vert \nabla u\Vert _{L^{p}(M)}+\Vert u\Vert _{L^{p}(M)}. \end{equation*} In this paper, we seek for a positive solution $u\in H_{1,\mathrm{loc}}^{p}(M)$ to the equation \begin{equation} \Delta _{p}u+a(x)u^{p-1}=f(x)u^{p\ast -1}. \label{e1} \end{equation} where $\Delta _{p}u=-div(|\nabla u|^{p-2}\nabla u)$ is the $p$-Laplacian of $u$ on $M$ and $p^{\ast }=\frac{pn}{n-p}$. Our results extend those of Druet \cite{d1} obtained in the case of compact manifolds. On complete Riemannian manifold conditions at infinity on $f$ must be added. In the case $p=2$ and the function $a(x)=\frac{n-2}{n(n-1)}R(x)$, where $R(x) $ is the scalar curvature of the manifold $M$, the problem of the existence of a positive solution of the equation \eqref{e1} is originated from the study of pointwise conformal deformation of Riemannian metric with prescribed scalar curvature. If in case $p=2$, $u$ is a positive solution of \eqref{e1} on $(M,g)$, then the scalar curvature of the pointwise conformal metric $g'=u^{\frac{4}{n-2}}g$ \ is $\frac{4(n-1)}{n-2}f$ (cf. \cite{d1}). The equation \eqref{e1} is referred as the generalized scalar curvature type equation. Our main result in this paper is as follows. \begin{theorem} \label{thm1} Let $( M,g) $ be a complete non-compact Riemannian $n$-manifold with $n\geq 3$ , $13p-2$ and $a(x_{o})<0$ \item[(ii)] $p=2$ and $\frac{8( n-1) }{( n-2) ( n-4) }a(x_{o})<\frac{-\Delta f(x_{o})}{f(x_{o})}+\frac{2R(x_{o})}{n-4}$ \item[(iii)] $p>2$ and $( \frac{n-3p+2}{p}) \frac{\Delta f(x_{o})}{ f(x_{o})}-c$, where $c\geq 0$ is a constant, and the injectivity radius is strictly positive. \item There exists a constant $C>0$ such that \[ |\nabla f| \leq Cf,|\nabla ^{2}f| \leq Cf,\int_{M}|a| ^{\frac{n}{p}}dv_{g}\leq C\int_{M}fdv_{g}<\infty \text{ and }\int_{M}f^{p/p\ast}dv_{g}<\infty . \] \item The functions $a$ and $f$ are bounded and $f$ is strictly positive. \end{enumerate} Then, there exists a positive solution $u\in H_{1,loc}^{p}(M)$ of \eqref{e1} such that $u\in C^{^{1,\alpha }}(K)$ on any compact set $K$ of $M$ for some $\alpha \in ( 0,1)$. \end{theorem} This article is organized as follows: in the second section we construct a sequence of minimizing weak solutions, in the third section we give sufficient geometric conditions to guarantee the strong convergence of the minimizing sequence. Using the Aubin's test functions, we show in the last section that these geometric conditions are satisfied. \section{Convergence of the minimizing sequence} In this section, we construct a sequence of weak solutions for \eqref{e1}. The following theorem has been proved in \cite{d1}. \begin{theorem} \label{thm2} Let $( M,g) $ be a Riemannian compact manifold $13p-2$ and $a(x_{o})<0$ \item[(ii)] $p=2$ and $\frac{8( n-1) }{( n-2) ( n-4) }a(x_{o})<\frac{-\Delta f(p)}{f(p)}+\frac{2R(x_{o})}{n-4}$ \item[(iii)] $p>2$ and $( \frac{n-3p+2}{p}) \frac{\Delta f(x_{o})}{ f(x_{o})}0 \quad \text{in }\Omega_{j} \\ u_{j}=0 \quad \text{on }\partial \Omega_{j}\,. \end{gathered} \label{e2} \end{equation} By the monotone decreasness of $\mu (\Omega _{j})$ and the coercivity of the operator $L_{p}u=\Delta _{p}u+a(x)u^{p-1}$, we have \begin{equation} \Vert u\Vert _{H_{1}^{p}(\Omega _{j})}\leq \frac{1}{c}\mu (\Omega _{1}) \label{e3} \end{equation} where $c>0$ is a constant. Since \eqref{e3} implies the boundedness of $\{u_{i}\}$ in $H_{1}^{p}(M)$, we can choose a subsequence of $\{u_{i}\}$ still denoted $\{u_{i}\}$ such that $u_{i}\rightarrow u$ weakly in $H_{1}^{p}(M)$ \begin{proposition} \label{prop1} The sequence $\{ u_{i}\} $ converges weakly on every compact set $K$ of $M$ to a solution $u\in C^{1,\alpha }(K)$ of \begin{equation} \begin{gathered} \Delta_{p}u+a(x)u^{p-1}=fu^{p\ast -1} \quad \text{in }K \\ u>0 \quad \text{in }K \\ u=0 \quad \text{on }\partial K \end{gathered} \label{e4} \end{equation} for some $\alpha \in (0,1)$. \end{proposition} To prove the boundedness of $\{ u_{i}\} $in $C^{1,\alpha }(K)$, we use propositions from the paper of Druet \cite{d1} which have their origin in Tolksdorf \cite{t2} Guedda and Veron \cite{g1} and Vazquez \cite{v1}. \begin{proposition} \label{prop2} Let $( M,g) $ be a compact Riemannian $n$-manifold. Assume that $u\in H_{1}^{p}( M) $ is a solution of $\Delta_{p}u+a(x)u^{p-1}=f$, where $n\geq 2$, $1\frac{n}{p}$ and $u\in H_{1}^{p}(M) $ is a solution of $\Delta_{p}u=f$ on $M$. Then $u\in L^{\infty}(M)$. \end{proposition} \begin{proposition} \label{prop4} Let $( M,g) $ be a compact Riemannian $n$-manifold and $h(x,r) \in C^{o}( M\times R) $. Assume $n\geq 2$, $1\frac{n}{p}$. But this fact is a consequence of proposition \ref{prop2}. Finally, we take $h(x,u_{j})=a(x)u_{j}^{p-1}-f(x)u_{j}^{p\ast -1}$, and since by assumption the functions $a$ and $f$ are bounded on the manifold $M$, one has the boundness of the sequence $\{h(x,u_{j}(x)\}$ in the compact set $K$. By proposition \ref{prop4}, $u_{j}\in C^{1,\alpha }(K)$ and $\Vert u_{j}\Vert _{K}^{1,\alpha }\leq c(p,n,K,\Vert g_{j} \Vert _{L^{\infty }(K)})$. The boundedness of $\{u_{j}\}$ in $L^{\infty }(K)$ implies that $\{g_{j}\} $ and $C(p,n,K,\Vert g_{j}\Vert _{L^{\infty }(K)})$ are bounded. Consequently, $\{u_{j}\}$ is bounded in $C^{1,\alpha}(K)$. So by Arzela-Ascoli theorem $\{u_{j}\}$ converges uniformly towards a weak solution $u$ of \eqref{e4} on each compact set. \end{proof} \section{Strong convergence} In this section, we have to show that the solution $u$ is not trivial. To achieve this task, we give sufficient conditions that guarantee the strong convergence of minimizers constructed in the previous section. Let $K$ be any compact set of the complete manifold $M$, $2K$ a compact set containing $K$ and $\eta \in C^{\infty }(M)$ be the function \begin{equation*} \eta (x)= \begin{cases} 0 & \text{on }K \\ 1 & \text{on }M-2K\,. \end{cases} \end{equation*} Let $k>1$ and $\{ u_{q}\} $ be the sequence of minimizers given by Proposition \ref{prop1} and $\| .