\documentclass[reqno]{amsart} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2004(2004), No. 18, pp. 1--12.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2004 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2004/18\hfil Existence of solutions] {Existence of solutions to second order ordinary differential equations having finite limits at $\pm \infty$} \author[Cezar Avramescu \& Cristian Vladimirescu \hfil EJDE-2004/18\hfilneg] {Cezar Avramescu \& Cristian Vladimirescu} % in alphabetical order \address{Cezar Avramescu \hfill\break Centre for Nonlinear Analysis and its Applications, University of Craiova, Al.I. Cuza Street, No. 13, Craiova RO-200585, Romania} \email{zarce@central.ucv.ro, cezaravramescu@hotmail.com} \address{Cristian Vladimirescu \hfill\break Department of Mathematics, University of Craiova, Al.I. Cuza Street, No. 13, Craiova RO-200585, Romania} \email{cvladi@central.ucv.ro, vladimirescucris@hotmail.com} \date{} \thanks{Submitted February 14, 2003. Published February 9, 2004.} \subjclass[2000]{34B15, 34B40, 34C37, 54C60} \keywords{Nonlinear boundary-value problem, set-valued mappings, \hfill\break\indent boundary-value problems on infinite intervals} \begin{abstract} In this article, we study the boundary-value problem $$ \ddot{x}=f(t,x,\dot{x}), \quad x(-\infty )=x(+\infty ), \quad \dot{x}(-\infty) = \dot{x}(+\infty ) \,. $$ Under adequate hypotheses and using the Bohnenblust-Karlin fixed point theorem for multivalued mappings, we establish the existence of solutions. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \newtheorem{proposition}[theorem]{Proposition} \section{Introduction} Let $f:\mathbb{R}^{3}\to \mathbb{R}$ be a continuous mapping. Consider the infinite boundary-value problem \begin{gather}\label{ec1.1} \ddot{x}=f(t,x,\dot{x}) ,\\ \label{ec1.2} x(-\infty )=x(+\infty ) ,\quad \dot{x}(-\infty ) =\dot{x}(+\infty ) , \end{gather} where $x(\pm \infty ) $ and $\dot{x}(\pm \infty ) $ denote the limits \begin{equation}\label{ec1.3} x(\pm \infty ) =\lim_{t\to \pm \infty }x(t)\quad\mbox{and}\quad \dot{x}(\pm \infty ) =\lim_{t\to \pm \infty } \dot{x}(t), \end{equation} which are assumed to be finite. Problem \eqref{ec1.1}-\eqref{ec1.2} may be considered as a gene\-ralization of problem \eqref{ec1.1} with boundary condtions \begin{equation}\label{ec1.4} x(a) =x(b) ,\quad\dot{x}(a) =\dot{x}(b) , \end{equation} as $a\to -\infty $ and $b\to +\infty $. The bilocal boundary-value problem \eqref{ec1.1}-\eqref{ec1.4} is closely related to the problem of finding periodic solutions to \eqref{ec1.1}. The reader is referred to \cite{17,19,20} where extensive use of topological degree theory is made to study this problem. Problem \eqref{ec1.1}-\eqref{ec1.2} is related to the so-called {\it convergent solutions}, i.e. the solutions defined on $\mathbb{R}_{+}=[0,+\infty )$ (or $\mathbb{R}$) and having finite limit to $ +\infty $ (respectively $-\infty$), see \cite{4,5,14,15,16}. For studies on \eqref{ec1.1}-\eqref{ec1.2} using variational methods, we refer the reader to \cite{1,2,3,13,20,21}. In \cite{12} the existence of the solutions to the equation \eqref{ec1.1} with the boundary conditions $x(\infty)=\dot x(\infty)=0$ is studied for $f(t,u,v)=g(t)v-u+h(t,u)$. Through the Schauder-Tychonoff and Banach fixed point Theorems estimates for the solutions are found. When $f$ is a differentiable function, \eqref{ec1.1} can be written as \begin{equation}\label{ec1.5} \ddot{x}=a(t,x,\dot{x}) \dot{x}+b(t,x,\dot{x}) x+c(t) , \end{equation} where $a$, $b:\mathbb{R}^{3}\to \mathbb{R}$, $c:\mathbb{R}\to \mathbb{R}$, $a(t,u,v) :=\int_{0}^{1}\frac{\partial f}{\partial u}(t,su,sv)\,ds$, $b(t,u,v) :=$ $\int_{0}^{1}\frac{\partial f}{\partial v}(t,su,sv)\,ds$ and $c(t) :=f(t,0,0) $, for all $t$, $u$, $v\in \mathbb{R}$. Sufficient conditions for the existence of solutions to the linear problem \begin{equation}\label{ec1.6} \ddot{x}=a(t) \dot{x}+b(t) x+c(t) , \end{equation} with boundary condition \eqref{ec1.2}, were given in \cite{11}. By using this result, in the real Banach space \[ X:=\big\{ x\in C^{2}(\mathbb{R}) : (\exists )\,x(\pm \infty ), \;(\exists ) \,\dot{x}(\pm \infty ) \big\} \] endowed with the uniform convergence topology on $\mathbb{R}$ one defines an operator $T:X\to 2^{X}$ which maps $u\in X$ into the set of the solutions to the problem \eqref{ec1.7}-\eqref{ec1.2}, where \begin{equation}\label{ec1.7} \ddot{x}=a(t,u(t) ,\dot{u}(t) ) \dot{x}+b(t,u(t) ,\dot{u}(t) ) x+c(t) . \end{equation} Next one considers the restriction of $T$ to a bounded, convex and closed set $M$, conveniently chosen so that the Bohnenblust-Karlin Theorem can be applied. The compactness of $T(M)$ is established by using a characterization developed by the the first author in \cite{4,6}. The use of a multivalued operator $T$ is motivated by the fact that one cannot determine a solution to the problem \eqref{ec1.7}-\eqref{ec1.2} through an ``initial'' condition independent of $u$. \section{Main result} Let $a$, $b:\mathbb{R}^{3}\to \mathbb{R}$, $c:\mathbb{R}\to \mathbb{R}$ be continuous functions, and let \begin{gather*} \alpha _{1}(t) :=\inf_{u,v\in \mathbb{R}}\big\{ a(t,u,v) \big\} ,\quad \alpha _{2}(t) :=\sup_{u,v\in \mathbb{R}}\big\{ a(t,u,v) \big\} , \\ \beta (t) :=\sup_{u,v\in \mathbb{R}}\big\{ b(t,u,v)\big\} ,\quad A_{i}(t) :=\exp \Big(\int_{0}^{t}\alpha_{i}(s)\, ds\Big) , \end{gather*} for $i\in \{ 1,2\}$ and $t\in \mathbb{R}$. We shall assume that $\alpha _{1}$, $\alpha _{2}$, $\beta $ are defined on $\mathbb{R}$. Consider the following hypotheses, where the integrals are considered in the Riemann sense: \begin{itemize} \item[(A1)] The mappings $\alpha _{1}$ and $\alpha _{2}$ are bounded on $\mathbb{R}$, and $\lim_{t\to \pm \infty }\alpha _{i}(t) =0$, for $i\in \{ 1,2\}$ \item[(A2)] $\lim_{t\to \pm \infty }A_{i}(t) =0$ for $i\in \{ 1,2\}$ \item[(B1)] $0\leq b(t,u,v)$ for every $t$, $u$, $v\in \mathbb{R}$ and $\lim_{t\to \pm \infty }\beta (t) =0$ \item[(B2)] $ \int_{-\infty }^{+\infty }\big(A_{i}(t) \cdot \int_{0}^{t} \frac{\beta (s) }{A_{i}(s) }ds\big) dt\in \mathbb{R}$ for $i\in \{ 1,2\}$ \item[(B3)] $\int_{-\infty }^{+\infty }\frac{\beta (t) }{A_{i}(t)}dt<+\infty$, for $i\in \{ 1,2\}$ \item[(C1)] $\int_{-\infty }^{+\infty }|c(t)| dt<+\infty$ \item[(C2)] $\int_{-\infty }^{+\infty}\Big(\int_{-t}^{t}\frac{|c(s)|}{A_{i}(s)} ds\Big) dt\in \mathbb{R}$ for $i\in \{ 1,2\} $. \end{itemize} Our main result is as follows: \begin{theorem}\label{main} If the hypotheses (A1)--(A2), (B1)--(B3), (C1)--(C2) are satisfied, then \eqref{ec1.5}-\eqref{ec1.2} has a solution. \end{theorem} Since \[ \lim_{t\to \pm \infty }\frac{A_{i}(t) }{A_{i}( t) \cdot \int_{0}^{t}\frac{\beta (s) }{A_{i}( s) }ds}=\lim_{t\to \pm \infty }\frac{1}{\int_{0}^{t}\frac{ \beta (s) }{A_{i}(s) }ds} \] is a real number by hypothesis (B3), it follows by hypothesis (B2), via a well known convergence criterion for Riemann integrals, that for each $i\in \{ 1,2\} $, \begin{equation}\label{ec2.1} \int_{-\infty }^{+\infty }A_{i}(t) dt<+\infty \,. \end{equation} Similarly, by hypothesis (A2), \[ \lim_{t\to \pm \infty }\frac{\beta (t) }{\frac{\beta (t) }{A_{i}(t) }}=0, \quad \lim_{t\to \pm \infty }\frac{|c(t)| }{\frac{|c(t)|}{A_{i}(t) }}=0, \] it follows, by hypothesis (B3), that \begin{equation}\label{ec2.2} \int_{-\infty }^{+\infty }\beta (t) dt<+\infty , \end{equation} and, by hypothesis (C1), \begin{equation}\label{ec2.3} \int_{-\infty }^{+\infty }\frac{|c(t)|}{A_{i}(t) } dt<+\infty , \end{equation} for each $i\in \{ 1,2\} $. \begin{remark}\label{Remark2.1} \rm (i) One can replace the hypothesis (B2) by \begin{itemize} \item[(B2')] $\int_{-\infty}^{+\infty}A_{i}(t)dt< +\infty$\,. \end{itemize} (ii) Assumption (B2') does not imply (C2). \end{remark} \noindent(i) Indeed, since (B3) implies the boundedness of the mapping $\int_{0}^{(\cdot)} \frac{\beta(s)}{A_{i}(s)}ds$ and therefore, (B2') implies (B2). \noindent (ii) It is sufficient to choose $c(t)=A_{i}(t) $, for all $t\in \mathbb{R}$, where $i=1$ or $i=2$. \smallskip For proving our main result we use the following theorem. \begin{theorem}[{Bohnenblust-Karlin \cite[p. 452]{22}}] \label{Theorem2.1} Let $X$ be a Banach space and $M\subset X$ be a convex closed subset of it. Suppose that $T:X\to 2^{X}$ is a multivalued operator on $X$ satisfying the following hypotheses: \begin{itemize} \item[(a)] $T(M) \subset 2^{M}$ and $T$ is upper semicontinuous \item[(b)] the set $T(M) $ is relatively compact \item[(c)] for every $x\in M$, $T(x) $ is a non-empty convex closed set. \end{itemize} Then $T$ admits fixed points. \end{theorem} Recall that $T:M\to 2^{M}$ is \emph{upper semicontinuous} if for every closed subset $A$ of $M$, the set \[ T^{-1}(A) :=\big\{ x\in M : T(x) \cap A\neq \emptyset \big\} \] is also a closed subset of $M$. Another useful result is the following