\documentclass[reqno]{amsart} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2004(2004), No. 30, pp. 1--18.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2004 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2004/30\hfil Periodic Duffing equations with delay] {Periodic Duffing equations with delay} \author[J.-M. Belley \& M. Virgilio\hfil EJDE-2004/30\hfilneg] {Jean-Marc Belley \& Michel Virgilio} % in alphabetical order \address{Jean-Marc Belley \hfill\break Universit\'{e} de Sherbrooke, Facult\'{e} des sciences\\ Sherbrooke, Qc, Canada J1K 2R1} \email{Jean-Marc.Belley@USherbrooke.ca} \address{Michel Virgilio \hfill\break Universit\'{e} de Sherbrooke, Facult\'{e} des sciences\\ Sherbrooke, Qc, Canada J1K 2R1} \email{Michel.Virgilio@dmi.usherb.ca} \date{} \thanks{Submitted January 22, 2004. Published March 3, 2004.} \subjclass[2000]{34K13} \keywords{Duffing equations, periodic solutions, delay equations, \hfill\break\indent a priori bounds, contraction principle} \begin{abstract} Assuming \textit{a priori} bounds on the mean of a $T$-periodic function $p$, we show that the Duffing equation $$ x''(t) +cx'(t) +g(t-\tau ,x(t-\tau) ,x'(t-\tau)) =p(t), $$ with delay $\tau$, admits a $T$-periodic solution. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{corollary}[theorem]{Corollary} \newtheorem{example}[theorem]{Example} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{remark}[theorem]{Remark} \section{Introduction} The existence of $2\pi $-periodic solutions to the Duffing equation \begin{equation} x''(t) +g(x(t-\tau ) )=p(t) \label{x''+g(x)=p} \end{equation} with delay $\tau \geq 0$ is a challenging problem of current interest. In \cite{MAwangYU} it is shown that such solutions exist for continuous $2\pi $ -periodic $p:\mathbb{R}\to \mathbb{R}$ of mean $\overline{p}=0$ and continuous $g:\mathbb{R\to R}$ for which there exist $A\in [0,1/\pi^2[$ and $C\geq 0$ such that, for all $|x|$ large enough, one has simultaneously \begin{gather} xg(x) >0\,, \label{xg>0}\\ |g(x) |\leq A|x|+C\,. \label{||g(x)|0}) is replaced by \begin{equation} \mathop{\rm sgn}(x) (g(x) -\overline{p}) >0 \label{sign(x)(g(x)-pbar)>0} \end{equation} and condition (\ref{||g(x)|0$. In practice though, conditions (\ref{xg>0}) and (\ref {sign(x)(g(x)-pbar)>0}) are often not met, as in the case of the classical forced pendulum equation where $\tau =0$ and $g(x) =a\sin x$ $ (a>0) $. The result presented in \cite{ZHANGwangYU2000} rests on a complex inequality which is also not applicable to the forced pendulum equation (since it then takes the form $0>0$). In \cite{CHENyuYUAN02} it is shown by means of coincidence degree that equation (\ref{x''+g(x)=p}) with $ \tau =0$ and $g'<0$ (which also does not hold for the pendulum equation) possesses a unique $2\pi $-periodic solution if and only if $ \overline{p}\in g(\mathbb{R}) $. As shown in \cite{ALONSO97}, there are cases where the nonconservative forced pendulum equation with periodic forcing (and $\tau =0$) admits no periodic solution. (See also \cite {TARANTELLO89}.) The results obtained