\|_{p}$ be the $L^{p}(M)$-norm. we are going to estimate the ratio $\| \nabla ( \eta f^{\frac{1}{ p\ast }}u_{q}^{\frac{k+p-1}{p}}) \|_{p}$. Letting $\{ \Omega_{k}\} $ be the exhaustion, of the complete manifold $M$, considered in the previous section. Denote by $\Lambda_{k}=\{ u\in H_{1}^{p}(\Omega_{k}):\;\int_{\Omega_{k}}f|u| ^{p\ast }dv_{g} =1\} $ and $I_{k}(u)$ the functional $I_{k}(u)=\int_{\Omega_{k}}( |\nabla u| ^{p}+|u| ^{p}) dv_{g}$. \begin{proposition} \label{prop5} Under the conditions (2), (3), (4), of Theorem \ref{thm1} and \[ ( \sup_{M-K}f(x)) ^{p/p\ast} \inf_{u\in \Lambda_{k}}I_{k}(u)0$ and \begin{equation} \begin{aligned} &\int_{M-K}f^{p/p\ast}|\nabla u_{q}| ^{\alpha }dv_{g}\\ &\leq \Big( \int_{M-K}|\nabla u_{q}| ^{p}dv_{g}\Big) ^{ \frac{\alpha }{p}}\Big( \int_{M-K}f^{\frac{p^{2}}{p\ast ( p-\alpha ) }}dv_{g}\Big) ^{1-\frac{\alpha }{p}}\\ &\leq ( \sup_{M-K}f) ^{\frac{p( p-1) }{p\ast -pk}}\Big( \int_{M-K}|\nabla u_{q}| ^{p}dv_{g}\Big) ^{\frac{\alpha }{p} }\Big( \int_{M-K}f^{p/p\ast}dv_{g}\Big) ^{1-\frac{\alpha }{p}}\,. \end{aligned} \label{e11} \end{equation} On the other hand, \begin{align*} \Delta _{p}(\eta f^{\frac{1}{p\ast }})& =-\mathop{\rm div}(|\nabla (\eta f^{ \frac{1}{p\ast }})|^{p-2}\nabla (\eta f^{\frac{1}{p\ast }})) \\ & =|\nabla \eta f^{\frac{1}{p\ast }}|^{p-2}\Delta (\eta f^{\frac{1}{p\ast } })-\mathop{\rm trace}\big(\nabla |\nabla (\eta f^{\frac{1}{p\ast } })|^{p-2}\otimes \nabla (\eta f^{\frac{1}{p\ast }})\big) \end{align*} and \begin{align*} \Delta (\eta f^{\frac{1}{p\ast }})& =f^{\frac{1}{p\ast }}\Delta \eta +\eta \Delta f^{\frac{1}{p\ast }}-trace(\nabla \eta \otimes \nabla f^{\frac{1}{ p\ast }}) \\ & \leq f^{\frac{1}{p\ast }}\Delta \eta +\frac{1}{p\ast }(1-\frac{1}{p\ast } )\eta f^{\frac{1}{p\ast }-2}|\nabla f|^{2}+\frac{1}{p\ast }\eta f^{\frac{1}{ p\ast }-1}\Delta f+\frac{1}{p\ast }f^{\frac{1}{p\ast }-1}|\nabla f| \end{align*} then \begin{equation*} |\Delta (\eta f^{\frac{1}{p\ast }})|\leq Cf^{\frac{1}{p\ast }} \end{equation*} and \begin{equation*} |\nabla (\eta f^{\frac{1}{p\ast }})|^{p-2}|\Delta (\eta f^{\frac{1}{p\ast } })|\leq Cf^{\frac{p-1}{p\ast }}. \end{equation*} From \begin{equation*} |\nabla |\nabla (\eta f^{\frac{1}{p\ast }})|^{p-2}|=(p-2)|\nabla (\eta f^{ \frac{1}{p\ast }})|^{p-3}|\nabla |\nabla (\eta f^{\frac{1}{p\ast }})|| \end{equation*} and Kato's inequality, we deduce that \begin{equation*} \big|\nabla |\nabla (\eta f^{\frac{1}{p\ast }})|^{p-2}\big|\leq (p-2)|\nabla (\eta f^{\frac{1}{p\ast }})|^{p-3}|\nabla ^{2}(\eta f^{\frac{1}{p\ast }})|. \end{equation*} Now, since \begin{align*} & \nabla ^{2}(\eta f^{\frac{1}{p\ast }}) \\ & =f^{\frac{1}{p\ast }}\nabla ^{2}\eta +\frac{2}{p\ast }f^{\frac{1}{p\ast } -1}\nabla \eta \otimes \nabla f+\frac{1}{p\ast }(1-\frac{1}{p\ast })\eta f^{ \frac{1}{p\ast }-2}\nabla f\otimes \nabla f+\frac{1}{p\ast }\nabla ^{2}f\,, \end{align*} we obtain \begin{equation*} \big|\nabla |\nabla (\eta f^{\frac{1}{p\ast }})|^{p-2}\big|\leq Cf^{\frac{p-1}{p\ast }}. \end{equation*} Finally, we get \begin{equation*} |\Delta _{p}(\eta f^{\frac{1}{p\ast }})|\leq Cf^{\frac{p-1}{p\ast }} \end{equation*} and \begin{equation} \begin{aligned} &\int_{M}\eta f^{\frac{1}{p\ast }}u_{q}^{k+p-1}\Delta_{p}( \eta f^{ \frac{1}{p\ast }}) dv_{g}\\ &\leq C\int_{M-K}f^{p/p\ast}u_{q}^{k+p-1}\\ &\leq C\Big( \int_{M-K}u_{q}^{p\ast }dv_{g}\Big) ^{\frac{k+p-1}{p\ast } }\Big( \int_{M-K}f^{\frac{p\ast }{p\ast k-p+1}}dv_{g}\Big) ^{1-\frac{k+p-1 }{p\ast }}. \end{aligned} \label{e12} \end{equation} Sobolev's inequality leads to \begin{align*} & \Big(\int_{M-K}u_{q}^{p\ast }dv_{g}\Big)^{p/p\ast } \\ & \leq (K(n,p)^{p}+\varepsilon )\int_{M-K}|\nabla u_{q}|^{p}dv_{g}+A\int_{M-K}u_{q}^{p}dv_{g} \\ & \leq (K(n,p)^{p}+\varepsilon )\Big(\int_{M-K}|\nabla u_{q}|^{p}dv_{g}+ \frac{A}{K(n,p)^{p}+\varepsilon }\int_{M-K}u_{q}^{p}dv_{g}\Big). \end{align*} From the coercivity of the operator $L_{p}u=-\Delta _{p}u-a(x)|u|^{p-2}u$, we get \begin{align*} & \Big(\int_{M-K}u_{q}^{p\ast }dv_{g}\Big)^{p/p\ast } \\ & \leq \frac{1}{c}(K(n,p)^{p}+\varepsilon )\max \big(1,\frac{A}{ K(n,p)^{p}+\varepsilon }\big)\int_{M-K}(|\nabla u_{q}|^{p}+u_{q}^{p})dv_{g} \\ & \leq \tilde{C}\int_{M}(|\nabla u_{q}|^{p}+u_{q}^{p})dv_{g}, \end{align*} where $\tilde{C}=\frac{1}{c}(K(n,p)^{p}+\varepsilon )\max \big(1,\frac{A}{ K(n,p)^{p}+\varepsilon }\big)$ and by construction of the sequence $\{u_{q}\} $, which has a compact support in $\Omega _{q}$, we have \begin{equation*} \int_{M}(|\nabla u_{q}|^{p}+a(x)u_{q}^{p})dv_{g}=\lambda _{q} \end{equation*} hence \begin{equation*} \Big(\int_{M-K}u_{q}^{p\ast }dv_{g}\Big)^{p/p\ast }\leq \tilde{C}\lambda _{q}. \end{equation*} Since by assumption the Lagrange multipliers satisfy \begin{equation*} \lambda _{q}<\frac{1}{K(n,p)^{p}(\sup_{M-K}f)^{p/p\ast }}, \end{equation*} we have \begin{equation} \Big(\int_{M-K}u_{q}^{p\ast }dv_{g}\Big)^{p/p\ast }\leq C. \label{e13} \end{equation} Combining inequalities (5) to (13) we obtain \begin{align*} \Vert \nabla (\eta f^{\frac{1}{p\ast }}u_{q}^{\frac{k+p-1}{p}})\Vert _{p}^{p}& \leq \lambda _{q}\Big(\big(\sup_{M-K}f\big)^{p/p\ast }\big( \int_{M-K}fu_{q}^{p\ast }dv_{g}\big)^{1-\frac{p}{p\ast }}+\varepsilon \Big) \\ & \quad \times \Big(\int_{M-K}\big(\eta f^{\frac{1}{p\ast }}u_{q}^{\frac{ k+p-1}{p}}\big)^{p\ast }dv_{g}\Big)^{p/p\ast }+C\,. \end{align*} Using Sobolev's inequality, this expression is bounded by \begin{equation} \begin{aligned} & \lambda_{q}\Big( \big( \sup_{M-K}f\big) ^{p/p\ast} \big(\int_{M-K}fu_{q}^{p\ast }dv_{g}\big) ^{1-\frac{p}{p\ast }}+\varepsilon\Big)\\ &\times \Big( ( K( n,p) ^{p}+\varepsilon ) \| \nabla ( \eta f^{\frac{1}{p\ast }}u_{q}^{\frac{k+p-1}{p}}) \|_{p}^{p}+A\| \eta f^{\frac{1}{p\ast }}u_{q}^{\frac{k+p-1}{p} }\|_{p}^{p}\Big) + C\,, \end{aligned} \label{e14} \end{equation} where $K(n,p)$ is the best constant in the Sobolev's inequality. For the last term in \eqref{e14}, we write \begin{align*} & \int_{M-K}f^{p/p\ast }u_{q}^{k+p-1}dv_{g} \\ & \leq \Big(\int_{M-K}u_{q}^{p\ast }dv_{g}\Big)^{\frac{\kappa +p-1}{p\ast }} \Big(\int_{M-K}f^{\frac{p}{p\ast -k-p+1}}dv_{g}\Big)^{1-\frac{\kappa +p-1}{ p\ast }} \\ & \leq \big(\sup_{M-K}f\big)^{\frac{p(1-p-k)}{p\ast ^{2}}}\Big(\int u_{q}^{p\ast }dv_{g}\Big)^{\frac{\kappa +p-1}{p\ast }}\Big(\int f^{p/p\ast }dv_{g}\Big)^{1-\frac{\kappa +p-1}{p\ast }}<\infty . \end{align*} From the assumption on the Lagrange