Lemma. \begin{lemma}[Barb\u{a}lat] \label{Lemma2.1} If $f:[0,+\infty )\to \mathbb{R}$ satisfies: (a) $f$ is uniformly continuous and (b) the integral $\int_{0}^{+\infty }f(t)\,dt$ exists and is finite, then $\lim_{t\to +\infty }f(t) =0$. \end{lemma} The main idea of this paper is to build a multivalued operator $T$ defined on an adequate space which satisfies the hypotheses of the Bohnenblust-Karlin Theorem. We define \[ X:=\big\{ x\in C^{2}(\mathbb{R}) : (\exists ) \;x(\pm \infty ) \mbox{ and }\dot{x}(\pm \infty) \big\} , \] which, endowed with the usual norm, \[ \|x\| :=\sup_{t\in \mathbb{R}}\max \big\{ | x(t) | ,| \dot{x}(t) | \big\}, \] becomes a real Banach space. The relative compactness of the set $T(M) $ be will be proved by using the following Proposition. \begin{proposition}[Avramescu \cite{4,6}] \label{Proposition2.1} A set $\mathcal{A}\subset X$ is relatively compact if and only if the following conditions are fulfilled: \begin{itemize} \item[(a)] There exist $h_{1}$, $h_{2}\geq 0$ such that for every $x\in \mathcal{A}$ and $t\in \mathbb{R}$, we have $| x(t) | \leq h_{1}$ and $| \dot{x}(t) | \leq h_{2}$ \item[(b)] For every $K=[ a,b] \subset \mathbb{R}$ and $\varepsilon>0 $ there exists $\delta =\delta (K,\varepsilon ) >0$ such that for every $x\in \mathcal{A}$ and $t_{1}$, $t_{2}\in K$ with $| t_{1}-t_{2}| <\delta $, we have $| x(t_{1}) -x(t_{2}) | <\varepsilon$ and $| \dot{x}(t_{1}) -\dot{x}(t_{2})| <\varepsilon$ \item[(c)] For every $\varepsilon >0$ there exists $T=T(\varepsilon) >0$ such that for every $t_{1}$, $t_{2}$ with $|t_{1}| $, $| t_{2}| >T$ and $t_{1}\cdot t_{2}>0$, and for every $x\in \mathcal{A}$, we have $| x(t_{1}) -x(t_{2}) | <\varepsilon$ and $| \dot{x}(t_{1}) -\dot{x}(t_{2})| <\varepsilon $. \end{itemize} \end{proposition} \section{Construction of the multivalued operator $T$} Let $u\in C^{2}(\mathbb{R}) $ be arbitrary. Consider the problem \begin{equation}\label{ec3.1} \begin{gathered} \ddot{x}=a_{u}(t) \dot{x}+b_{u}(t) x+c(t) \\ x(+\infty ) =x(-\infty ) ,\quad \dot{x}(+\infty ) =\dot{x}(-\infty ), \end{gathered} \end{equation} where $a_{u}(t) :=a(t,u(t) ,\dot{u}(t))$ and $b_{u}(t) =b(t,u(t) ,\dot{u}(t) )$. Consider the homogeneous problem \begin{equation}\label{ec3.2} \begin{gathered} \ddot{x}=a_{u}(t) \dot{x}+b_{u}(t) x \\ x(+\infty ) =x(-\infty ) ,\quad \dot{x}(+\infty ) =\dot{x}(-\infty ). \end{gathered} \end{equation} Since \[ x(t) =\exp \Big(\int_{0}^{t}y(s) ds\Big) , \quad t\in \mathbb{R} \] is a solution to $\ddot{x}=a_{u}(t) \dot{x} +b_{u}(t) x$ if and only if $y$ is a solution to \begin{equation}\label{ec3.3} \dot{y}=a_{u}y+b_{u}-y^{2}, \end{equation} we have $a_{u}(t) y-y^{2}\leq \dot{y}\leq a_{u}(t) y+b_{u}(t) ,\mbox{ for every }t\in \mathbb{R}$. Let $v$, $w$ satisfy \begin{equation}\label{ec3.4} \begin{gathered} \dot{v}=a_{u}(t) v-v^{2} \\ v(0) =\xi \end{gathered} \end{equation} and \begin{equation}\label{ec3.5} \begin{gathered} \dot{w}=a_{u}(t) w+b_{u}(t) \\ w(0) =\xi\,. \end{gathered} \end{equation} Hence \begin{gather*} \dot{y}=a_{u}y+b_{u}-y^{2} \\ y(0) =\xi, \end{gather*} which implies \begin{gather*} v(t) \leq y(t) \leq w(t) ,\quad \mbox{if } t\geq 0, \\ w(t) \leq y(t) \leq v(t) ,\quad \mbox{if } t\leq 0. \end{gather*} Let $\alpha _{u}(t) :=\exp \big(\int_{0}^{t}a_{u}(s) ds\big)$, for every $t\in \mathbb{R}$. Thus \begin{equation}\label{ec3.6} \begin{gathered} v(t) =\frac{\xi \alpha _{u}(t) }{1+\xi \int_{0}^{t}\alpha _{u}(s) ds} \\ w(t) =\alpha _{u}(t) \big[ \xi +\int_{0}^{t}\frac{b_{u}(s) }{\alpha _{u}(s) }ds\big]. \end{gathered} \end{equation} Therefore, \begin{gather*} \frac{\xi \alpha _{u}(t) }{1+\xi \int_{0}^{t}\alpha _{u}(s) ds} \leq y(t) \leq \alpha _{u}(t) \Big[\xi +\int_{0}^{t}\frac{b_{u}(s) }{\alpha _{u}(s) }ds \Big] ,\quad \mbox{if }t\geq 0, \\ \alpha _{u}(t) \Big[ \xi +\int_{0}^{t}\frac{b_{u}(s) }{\alpha _{u}(s) }ds\Big] \leq y(t) \leq \frac{\xi \alpha _{u}(t) }{1+\xi \int_{0}^{t}\alpha _{u}(s) ds},\quad \mbox{if }t\leq 0. \end{gather*} We write \begin{equation}\label{ec3.7} g_{u}(t) \leq y(t) \leq G_{u}(t) ,\quad \mbox{for }t\in \mathbb{R}, \end{equation} where \begin{equation}\label{ec3.8} g_{u}(t) :=\begin{cases} \frac{\xi \alpha _{u}(t) }{1+\xi \int_{0}^{t}\alpha _{u}( s) ds},&\mbox{if }t\geq 0 \\ \alpha _{u}(t) \Big[ \xi +\int_{0}^{t}\frac{b_{u}(s) }{\alpha _{u}(s) }ds\Big] , &\mbox{if }t\leq 0 \end{cases} \end{equation} and \begin{equation}\label{ec3.9} G_{u}(t) :=\begin{cases} \alpha _{u}(t) \Big[ \xi +\int_{0}^{t}\frac{b_{u}(s) }{\alpha _{u}(s) }ds\Big] , &\mbox{if }t\geq 0 \\ \frac{\xi \alpha _{u}(t) }{1+\xi \int_{0}^{t}\alpha _{u}(s) ds},&\mbox{if }t\leq 0\,. \end{cases} \end{equation} Let $y_{u}$ denote the solution to the equation \eqref{ec3.3} with the initial condition \[y_{u}(0) =\xi\,. \] Hence, $g_{u}(t) \leq y_{u}(t) \leq G_{u}(t)$, for every $t\in \mathbb{R}$. From \eqref{ec3.6} we see that $y_{u}$ is defined for all $t \in \mathbb{R}$ if and only if \[ \xi \in \Big(-\frac{1}{\int_{0}^{+\infty }\alpha _{u}(s) ds}, \frac{1}{\int_{-\infty }^{0}\alpha _{u}(s) ds}\Big) :=(\lambda _{u},\mu _{u}) . \] We let $\lambda :=\sup_{u\in C^{2}(\mathbb{R}) }\left\{ \lambda _{u}\right\} $ and $\mu :=\inf_{u\in C^{2}(\mathbb{R}) }\left\{ \mu _{u}\right\} $. Since \begin{equation}\label{ec3.10} \begin{gathered} A_{1}(t) \leq \alpha _{u}(t) \leq A_{2}( t) ,\quad \mbox{for every }t\geq 0\mbox{ and }u\in C^{2}(\mathbb{R}) \\ A_{2}(t) \leq \alpha _{u}(t) \leq A_{1}( t) ,\quad \mbox{for every }t\leq 0\mbox{ and }u\in C^{2}(\mathbb{R}) \end{gathered} \end{equation} it follows that \[ -\frac{1}{\int_{0}^{+\infty }A_{1}(t) dt}\leq -\frac{1}{ \int_{0}^{+\infty }\alpha _{u}(s) ds}\leq -\frac{1}{ \int_{0}^{+\infty }A_{2}(t) dt}:=\lambda \] and \[ \mu :=\frac{1}{\int_{-\infty }^{0}A_{1}(t) dt}\leq \frac{1}{ \int_{-\infty }^{0}\alpha _{u}(s) ds}\leq \frac{1}{\int_{-\infty }^{0}A_{2}(t) dt}. \] Therefore, \begin{equation}\label{ec3.11} -\frac{1}{\int_{0}^{+\infty }A_{2}(t) dt}:=\lambda <0<\mu := \frac{1}{\int_{-\infty }^{0}A_{1}(t) dt}. \end{equation} Let \[ g(t) :=\inf_{u\in C^{2}(\mathbb{R}) }g_{u}(t)\quad \mbox{and}\quad G(t) :=\sup_{u\in C^{2}(\mathbb{R}) }G_{u}(t) ,\mbox{ for }t\in \mathbb{R}. \] For $t\leq 0$, we have \[ g_{u}(t) \geq \alpha _{u}(t) \Big[ \lambda +\int_{0}^{t}\frac{b_{u}(s) }{\alpha _{u}(s) }ds\Big] \geq A_{1}(t) \Big[ \lambda +\int_{0}^{t}\frac{\beta (s) }{A_{2}(s) }ds\Big] \] and for $t\geq 0$, \[ g_{u}(t) \geq \frac{\lambda \alpha _{u}(t) }{ 1+\lambda \int_{0}^{t}\alpha _{u}(s) ds}\geq \frac{\lambda A_{2}(t) }{1+\lambda \int_{0}^{t}A_{2}(s) ds}. \] Thus \begin{equation}\label{ec3.12} g(t) :=\begin{cases} \frac{\lambda A_{2}(t) }{1+\lambda \int_{0}^{t}A_{2}(s) ds},&\mbox{if }t\geq 0 \\ A_{1}(t) \Big[ \lambda +\int_{0}^{t}\frac{\beta (s) }{A_{2}(s) }ds\Big] ,&\mbox{ if }t\leq 0\,. \end{cases} \end{equation} Similarly \begin{equation}\label{ec3.13} G(t) :=\begin{cases} A_{2}(t) \Big[ \mu +\int_{0}^{t}\frac{\beta (s) }{ A_{1}(s) }ds\Big] ,&\mbox{ if }t\geq 0 \\ \frac{\mu A_{1}(t) }{1+\mu \int_{0}^{t}A_{1}(s) ds}, &\mbox{ if }t\leq 0\,. \end{cases} \end{equation} By hypothesis (A2), one has $g(\pm \infty )=G(\pm \infty ) =0$. Thus for every $\xi \in (\lambda ,\mu ) $ and for every $y$ solution to the equation \eqref{ec3.3} with the initial condition $y(0) =\xi $, we have \begin{equation}\label{ec3.14} g(t) \leq y(t) \leq G(t) , \quad \mbox{for every }t\in \mathbb{R}. \end{equation} Let $\xi _{1}, \mbox{ }\xi _{2}\in (\lambda ,\mu ) $, $\xi _{1}\neq \xi _{2}$ be arbitrary, and $y_{i}^{u}$ be the solution to the problem \begin{gather*} \dot{y}=a_{u}(t) y+b_{u}(t) -y^{2} \\ y(0) =\xi _{i} \end{gather*} where $i\in \{ 1,2\}$ and $u\in C^{2}(\mathbb{R})$. Let $x_{i}^{u}(t) :=\exp (\int_{0}^{t}y_{i}^{u}(s) ds) $, for $t\in \mathbb{R}$, $i\in \{ 1,2\} $ and $u\in C^{2}(\mathbb{R})$. Then $x_{i}^{u}(0) =1$, $\dot{x}_{i}^{u}(0) =\xi _{i}$, $\dot{x}_{i}^{u}(t)=y_{i}^{u}(t) \cdot x_{i}^{u}(t) $, for $t\in \mathbb{R}$, $i\in \{ 1,2\} $ and $u\in C^{2}(\mathbb{R})$. Let us prove that, for every $i\in \{ 1,2\} $ and $u\in C^{2}(\mathbb{R}) $, $x_{i}^{u}(\pm \infty ) $, $\dot{x}_{i}^{u}(\pm \infty )$, exist and are finite. Indeed, by relation \eqref{ec2.1}, \begin{align*} x_{i}^{u}(+\infty ) &=\exp \Big(\int_{0}^{+\infty }y_{i}^{u}(t) dt\Big) \\ &\leq \exp \Big(\int_{0}^{+\infty }A_{2}(t) \big[ \mu +\int_{0}^{t}\frac{\beta (s) }{A_{1}(s) }ds\big] dt\Big) \\ &\leq \exp \Big\{ (\int_{0}^{+\infty }A_{2}(t) dt\Big) \cdot \Big[ \mu +\int_{0}^{+\infty }\frac{\beta (s) }{A_{1}(s) }ds\Big] \Big\} <+\infty , \end{align*} and \begin{align*} x_{i}^{u}(-\infty ) &=\exp \Big(\int_{0}^{-\infty }y_{i}^{u}(t) dt\Big) \\ &\leq \exp \Big\{ \Big(\int_{0}^{-\infty }A_{1}(t) dt\Big) \cdot \Big[ \lambda +\int_{0}^{-\infty }\frac{\beta (s) }{ A_{1}(s) }ds\Big] \Big\} <+\infty , \end{align*} for every $i\in \{ 1,2\} $ and $u\in