here on the existence of twice continuously differentiable periodic solutions to equations that generalize ( \ref{x''+g(x)=p}) are applicable to the forced pendulum equation. As we shall see in Theorem \ref{thm18}, the contraction principle yields a result which contains the following: \begin{theorem} \label{thm1} Given $A\in ]0,1/\sqrt{2}[$, let $g:\mathbb{R\to R}$ be a continuous function such that \begin{equation} |g(x_2) -g(x_{1}) |0$) satisfies the Lipschitz condition (\ref{|g(x2)-g(x1)|0$, let $C(T) $ be the class of all continuous real-valued $T$-periodic functions on $\mathbb{R}$ and $L^{1}(T) $ the set of all real-valued $T$-periodic functions on $\mathbb{R}$ the restriction of which to the segment $[0,T] $ are Lebesgue integrable functions. Let $C^{1}(T) $ be the class of all continuously differentiable functions in $C(T) $, $C^2( T) $ the class of all twice continuously differentiable functions in $ C(T) $ and $L^2(T) $ the Hilbert space of all $ x\in L^{1}(T) $ with usual finite norm \begin{equation*} \|x\|_2=\big[\frac{1}{T}\int_{[0,T]}|x(t) |^2\,dt\big]^{1/2}. \end{equation*} The inner product on $L^2(T) $ associated with this norm is given by \begin{equation*} \langle x,y\rangle_2=\frac{1}{T}\int_{[0,T] }x(t) y(t) \,dt. \end{equation*} For a given $c\in \mathbb{R}$, let $L$ be the linear operator \begin{equation*} Lx=x''+cx'. \end{equation*} The theorem in the previous section will be extended to the case where $p\in L^{1}(T) $ and the function $g:\mathbb{R}^{3}\to \mathbb{ R}$ in the Duffing equation \begin{equation} Lx(t) +g(t-\tau ,x(t-\tau ) ,x'(t-\tau ) ) =p(t) \label{Lx+g=p} \end{equation} with delay $\tau \in \mathbb{R}$ is continuous and such that $g(t,x,y) $ is $T$-periodic in $t\in \mathbb{R}$ for all $(x,y) \in \mathbb{R}^2$, and satisfies the Lipschitz condition \begin{equation} |g(t,x_2,y_2) -g(t,x_{1},y_{1}) |\leq A|x_2-x_{1}|+B|y_2-y_{1}| \label{|g(t,x2,y2)-g(t,x1,y1)|0}) and so the results in \cite{MAwangYU} and \cite{ZHANGwangYU2000} (as well as those in \cite{CESARIkannan82}, \cite{FONDAlupo89}, \cite{GOSSEZomari90} \cite{MAHWINward83} and \cite{OMARIzanolin87} for the case $\tau =0$) do not apply. \section{The case $g=g(t,x) $} In this case condition (\ref{|g(t,x2,y2)-g(t,x1,y1)|0$ for all $t\in \mathbb{R}$ and all $|x|$ large enough. This is essentially condition (\ref{sign(x)(g(x)-pbar)>0}) found in \cite{HUANGxiang94}. \subsection{\textit{A priori} bounds for $\overline{p}$} Proceeding as in section 3.2, one has, for all $x\in \widetilde{H}$ and all $n\in \mathbb{N}$, \begin{equation*} |\overline{g_{\tau ,r}}[x_{r}] -\overline{g_{\tau ,r}} [G_{\tau ,r}^{n}(x) ] |\leq \frac{A (\beta')^{n}}{1-\beta '}\|G_{\tau ,r} (x)-x\|_2\,, \end{equation*} where \begin{equation*} \beta '=A\sigma '=\frac{A}{\omega }\sqrt{\frac{\omega^2+1}{\omega^2+c^2}}\,. \end{equation*} Hence condition (\ref{infgrBAR[xr]1$ and $\beta'<1$. \begin{example} \label{ex19} For $\alpha \in \mathbb{R}$\ the equation with delay $\tau \in \mathbb{R}$ \begin{equation*} x''(t) +2x'(t) +\sqrt{2}\cos^2(t-\tau ) \ln (1+x^2(t-\tau ) )=\alpha +\sin t-2\cos t \end{equation*} is such that $c=2$, $T=2\pi $ (and so $\omega =1$), $\varphi (t)=-\sin t$ and \begin{equation*} g(t,x) =\sqrt{2}\cos^2(t) \ln (1+x^2) . \end{equation*} Hence \begin{equation*} |g(t,x_2) -g(t,x_{1}) |\leq \sqrt{2}|x_2-x_{1}| \end{equation*} and so one has (\ref{|g(t,x2)-g(t,x1)|1$), $\|\varphi \|_2=1/\sqrt{2}$, $\lambda '=2\sqrt{2}/(\sqrt{5}-2) $, \begin{align*} \inf_{r\in \mathbb{R}}\overline{g}(t,\varphi +r) &=\inf_{r\in \mathbb{R}}\frac{\sqrt{2}}{2\pi }\int_{[0,2\pi ] }\cos ^2(t) \ln (1+(r-\sin t)^2) \,dt \\ &\leq \inf_{r\in \mathbb{R}}\frac{\sqrt{2}}{2\pi }\int_{[0,2\pi ] }\cos^2(t) \ln (1+(|r|+|\sin t|)^2) \,dt \\ &<\frac{\sqrt{2}}{2\pi }\ln 2\int_{[0,2\pi ] }\cos^2(t) \,dt \\ &=\frac{1}{\sqrt{2}}\ln 2 \end{align*} and \begin{equation*} \sup_{r\in \mathbb{R}}\overline{g}(t,\varphi +r) =\sup_{r\in \mathbb{R}}\frac{\sqrt{2}}{2\pi }\int_{[0,2\pi ] }\cos^2(t) \ln (1+(r-\sin t)^2)\,dt=\infty \,. \end{equation*} Hence, by the previous theorem, the delay equation admits a $2\pi $-periodic solution whenever \begin{equation*} \frac{1}{\sqrt{2}}\ln 2+\frac{2}{(\sqrt{5}-2) }\leq \alpha <\infty \,. \end{equation*} \end{example} \section{The case of bounded $g=g(t,x)$} Let $g:\mathbb{R}^2\to \mathbb{R}$ be a bounded continuous function such that $g(t,x) $ is $T$-periodic in $t\in \mathbb{R}$ for all $x\in \mathbb{R}$. Condition (\ref{sup(|g(t,x)|:tinR)1$, and so (\ref{A0$ and $\omega =2\pi /T$, suppose that the nonconservative pendulum equation \begin{equation*} x''(t) +cx'(t) +a\sin x(t) =\alpha +b\sin \omega t \end{equation*} with forcing $p(t) =\alpha +b\sin \omega t$ is such that $| a|<\omega \sqrt{\omega^2+c^2}$. Then \begin{equation*} \varphi (t) =-\frac{b\omega }{c^2\omega^2+\omega^4}[ c\cos \omega t+\omega \sin \omega t] \end{equation*} is the $T$-periodic solution of mean zero of the linear equation \begin{equation*} x''(t) +cx'(t) =b\sin \omega t. \end{equation*} One has \begin{equation*} \|\varphi \|_2=\frac{|b|}{\sqrt{2}\sqrt{\omega^2+c^2}} \end{equation*} and, by Maclaurin's series expansion for trigonometric functions, \begin{align*} \overline{\sin }\varphi &=\overline{\sin }(-\frac{be^{i\omega t}}{ 2(c\omega +i\omega^2) }-\frac{be^{-i\omega t}}{2( c\omega -i\omega^2) }) \\ &=\frac{1}{T}\int_{0}^{T}\sin (-\frac{be^{i\omega t}}{2(c\omega +i\omega^2) }) \cos (\frac{be^{-i\omega t}}{2( c\omega -i\omega^2) }) \,dt \\ &\quad+\frac{1}{T}\int_{0}^{T}\cos (\frac{be^{i\omega t}}{2(c\omega +i\omega^2) }) \sin (-\frac{be^{-i\omega t}}{2(c\omega -i\omega^2) }) \,dt \\ &=0\,. \end{align*} Thus, \[ \inf_{r\in \mathbb{R}}a\overline{\sin }(\varphi +r) =\inf_{r\in \mathbb{R}}a[\overline{\cos }\varphi \sin r+\overline{ \sin }\varphi \cos r] =\inf_{r\in \mathbb{R}}a\overline{\cos }\varphi \sin r =-|a\overline{\cos }\varphi | \] and \[ \sup_{r\in \mathbb{R}}a\overline{\sin }(\varphi +r) =\sup_{r\in \mathbb{R}}a[\overline{\cos }\varphi \sin r+\overline{\sin } \varphi \cos r] =\sup_{r\in \mathbb{R}}a\overline{\cos }\varphi \sin r =|a\overline{\cos }\varphi | \] and so, by the previous