multipliers, $\Vert \nabla (\eta f^{ \frac{1}{p\ast }}u_{q}^{\frac{k+p-1}{p}})\Vert _{p}^{p}$ is bounded. In the case $11$, converges to $0$. Also assume there exists a constant $C>0$, independent of $q$ such that $\| \nabla (\eta f^{\frac{1}{p\ast }}u_{q}^{\frac{k+p-1}{p}}) \|_{p}^{p}\leq C$, $k>1$. Then $$ \lim_{q\to \infty }\sup \int_{M}( \eta f^{\frac{1}{p\ast }}u_{q}) ^{p\ast }dv_{g}=0. $$ \end{lemma} \begin{proof} Suppose that $\lim_{q\to \infty }\sup \int_{M}( \eta f^{ \frac{1}{p\ast } }u_{q}) ^{p\ast }>0$. Using H\"{o}lder's inequality we obtain \begin{align*} &\int_{M}( \eta f^{\frac{1}{p\ast }}u_{q}) ^{p\ast }dv_{g} \\ &\leq \sup_{M-K}f\Big( \int_{M}\big( \eta f^{\frac{1}{p\ast }}u_{q}^{\frac{ k+p-1 }{p}}\big) ^{p\ast }\Big) ^{\frac{n( p-1) +p}{n( k+p-1) }}\Big( \int_{M}u_{q}^{\frac{n( k+p-1) }{nk-p} }dv_{g}\Big) ^{\frac{nk-p}{n( k+p-1) } } \end{align*} then \begin{equation*} \lim_{q\to \infty }\sup \int_{M}u_{q}^{\frac{n( k+p-1) }{nk-p}}dv_{g}>0. \end{equation*} A contradiction with the fact that every subsequence of $u_{q}$ converging in $L^{p}(M)$, $p>1$, converges to $0.$ \end{proof} As a consequence of the above lemma, we obtain the following generic theorem. Denote by $\Lambda =\{ u\in H_{1}^{p}(M):\;\int_{M}f|u| ^{p\ast }dv_{g}=1\} $ and $I(u)$ is the functional given by $I(u)=\int_{M}( |\nabla u| ^{p}+|u| ^{p}) dv_{g}$ where $M$ is a complete Riemannian manifold. \begin{theorem} \label{thm3} Let $( M,g) $ be a complete Riemannian manifold of bounded geometry, $10$. We assume that: \begin{itemize} \item[(i)] The operator $L_{p}u=\Delta_{p}u+a(x)u^{p-1}$ is coercive \item[(ii)] Conditions (3) and (4) of Theorem \ref{thm1} at infinity on $f$ are satisfied \item[(iii)] $(\sup_{M}f)^{\frac{p}{p^{\ast }}} \inf_{u\in \Lambda }I(u)1. \end{equation*} which is a contradiction with \eqref{e15}. Then the condition that every subsequence of the sequence of minimizers $ \{u_{q}\}$ which converges has $0$ as a limit is false and the theorem is proved. \end{proof} \subsection*{Examples of functions satisfying the conditions of Theorem \ref {thm3}} The conditions at infinity in Theorem \ref{thm3} are satisfied, for example by functions decreasing like power functions: $f\sim r^{-q}$, $\nabla f\sim \rho ^{-q-1}$ and $\nabla ^{2}f\sim r^{-q-2}$ with $q>n\frac{p\ast }{p}$. Since $\int_{M}f^{p/p\ast }dv_{g}<+\infty $ implies that $\frac{1}{r^{(1- \frac{1}{n})q+1-n}}$ is integrable. If the function $a$ decays at infinity as $r^{-q}$ , then the condition that $\int_{M}f^{\frac{n}{p}}dv_{g}\leq C\int_{M}fdv_{g}<+\infty $ implies that the decay rate $q$ satisfies $q>p$. \section{Test functions} In this section we give the proof of our main result (Theorem \ref{thm1}). For this task we check that the condition (iii) of the generic theorem proved in section 4 is satisfied. Let $K$ be any compact set of the manifold $M$ and $x_{o}\in M-K$ be the maximum on of the function $f$ as given in Theorem \ref{thm1}. Let $ r=d(x_{o},x)$ the distance function from $x_{o}$ to any point $x$ in the manifold $M-K$. Let $\delta >0$ be smaller than the