C^{2}(\mathbb{R}) $. For $i\in \{ 1,2\} $ and $u\in C^{2}(\mathbb{R}) $, \[ | x_{i}^{u}(t) | =\exp \Big(\int_{0}^{t}y_{i}^{u}(s) ds\Big) . \] Hence, for $t\geq 0$, \[ \exp \Big(\int_{0}^{t}y_{i}^{u}(s) ds\Big) \leq \exp \Big\{(\int_{0}^{+\infty }A_{2}(t) dt) \cdot \Big[ \mu +\int_{0}^{+\infty }\frac{\beta (s) }{A_{1}(s) }ds \Big] \Big\} =:\delta _{1} \] and for $t\leq 0$, \[ \exp \Big(\int_{0}^{t}y_{i}^{u}(s) ds\Big) \leq \exp \Big\{ (\int_{0}^{-\infty }A_{1}(t) dt) \cdot \Big[ \lambda +\int_{0}^{-\infty }\frac{\beta (s) }{A_{1}( s) }ds\Big] \Big\} =:\delta _{2}. \] Therefore, taking $M_{1}:=\max \left\{ \delta _{1},\delta _{2}\right\} >0$, we have $| x_{i}^{u}(t) | \leq M_{1}$, for every $t\in \mathbb{R}$, $i\in \{ 1,2\} $, and $u\in C^{2}(\mathbb{R})$. Since $g$ and $G$ are continuous with $g(\pm \infty ) =G( \pm \infty ) =0$ it follows that they are bounded on $\mathbb{R}$. But \[ g(t) \leq y_{i}^{u}(t) \leq G(t) ,\quad \mbox{for every }t\in \mathbb{R},\;i\in \{ 1,2\} \mbox{ and }u\in C^{2}(\mathbb{R}) . \] Hence, there exists a constant $\delta _{3}>0$ such that \[ | y_{i}^{u}(t) | \leq \delta _{3},\quad \mbox{for } t\in \mathbb{R},\;i\in \{ 1,2\} \mbox{ and }u\in C^{2}(\mathbb{R}) \] and so \[ | \dot{x}_{i}^{u}(t) | \leq M_{1}\cdot \delta _{3}=: M_{2},\quad \mbox{for }t\in \mathbb{R},\; i\in \{ 1,2\} \mbox{ and }u\in C^{2}(\mathbb{R}) . \] For $u\in C^{2}(\mathbb{R}) $ the general solution to the nonhomogeneous equation \begin{equation}\label{ec3.15} \ddot{x}=a_{u}(t) \dot{x}+b_{u}(t) x+c(t) \end{equation} is \begin{equation}\label{ec3.16} \begin{aligned} x(t) &=\gamma _{1}^{u}x_{1}^{u}(t) +\gamma_{2}^{u}x_{2}^{u}(t) +x_{2}^{u}(t) \cdot \int_{0}^{t}x_{1}^{u}(s) \cdot \frac{c(s) }{(\xi _{2}-\xi _{1}) \alpha _{u}(s) }ds \\ &\quad -x_{1}^{u}(t) \cdot \int_{0}^{t}x_{2}^{u}(s) \cdot \frac{c(s) }{(\xi _{2}-\xi _{1}) \alpha _{u}(s) }ds, \end{aligned} \end{equation} with $\gamma _{1}^{u}$, $\gamma _{2}^{u}\in \mathbb{R}$. From the condition $x(+\infty ) =x(-\infty )$, we have \begin{equation}\label{ec3.17} \begin{aligned} &\gamma _{1}^{u}\cdot \left[ x_{1}^{u}(+\infty ) -x_{1}^{u}(-\infty ) \right] +\gamma _{2}^{u}\cdot \left[ x_{2}^{u}(+\infty ) -x_{2}^{u}(-\infty ) \right] \\ &=x_{1}^{u}(+\infty ) \cdot \int_{0}^{+\infty }x_{2}^{u}( s) \cdot \frac{c(s) }{(\xi _{2}-\xi _{1})\alpha _{u}(s) }\,ds\\ &\quad -x_{1}^{u}(-\infty ) \cdot \int_{0}^{-\infty }x_{2}^{u}(s) \cdot \frac{c(s) }{(\xi _{2}-\xi _{1}) \alpha _{u}(s) }\,ds \\ &\quad +x_{2}^{u}(-\infty ) \cdot \int_{0}^{-\infty }x_{1}^{u}(s) \cdot \frac{c(s) }{(\xi _{2}-\xi _{1})\alpha _{u}(s) }\,ds \\ &\quad -x_{2}^{u}(+\infty ) \cdot \int_{0}^{+\infty }x_{1}^{u}(s) \cdot \frac{c(s) }{(\xi _{2}-\xi _{1})\alpha _{u}(s) }\,ds. \end{aligned} \end{equation} Now we prove that the relation \eqref{ec3.17} is satisfied by infinitely many pairs $(\gamma _{1}^{u},\gamma _{2}^{u}) $, $ u\in C^{2}(\mathbb{R}) $. Indeed, if we denote by \[ d_{1}:=x_{1}^{u}(+\infty ) -x_{1}^{u}(-\infty ) , \quad d_{2}:=x_{2}^{u}(+\infty ) -x_{2}^{u}(-\infty ), \] and $d_{3}$ the right hand side of \eqref{ec3.17}, then we have to consider only three cases. \noindent {\it Case 1}. If $d_{1}\neq 0$ and $d_{2}=0$, it follows that $\gamma _{1}^{u}=\frac{d_{3}}{d_{1}}$ and $\gamma _{2}^{u}\in \mathbb{R}$; similarly, if $d_{1}=0$ and $d_{2}\neq 0$, it follows that $\gamma _{1}^{u}\in \mathbb{R}\mbox{ and }\gamma _{2}^{u}=\frac{d_{3}}{d_{2}}$. \noindent {\it Case 2}. If $d_{1}\neq 0$ and $d_{2}\neq 0$, it follows that \[ \gamma _{1}^{u}=\frac{d_{3}-d_{2}\gamma _{2}^{u}}{d_{1}}\quad\mbox{and}\quad \gamma_{2}^{u}\in \mathbb{R}. \] {\it Case 3}. If $d_{1}=0$ and $d_{2}=0$, we show that $d_{3}=0$ (and so the solutions are $\gamma _{1}^{u}$, $\gamma _{2}^{u}\in \mathbb{R}$). Indeed, in this case, $x_{1}^{u}(+\infty ) =x_{1}^{u}( -\infty ) $ and $x_{2}^{u}(+\infty ) =x_{2}^{u}( -\infty ) $, and we have to prove that \begin{equation}\label{ec3.18} x_{1}^{u}(+\infty ) \cdot \int_{-\infty }^{+\infty }x_{2}^{u}(s) \cdot \frac{c(s) }{\alpha _{u}( s) }ds=x_{2}^{u}(+\infty ) \cdot \int_{-\infty }^{+\infty }x_{1}^{u}(s) \cdot \frac{c(s) }{\alpha _{u}(s) }ds. \end{equation} To prove \eqref{ec3.18} we shall apply Lemma \ref{Lemma2.1} to the mapping $f:[0,+\infty )\to \mathbb{R}$, defined by \[ f(t) :=x_{1}^{u}(t) \cdot \int_{-t}^{+t}x_{2}^{u}(s) \cdot \frac{c(s) }{\alpha _{u}(s) }ds-x_{2}^{u}(t) \cdot \int_{-t}^{+t}x_{1}^{u}(s) \cdot \frac{c(s) }{\alpha _{u}(s) }ds. \] Thus \begin{align*} \frac{df}{dt}(t) &=\dot{x}_{1}^{u}(t) \cdot \int_{-t}^{+t}x_{2}^{u}(s) \cdot \frac{c(s) }{\alpha_{u}(s) }\,ds-\dot{x}_{2}^{u}(t) \cdot \int_{-t}^{+t}x_{1}^{u}(s) \cdot \frac{c(s) }{\alpha_{u}(s) }\,ds \\ &\quad +\frac{c(-t) }{\alpha _{u}(-t) }\left[ x_{1}^{u}(t) \cdot x_{2}^{u}(-t) -x_{2}^{u}(t) \cdot x_{1}^{u}(-t) \right] . \end{align*} Since $\dot{x}_{i}^{u}(\pm \infty ) =x_{i}^{u}(\pm \infty ) \cdot y_{i}^{u}(\pm \infty ) =0$, $i\in \{ 1,2\}$, the mapping $\frac{c}{\alpha _{u}}$ is bounded on $\mathbb{R}$ (see hypothesis (C2)), and \[ \lim_{t\to +\infty }\left[ x_{1}^{u}(t) \cdot x_{2}^{u}(-t) -x_{2}^{u}(t) \cdot x_{1}^{u}(-t) \right] =0, \] it follows that $\lim_{t\to +\infty }\frac{df}{dt}(t) =0$. Therefore $f$ is uniformly continuous on $[0,+\infty )$, being Lipschitz on $[0,+\infty )$. Since $x_{i}^{u}$, $i\in \{ 1,2\} $ are bounded, from (C2) it follows that $\int_{0}^{+\infty }f(t)\,dt$ exists and is finite. Hence, by Lemma \ref{Lemma2.1} we obtain \[ \lim_{t\to +\infty }f(t) =0. \] Now we define the multivalued operator $T:X\to 2^{X}$, by \begin{align*} Tu &:=\Big\{ \gamma _{1}^{u}x_{1}^{u}(\cdot ) +\gamma_{2}^{u}x_{2}^{u}(\cdot ) +x_{2}^{u}(\cdot ) \cdot \int_{0}^{(\cdot ) }x_{1}^{u}(s) \cdot \frac{c(s) }{(\xi _{2}-\xi _{1}) \alpha _{u}(s) }\,ds \\ &\quad -x_{1}^{u}(\cdot ) \cdot \int_{0}^{(\cdot ) }x_{2}^{u}(s) \cdot \frac{c(s) }{(\xi _{2}-\xi _{1}) \alpha _{u}(s) }\,ds, \\ &\quad \mbox{with }| \gamma _{1}^{u}| +| \gamma_{2}^{u}| \leq 1,\; \gamma _{1}^{u},\;\gamma _{2}^{u}\mbox{ satisfying }\eqref{ec3.17} \Big\} , \end{align*} for every $u\in X$. By \eqref{ec3.15}-\eqref{ec3.16} we have \[ | x(t) | \leq 2M_{1}+\frac{M_{1}}{| \xi_{2}-\xi _{1}| } \Big(\big | \int_{0}^{t}x_{1}^{u}(s)\frac{c(s) }{\alpha _{u}(s) }ds\big| +\big| \int_{0}^{t}x_{2}^{u}(s) \frac{c(s)}{\alpha _{u}(s) }ds\big| \Big). \] Hence $| x(t) | \leq k_{1}$, for every $t\in \mathbb{R}$, where \[ k_{1} :=\max \Big\{ 2M_{1}+\frac{2M_{1}^{2}}{| \xi _{2}-\xi _{1}| }\int_{0}^{+\infty } \frac{|c(s)| }{A_{1}(s) } ds, 2M_{1}+\frac{2M_{1}^{2}}{| \xi _{2}-\xi _{1}| } \int_{-\infty }^{0} \frac{|c(s)| }{A_{2}(s) } ds\Big\}. \] Similarly \[ | \dot{x}(t) | =\Big| \gamma _{1}^{u}\dot{x} _{1}^{u}(t) +\gamma _{2}^{u}\dot{x}_{2}^{u}(t) +\dot{ x}_{2}^{u}(t) \int_{0}^{t}x_{1}^{u}(s) \frac{c(s) }{\alpha _{u}(s) }ds -\dot{x}_{1}^{u}(t) \int_{0}^{t}x_{2}^{u}(s) \frac{c(s) }{\alpha _{u}(s) }ds\Big| , \] and there exists another constant $k_{2}\geq 0$, \[ k_{2} :=\max \Big\{ 2M_{2}+\frac{2M_{1}M_{2}}{| \xi _{2}-\xi _{1}| }\int_{0}^{+\infty } \frac{|c(s)| }{A_{1}(s) } ds, 2M_{2}+\frac{2M_{1}M_{2}}{| \xi _{2}-\xi _{1}| } \int_{-\infty }^{0} \frac{|c(s)| }{A_{2}(s) } ds\Big\} , \] such that $|\dot x(t) | \leq k_{2}$, for every $t\in \mathbb{R}$. Remark that, by relation \eqref{ec2.3}, $k_{1}$, $k_{2}$ are finite. We let $k:=\max \{ k_{1},\;k_{2}\}$, and \[ M:=\left\{ x\in C^{2}(\mathbb{R}) ,\;| x(t) | \leq k,\;| \dot{x}(t) | \leq k, \mbox{ for every }t\in \mathbb{R}\right\} . \] \section{Proof of main result} To prove Theorem \ref{main} it is sufficient to prove that the operator $T$ has a fixed point. We do this in three steps. \noindent{\it Step 1: For every $u\in M$, $T(u) $ is a non-empty convex closed set}. Let $u\in M$ be arbitrary. From the definition of $T$ we see that $T(u)$ is non-empty and convex. Let $(x^{n}) _{n\in \mathbb{N}}\subset T(u) $ be such that $x^{n}\to x$ and $\dot{x}^{n}\to \dot{x}$ uniformly on $\mathbb{R}$ as $n\to\infty$. We have \[ x^{n}(t) :=\gamma _{1,n}^{u}x_{1}^{u}(t) +\gamma _{2,n}^{u}x_{2}^{u}(t) +H^{u}(t) , \] for every $n\in \mathbb{N}$, with $| \gamma _{1,n}^{u}| +| \gamma _{2,n}^{u}| \leq 1$, $\gamma _{1,n}^{u}, \gamma _{2,n}^{u}$ satisfying \eqref{ec3.17}, and \[ H^{u}(t) :=x_{2}^{u}(t) \cdot \int_{0}^{t}x_{1}^{u}(s) \cdot \frac{c(s) }{( \xi _{2}-\xi _{1}) \alpha _{u}(s) }ds -x_{1}^{u}(t) \cdot \int_{0}^{t}x_{2}^{u}(s) \cdot \frac{c(s) }{(\xi _{2}-\xi _{1}) \alpha _{u}(s)}\,ds. \] Then there exist subsequences such that $\gamma _{1,k_{n}}^{u}\to \gamma _{1}^{u}$ and $\gamma _{2,k_{n}}^{u}\to \gamma _{2}^{u}$, as $n\to \infty$. Since $(x^{k_{n}}) _{n\in \mathbb{N}}$ converges uniformly to $y:=\gamma _{1}^{u}x_{1}^{u}+\gamma _{2}^{u}x_{2}^{u}+H^{u}$, it follows that $x = y$. Also \[ \dot{x}^{k_{n}}\to \dot{y}=\dot{x},\quad \mbox{ as }n\to \infty. \] So $x\in T(u) $, that is $T(u) $ is a closed set. \smallskip \noindent{\it Step 2: $T(M)$ is relatively compact.