injectivity radius; for $\epsilon >0$, we consider the test function \begin{equation*} u_{\varepsilon }(x)= \begin{cases} ( \varepsilon +r^{\frac{p}{p-1}}) ^{1-\frac{n}{p}}- ( \varepsilon +\delta ^{ \frac{p}{p-1}}) ^{1-\frac{n}{p}} & \mbox{if }r<\delta \\ 0 & \mbox{if } r\geq \delta\,. \end{cases} \end{equation*} % where $\nu =( \varepsilon +\delta ^{\frac{p}{p-1}}) ^{1-\frac{n}{p}}$. Note that the function $u_{\varepsilon }$ was introduced by Aubin in \cite {a1}. We have \begin{equation*} |\nabla u_{\varepsilon }(x)| ^{p}= \begin{cases} ( \frac{n-p}{p-1})^{p}( \varepsilon +r^{\frac{p}{p-1}}) ^{-\frac{n}{p}}r^{( \frac{p}{p-1}) } & \mbox{if } r<\delta \\ 0 & \mbox{if } r\geq \delta \end{cases} \end{equation*} so \begin{equation} \int_{B(x_{o},\delta )}|\nabla u_{\varepsilon }(x)| ^{p}dv_{g}=( \frac{n-p}{ p-1}) ^{p}\int_{0}^{\delta }( \varepsilon +r^{\frac{p}{p-1}}) ^{-n}r^{n+ \frac{1}{p-1} }dr\int_{S^{n-1}(r)}d\Omega . \label{e17} \end{equation} where $d\Omega $ denotes the element volume on the sphere $S^{n-1}(r)$. Let $S(r)=\int_{S^{n-1}(r)}d\Omega $. Taking into account the expansion of the determinant in a system of geodesic coordinates at a point $x_{o}$, we get \begin{equation*} \sqrt{g}=1-R_{ij}x^{i}x^{j}+o(r^{2})\,. \end{equation*} A computation in \cite{a1} gives us \begin{equation*} S(r)=\omega _{n-1}(1-\frac{R}{6n}r^{2}+o(r^{2})) \end{equation*} where $w_{n-1}$ is the volume of the standard unit sphere $S^{n-1}$ in $ R^{n} $. The integral \eqref{e17} becomes \begin{align*} & \int_{B(x_{o},\delta )}|\nabla u_{\varepsilon }(x)|^{p}dv_{g} \\ & =(\frac{n-p}{p-1})^{p}\omega _{n-1}\int_{0}^{\delta }(\varepsilon +r^{ \frac{p}{1-p}})^{-n}r^{n+\frac{1}{p-1}}\big(1-\frac{R}{6n}r^{2}+o(r^{2})\big) dr. \end{align*} Letting $s=r\varepsilon ^{\frac{1-p}{p}}$, we get \begin{equation} \begin{aligned} \int_{B(x_{o},\delta )}|\nabla u_{\varepsilon }(x)|^{p}dv_{g} &=( \frac{n-p}{p-1}) ^{p}\omega_{n-1}\varepsilon ^{1- \frac{n}{p}}\int_{0}^{\delta \varepsilon ^{\frac{1-p}{p}}} \big( 1+s^{\frac{p}{1-p}}\big) ^{-n}s^{n+\frac{1}{p-1}}\\ &\quad\times \big( 1-\frac{R}{6n}s^{2}\varepsilon ^{\frac{2( p-1) }{p} }+o(s^{2}\varepsilon ^{\frac{2( p-1) }{p}})\big) ds, \end{aligned} \label{e18} \end{equation} set \begin{gather*} I_{p}^{q}=\int_{0}^{\infty }t^{q-1}(1+t)^{-p}dt\quad \text{with }p-q-1>0, \\ B(p,q)=\int_{0}^{1}t^{p-1}(1-t)^{q-1}dt\quad \text{with }p>0,\;q>0\,. \end{gather*} Put $t=s^{\frac{p}{p-1}}$, then the integral \eqref{e18} becomes \begin{align*} & \int_{B(x_{o},\delta )}|\nabla u_{\varepsilon }(x)|^{p}dv_{g} \\ & =\frac{p-1}{p}(\frac{n-p}{p-1})^{p}\omega _{n-1}\varepsilon ^{1-\frac{n}{p} }\Big[\int_{0}^{\delta ^{\frac{p}{p-1}}\varepsilon ^{-1}}(1+t)^{-n}t^{n(1- \frac{1}{p})}dt \\ & \quad -\varepsilon ^{2(1-\frac{1}{p})}\frac{R(x_{o})}{6n}\int_{0}^{\delta ^{\frac{p}{p-1}}\varepsilon ^{-1}}(1+t)^{-n}t^{(n+2)(1-\frac{1}{p} )}dt+o(\varepsilon ^{\frac{2(p-1)}{p}})\Big] \\ & =\frac{p-1}{p}(\frac{n-p}{p-1})^{p}\omega _{n-1}\varepsilon ^{1-\frac{n}{p} }\Big[\int_{0}^{\infty }(1+t)^{-n}t^{n(1-\frac{1}{p})}dt \\ & \quad -\varepsilon ^{2(1-\frac{1}{p})}\frac{R(x_{o})}{6n}\int_{0}^{\infty }(1+t)^{-n}t^{(n+2)(1-\frac{1}{p})}dt-\int_{\delta ^{\frac{p}{p-1} }\varepsilon ^{-1}}^{\infty }(1+t)^{-n}t^{n(1-\frac{1}{p})}dt \\ & \quad +\varepsilon ^{2(1-\frac{1}{p})}\frac{R(x_{o})}{6n}\int_{\delta ^{ \frac{p}{p-1}}\varepsilon ^{-1}}^{\infty }(1+t)^{-n}t^{(n+2)(1-\frac{1}{p} )}dt+o(\varepsilon ^{\frac{2(p-1)}{p}})\Big]. \end{align*} We have \begin{equation*} \lim_{\varepsilon \rightarrow 0}\int_{\delta ^{\frac{p}{p-1}}\varepsilon ^{-1}}^{\infty }(1+t)^{-n}t^{n(1-\frac{1}{p})}dt=0 \end{equation*} and if $n+2>3p$, then \begin{equation*} \lim_{\varepsilon \rightarrow 0}\int_{\delta ^{\frac{p}{p-1}}\varepsilon ^{-1}}^{\infty }(1+t)^{-n}t^{(n+2)(1-\frac{1}{p})}dt=0\,. \end{equation*} So \begin{align*} & \int_{B(x_{o},\delta )}|\nabla u_{\varepsilon }(x)|^{p}dv_{g} \\ & =\frac{p-1}{p}(\frac{n-p}{p-1})^{p}\omega _{n-1}\varepsilon ^{1-\frac{n}{p} }\Big[I_{n}^{n(1-\frac{1}{p})}-\varepsilon ^{2(1-\frac{1}{p})}\frac{R(x_{o}) }{6n}I_{n}^{(n+2)(1-\frac{1}{p})}+o(\varepsilon ^{2(1-\frac{1}{p})})\Big]. \end{align*} On the other hand, a simple computation, for $(p>q+1)$, gives the following formula \begin{equation*} I_{p}^{q}=B(q+1,p-q-1)=\frac{\Gamma (q+1)\Gamma (p-q-1)}{\Gamma (p)}, \end{equation*} where $\Gamma $ denotes the Euler function from which we obtain the following relation \begin{equation*} I_{n}^{(n+2)(1-\frac{1}{p})}=\frac{\Gamma ((n+2)(1-\frac{1}{p})+1)\Gamma ( \frac{n+2}{p}-3)}{\Gamma (n(1-\frac{1}{p})+1)\Gamma (\frac{n}{p}-1)} I_{n}^{n(1-\frac{1}{p})}=a(n,p)I_{n}^{n(1-\frac{1}{p})}. \end{equation*} Finally the equality \eqref{e18} becomes \begin{equation} \begin{aligned} &\int_{B(x_{o},\delta )}|\nabla u_{\varepsilon }(x)| ^{p}dv_{g}\\ &=\frac{p-1}{p}( \frac{n-p}{p-1}) ^{p}\omega_{n-1}\varepsilon ^{1- \frac{n}{p}}I_{n}^{n( 1-\frac{1}{p}) }[1-\varepsilon ^{2( 1-\frac{1}{p}) }a(n,p)\frac{R(x_{o})}{6n} +o(\varepsilon ^{2( 1-\frac{1}{p}) })] . \end{aligned} \label{e19} \end{equation} The expansion of $\int_{B(x_{o},\delta )}au_{\varepsilon }^{p}dv_{g}$ is computed in the same way as above, \begin{align*} & \int_{B(x_{o},\delta )}au_{\varepsilon }^{p}dv_{g} \\ & =\int_{0}^{\delta }u_{\varepsilon }^{p}r^{n-1}dr\int_{S^{n-1}(r)}a\sqrt{g} d\Omega \\ & =\int_{0}^{\delta }\big((\varepsilon +r^{\frac{p}{p-1}})^{1-\frac{n}{p} }-\nu \big)^{p}r^{n-1}dr \\ & \quad \times \int_{S^{n-1}(r)}\big(a(x_{o})+\frac{1}{2}\nabla _{ij}a(x_{o})x^{i}x^{j}+o(r^{2})\big)\big(1-\frac{1}{6} R_{ij}(x_{o})x^{i}x^{j}+o(r^{2})\big)d\Omega \\ & =\omega _{n-1}a(x_{o})\int_{0}^{\delta }r^{n-1}(\varepsilon +r^{\frac{p}{ p-1}})^{p-n}\Big[1-p\nu (\varepsilon +r^{\frac{p}{p-1}})^{\frac{n}{p}-1}+o \big((\varepsilon +r^{\frac{p}{p-1}})^{\frac{n}{p}-1}\big)\Big] \\ & \quad \times \Big[1-\big(\frac{R(x_{o})}{6n}+\frac{\Delta a(x_{o})}{ 2nR(x_{o})}\big)r^{2}+o(r^{2})\Big]dr\,. \end{align*} Putting $s=r^{\frac{1-p}{p}}$, we get \begin{align*} & \int_{B(x_{o},\delta )}au_{\varepsilon }^{p}dv_{g} \\ & =\omega _{n-1}a(x_{o})\varepsilon ^{p-\frac{n}{p}}\int_{0}^{\delta \varepsilon ^{\frac{1-p}{p}}}s^{n-1}(1+s^{\frac{p}{p-1}})^{p-n}\Big[1-p\nu \varepsilon ^{\frac{n}{p}-1}(1+s^{\frac{p}{p-1}}) \\ & \quad +o(1+s^{\frac{p}{p-1}})^{\frac{n}{p}-1}\varepsilon ^{\frac{n}{p}-1} \Big]\Big[1-\big(\frac{R(x_{o})}{6n}+\frac{\Delta a(x_{o})}{2na(x_{o})}\big) s^{2}\varepsilon ^{2(1-\frac{1}{p})}+\varepsilon ^{2(1-\frac{1}{p})}o(s^{2}) \Big]ds. \end{align*} Letting $t=s^{\frac{p}{p-1}}$, we get \begin{align*} & \int_{B(x_{o},\delta )}au_{\varepsilon }^{p}dv_{g} \\ & =\frac{p-1}{p}\omega _{n-1}a(x_{o})\varepsilon ^{p-\frac{n}{p} }\int_{0}^{\delta ^{\frac{p}{p-1}}\varepsilon ^{-1}}t^{n(1-\frac{1}{p} )-1}(1+t)^{p-n} \\ & \quad \times \Big[1-p\nu \varepsilon ^{\frac{n}{p}-1}(1+t)+o(1+t) \varepsilon ^{\frac{n}{p}-1}\Big] \\ & \quad \times \lbrack 1-\big(\frac{R(x_{o})}{6n}+\frac{\Delta a(x_{o})}{ 2na(x_{o})}\big)t^{2(1-\frac{1}{p})}\varepsilon ^{2(1-\frac{1}{p} )}+\varepsilon ^{2(1-\frac{1}{p})}o(t^{2(1-\frac{1}{p})})\Big]dt \\ & =\frac{p-1}{p}\omega _{n-1}a(x_{o})\varepsilon ^{p-\frac{n}{p} }\int_{0}^{\delta ^{\frac{p}{p-1}}\varepsilon ^{-1}}t^{n(1-\frac{1}{p} )-1}(1+t)^{p-n}dt+o(\varepsilon ^{p-\frac{n}{p}})\,. \end{align*} Since $p3p$, the bracket in the equality \eqref{e23} is equivalent to \begin{equation*} 1+(\frac{p-1}{n-p})^{p}b(n,p)a(x_{o})\varepsilon ^{p-1}\,. \end{equation*} Then, if $a(x_{o})<0$, we get \begin{equation} 1+(\frac{p-1}{n-p})^{p}b(n,p)a(x_{o})\varepsilon ^{p-1}<1. \label{e24} \end{equation} If $p=2,$ \ the bracket reads \begin{equation*} \big(\frac{a(n,2)}{6n}-\frac{n-2}{n}\frac{c(n,2)}{6n}\big)R(x_{o})-(\frac{1}{ n-2})^{2}b(n,2)a(x_{o})-\frac{n-2}{n}\frac{\Delta f(x_{o})}{2nf(x_{o})}c(n,2) \end{equation*} where the quantities $a(n,2)$, $b(n,2)$ and $c(n,2)$ are replaced by their respective expressions. The condition \begin{equation*} \big(\frac{a(n,2)}{6nc(n,2)}-\frac{n-2}{6n^{2}}\big)R(x_{o})-(\frac{1}{n-2} )^{2}\frac{b(n,2)}{c(n,2)}a(x_{o})-\frac{n-2}{n}\frac{\Delta f(x_{o})}{ 2nf(x_{o})}>0 \end{equation*} implies \begin{align*} & \big(\frac{(n+2)(n-2)}{6n^{2}(n-4)}-\frac{n-2}{6n^{2}}\big)R(x_{o}) \\ & -(\frac{1}{n-2})^{2}\frac{4(n-1)(n-2)^{2}}{n^{2}(n-4)}a(x_{o})-\frac{n-2}{n }\frac{\Delta f(x_{o})}{2nf(x_{o})}>0; \end{align*} that is, \begin{equation} \frac{\Delta f(x_{o})}{f(x_{o})}-\frac{2}{n-4}a(x_{o})+\frac{8(n-1)}{ (n-2)(n-4)}R(x_{o})<0. \label{e25} \end{equation} Now for, $p>2$, the bracket in question is equivalent to \begin{equation*} \big(\frac{a(n,p)}{6nc(n,p)}-\frac{n-p}{6n^{2}}\big)R(x_{o})-\frac{n-p}{n} \frac{\Delta f(x_{o})}{2nf(x_{o})}. \end{equation*} The condition \begin{equation*} \big(\frac{(n+2)(n-p)}{6n^{2}(n-3p+2)}-\frac{n-p}{6n^{2}}\big)R(x_{o})-\frac{ n-p}{2n^{2}}\frac{\Delta f(x_{o})}{f(x_{o})}>0 \end{equation*} becomes \begin{equation} \frac{\Delta f(x_{o})}{f(x_{o})}<\frac{p}{n-3p+2}R(x_{o}). \label{e26} \end{equation} Each of the conditions \eqref{e24}, \eqref{e25} and \eqref{e26} assures that \begin{equation*} \frac{\int_{B(x_{o},\delta )}(|\nabla u_{\varepsilon }^{p}|+au_{\varepsilon }^{p})dv_{g}}{\big(\int_{B(x_{o},\delta )}fu_{\varepsilon }^{p\ast }dv_{g} \big)^{p/p\ast }}