} The relative compactness of $T(M) $ will be proved by using Proposition \ref{Proposition2.1}. From the definitions of $T$ and $M$ we see that $| x(t)| \leq k$, $| \dot{x}(t) | \leq k$, for all $t\in \mathbb{R}$. Thus the first condition of Proposition \ref{Proposition2.1} is fulfilled with $h_{1}=h_{2}=k$. Conditions (b) and (c) of Proposition \ref{Proposition2.1} are implied by the following assumption: (d) {\it There exist }$f_{1}$, $f_{2}:\mathbb{R}\to \mathbb{R}_{+}$ {\it integrable on }$\mathbb{R}$ {\it such that for every }$x\in \mathcal{A}$ \[ | \dot{x}(t) | \leq f_{1}(t) \quad \mbox{{\it and}}\quad | \ddot{x}(t) | \leq f_{2}(t) ,\quad \mbox{{\it for} }t\in \mathbb{R}. \] This last assertion follows from the fact that, for every $t_{1},t_{2}\in \mathbb{R}$, \[ x(t_{1}) -x(t_{2}) =\int_{t_{1}}^{t_{2}}\dot{x} (t) dt\quad \mbox{and}\quad \dot{x}(t_{1}) -\dot{x}(t_{2}) =\int_{t_{1}}^{t_{2}}\ddot{x}(t)\, dt\,. \] For $i\in \{ 1,2\} $ let \[ g_{1i}(t) :=\begin{cases} \max \Big\{ A_{2}(t) \big[ \mu +\int_{0}^{t}\frac{\beta ( s) }{A_{1}(s) }ds\big] ,\frac{| \xi _{i}| A_{2}(t) }{| 1+\xi _{i}\int_{0}^{t}A_{2}(s) ds| }\Big\} , & t\geq 0 \\ \max \Big\{ \frac{| \xi _{i}| A_{1}(t) }{| 1+\xi _{i}\int_{0}^{t}A_{1}(s) ds| },A_{1}(t) \big[ -\lambda +\int_{t}^{0}\frac{\beta (s) }{A_{2}( s) }ds\big] \Big\} ,& t\leq 0\,. \end{cases} \] Hence $| \dot{x}_{i}^{u}| $ is bounded by the integrable function $M_{1}\cdot g_{1i}$, $i\in \{ 1,2\} $. Furthermore, since \[ \big| \int_{0}^{t}x_{2}^{u}(s) \cdot \frac{c(s) }{( \xi _{2}-\xi _{1}) \cdot \alpha _{u}(s) }ds\big| \] is bounded (on the positive semiaxis by $\frac{M_{1}}{| \xi _{2}-\xi_{1}| }\cdot \int_{0}^{+\infty }\frac{| c(s) | }{A_{1}(s) }\,ds$ and on the negative semiaxis by $\frac{M_{1}}{| \xi _{2}-\xi _{1}| }\cdot \int_{-\infty }^{0}\frac{| c(s) | }{A_{1}(s) }\,ds$), and $|\dot{x}_{1}^{u}| $ is bounded by an integrable function, we see that \[ \big| \dot{x}_{1}^{u}\cdot \int_{0}^{(\cdot ) }x_{2}^{u}( s) \cdot \frac{c(s) }{(\xi _{2}-\xi _{1}) \cdot \alpha _{u}(s) }ds\big| \] is bounded by an integrable function. Similarly, \[ \big| \dot{x}_{2}^{u}\cdot \int_{0}^{(\cdot ) }x_{1}^{u}( s) \cdot \frac{c(s) }{(\xi _{2}-\xi _{1}) \cdot \alpha _{u}(s) }ds\big| \] is bounded by an integrable function. Therefore, the existence of $f_{1}$ in assertion (d) follows. Now, since \[ \ddot{x}(t) =a_{u}(t) \dot{x}(t) +b_{u}(t) x+c(t) , \] $a_{u}$ is bounded (hypothesis (A1)), $| \dot{x}| $ is bounded by an integrable function, $| x| $ is bounded (by $k$), $b_{u}$ is integrable on $\mathbb{R}$ (by relation \eqref{ec2.2}, hypothesis (B1), and $| c| $ is integrable on $\mathbb{R}$ (by hypothesis (C1)), we see that $| \ddot{x}| $ is bounded by an integrable function. This proves the existence of $f_{2}$, and hence assertion (d) is verified. \smallskip \noindent {\it Step 3: $T$ is upper semicontinuous.} Let $A$ be a closed subset of $M$. Hence if $(u_{n}) _{n}\subset A$ such that $u_{n}\to u$ and $\dot{u}_{n}\to \dot{u}$ uniformly on $\mathbb{R}$, as $n\to \infty $, it follows that $u\in A$. Let $z_{n}\in T^{-1}(A) $ be such that $z_{n}\to z$ and $ \dot{z}_{n}\to \dot{z}$ uniformly on $\mathbb{R}$, as $n\to \infty$. We have to prove that $z\in T^{-1}(A) $. Since $z_{n}\in T^{-1}(A) $ there exists $x_{n}\in A$, $x_{n}\in Tz_{n}$. Thus \begin{equation}\label{ec4.1} \ddot{x}_{n}=a(t,z_{n},\dot{z}_{n}) \dot{x}_{n}+x(t,z_{n}, \dot{z}_{n}) x_{n}+c(t) ,\quad n\in \mathbb{N} \end{equation} and \begin{equation}\label{ec4.2} x_{n}(+\infty ) =x_{n}(-\infty ) ,\quad \dot{x}_{n}(+\infty ) =\dot{x}_{n}(-\infty ) ,\quad n\in \mathbb{N}. \end{equation} Since $x_{n}\in T(M) $ and $ T(M) $ is relatively compact, the sequence $x_{n}$ contains subsequence converging in $C^{2}$ to some $x$. One can assume that $x_{n}\to x$, $\dot{x}_{n}\to \dot{x}$ uniformly on $\mathbb{R}$, as $n\to \infty $. Since $a(t,z_{n}(t) ,\dot{z}_{n}(t) )\to a(t,z(t) ,\dot{z}(t) )$ and $b(t,z_{n}(t) ,\dot{z}_{n}(t) )\to b(t,z(t) ,\dot{z}(t) )$, uniformly on compact subsets of $\mathbb{R}$, it follows that $ x$ is solution to the equation \[ \ddot{x}=a(t,z(t) ,\dot{z}(t) ) \dot{z}+b(t,z(t) ,\dot{z}(t) ) z+c(t) , \] with \[ x(0) =\lim_{n\to \infty }x_{n}(0)\quad \mbox{and}\quad \dot{x}(0) =\lim_{n\to \infty }\dot{x}_{n}(0) . \] Furthermore, by \eqref{ec4.2} we find, by passing to the limit as $n\to \infty $, \[ x(+\infty ) =x(-\infty ) \quad\mbox{and}\quad \dot{x}(+\infty ) =\dot{x}(-\infty ) . \] Since the set $A$ is closed, $x\in A$. Therefore, $z\in T^{-1}(A)$, which completes the proof of Theorem \ref{main}. \begin{thebibliography}{00} \bibitem[1]{1} {\sc S. Adly, D. Goeleven and D. Motreanu, }{\it Periodic and homoclinic solutions for a class of unilateral problems}, Discrete Cont. Dyn. Systems, {\bf 3}(1997), pp. 579-590. \bibitem[2]{2} {\sc S. Adly and D. Goeleven, }{\it Homoclinic orbits for a class of hemivariational inequalities}, Applicable Analysis, {\bf 58}(1995), pp. 229-240. \bibitem[3]{3} {\sc A. Ambrosetti and M. L. Bertotti, }{\it Homoclinics for second order conservative systems}, in: Partial differential equations and related subjects (Proc. conf. in honor of L. Nirenberg), Longman Scientific Technical, Harbour, England, 1992, pp. 21-37. \bibitem[4]{4} {\sc C. Avramescu, }{\it Sur l'existence des solutions convergentes des syst\`{e}mes d'\'{e}quations diff\'{e}rentielles ordinaires}, Ann. Mat. Purra ed Appl., {\bf LXXXI}(IV)(1969), pp. 147-168. \bibitem[5]{5} {\sc C. Avramescu, }{\it Sur l'existence des solutions des \'{e}quations int\'{e}grales dans certains espaces fonctionnels}, Ann. Univ. Sc. Budapest, {\bf XIII}(1970), pp. 19-34. \bibitem[6]{6} {\sc C. Avramescu, }{\it Existence problems for homoclinic solutions}, Abstract and Applied Analysis, {\bf 7}(1)(2002), pp. 1-27. \bibitem[7]{7} {\sc C. Avramescu, }{\it Continuation theorems and }$\omega $ {\it -closed orbits for ordinary differential equations}, University of the West Timi\c{s}oara, Preprint Series in Math., Seminar of Math. Analysis, {\bf 131}(2001). \bibitem[8]{8} {\sc C. Avramescu, }{\it Evanescent solutions for linear ordinary differential equations}, Electronic Journal of Qualitative Theory of Differential Equations, {\bf 9}(2002), pp.1-12. \bibitem[9]{9} {\sc C. Avramescu and C. Vladimirescu, }{\it Homoclinic solutions for li\-ne\-ar and linearizable ordinary differential equations}, Abstract and A\-pplied Analysis, {\bf 5}(2)(2000), pp. 65-85. \bibitem[10]{10} {\sc C. Avramescu and C. Vladimirescu, }{\it Existence results for ge\-ne\-ra\-lized bilocal boundary-value problems}, Ann. Univ. Craiova, {\bf XXVI}(1999), pp. 5-14. \bibitem[11]{11} {\sc C. Avramescu and C. Vladimirescu, }{\it Homoclinic solutions for second order linear di\-ffe\-ren\-ti\-al equations}, Ann. Univ. Craiova, {\bf XXVII}(2000), pp. 14-23. \bibitem[12]{12} {\sc C. Avramescu and C. Vladimirescu, }{\it Limits of solutions of a perturbed linear differential equation}, Electronic Journal of Qualitative Theory of Differential Equations, {\bf 3}(2002), pp. 1-11. \bibitem[13]{13} {\sc V. Coti Zelati and P. H. Rabinovici}, {\it Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials}, J. Amer. Math. Soc., {\bf 4}(1992), pp. 693-727. \bibitem[14]{14} {\sc G. Th. Hallam, }{\it Convergence of solutions of perturbed nonlinear di\-ffe\-ren\-tial equations}, J. Diff. Eqs., {\bf 12}(1972), pp. 63-80. \bibitem[15]{15} {\sc A.G. Kartsatos, }{\it Convergence in perturbed nonlinear systems}, Tohoku Math. J., {\bf 4}(1972), pp. 1-7. \bibitem[16]{16} {\sc A. G. Kartsatos, }{\it Advanced Ordinary Differential Equations}, Mariner Publishing Co., Inc., 1980. \bibitem[17]{17} {\sc J. Mawhin, }{\it Topological degree methods in nonlinear boundary-value problems}, CBMS Regional Conf. Soc. Math., {\bf 40}, Amer. Math. Soc., Providence, R. I., 1979. \bibitem[18]{18} {\sc J. Mawhin, }{\it Continuation theorems and periodic solutions of ordinary differential equations}, in: Topological Methods in Differential Equations and Inclusion (Montreal 1996), Kluwer, 1997. \bibitem[19]{19} {\sc J. Mawhin, }{\it Topological degree and boundary-value problems for non\-li\-ne\-ar differential equations}, Lectures Notes in Math., {\bf 1537}, Springer-Verlag, Berlin, 1993. \bibitem[20]{20} {\sc P. H. Rabinowitz, }{\it Homoclinic orbits for a class of Hamiltonian systems}, Proc. Royal E\-din\-burg, {\bf 114 A}(1990), pp. 33-38. \bibitem[21]{21} {\sc D. Yanheng and M. Girardi, }{\it Periodic and homoclinic solutions to a class of Hamiltonian systems with the potentials changing sign}, Dyn. Syst. Appl., {\bf 2}(1993), pp. 131-145. \bibitem[22]{22} {\sc E. Zeidler, }{\it Nonlinear Functional Analysis and its Applications, I, Fixed - Point Theorems}, Springer-Verlag, Berlin, 1993. \end{thebibliography} \end{document}