theorem, one is assured of the existence of a twice continuously differentiable $T$-periodic solution whenever $\alpha $ satisfies \begin{equation*} -|a\overline{\cos }\varphi |+\lambda '' \frac{|ab|}{\sqrt{2}\sqrt{\omega^2+c^2}}<\alpha <|a\overline{\cos }\varphi |-\lambda '' \frac{|ab|}{\sqrt{2}\sqrt{\omega^2+c^2}} \end{equation*} where \begin{equation*} \lambda ''=\sqrt{\frac{a^2}{\omega \sqrt{\omega^2+c^2} -|a|}} \end{equation*} and \begin{align*} \overline{\cos }\varphi &=\overline{\cos }(-\frac{be^{i\omega t}}{ 2(c\omega +i\omega^2) }-\frac{be^{-i\omega t}}{2( c\omega -i\omega^2) }) \\ &=\frac{1}{T}\int_{0}^{T}\cos (\frac{be^{i\omega t}}{2(c\omega +i\omega^2) }) \cos (\frac{be^{-i\omega t}}{2( c\omega -i\omega^2) }) \,dt \\ &\quad -\frac{1}{T}\int_{0}^{T}\sin (\frac{be^{i\omega t}}{2(c\omega +i\omega^2) }) \sin (\frac{be^{-i\omega t}}{2( c\omega -i\omega^2) }) \,dt \\ &=\sum_{n=0}^{\infty }\frac{(-1)^{n}}{(2^{n}(n!) )^2} (\frac{b^2}{c^2\omega^2+\omega^4})^{n}. \end{align*} \end{example} In many cases the \textit{a priori} bounds of the previous theorem are never satisfied. For example, the equation with delay $\tau \in \mathbb{R}$ \begin{equation} x''(t) +x'(t) +\sqrt{\frac{3 }{2}}\cos (t-\tau ) \sin x(t-\tau ) =\alpha -\sin t+\cos t \label{x''+x'+(3/2)½cos(t-tau)sinx(t-tau)=alpha-sint+cost} \end{equation} is such that $\varphi (t) =\sin t$. Hence \begin{equation*} \overline{g}(t,\varphi +r) =\frac{\sqrt{3/2}}{2\pi } \int_{0}^{2\pi }\cos t\sin (r+\sin t) \,dt=0 \end{equation*} and so \begin{equation*} \inf_{r\in \mathbb{R}}\overline{g}(t,\varphi +r) =\sup_{r\in \mathbb{R}}\overline{g}(t,\varphi +r) =0. \end{equation*} Thus, the \textit{a priori} bounds of the previous theorem are not satisfied here. So one needs to apply (\ref{aprioriBOUNDwithLAMDA''}) for different choices than $x=-\varphi $ and/or $n=1$. \begin{thebibliography}{00} \bibitem{ALONSO97} J. M. Alonso, ``Nonexistence of periodic solutions for a damped pendulum equation" , Diff. Int. Eq. 10 (1997), no. 6, 1141-1148. \bibitem{BELLEYsaadidrissi2001} J.-M. Belley and K. Saadi Drissi, ``Existence of periodic solutions to the forced Josephson equation" , Acad. Roy.\ Belg. Bull. Cl. Sci. (6) 12 (2001), no. 7-12, 209-224. \bibitem{BELLEYsaadidrissi2003} J.-M. Belley and K. Saadi Drissi, ``Almost periodic solutions to Josephson's equation" , Nonlinearity 16 (2003), no. 1, 35-47. \bibitem{CESARIkannan82} L. Cesari and R. Kannan, ``Periodic solutions in the large of Li\'{e}nard systems with forced fording term'', Boll. Un Mat. Ital., A(6) 1(1982), 217-224. \bibitem{CHENyuYUAN02} H. B. Chen, L. Yu and X. Y. Yuan, ``Existence and uniqueness of periodic solution of Duffing's equation'', J.~Math. Res. Exposition 22(2002), no. 4, 615-620. \bibitem{FONDAlupo89} A. Fonda and D. Lupo, ``Periodic solutions of second order ordinary differential equations'', Boll. Un Mat. Ital., A(7) 3(1989), 291-299. \bibitem{FOURNIERmahwin85} G. Fournier and J. Mahwin, ``On periodic solutions of forced pendulum-like equations" , J. Diff. Eq. 60 (1985), 381-395. \bibitem{GOSSEZomari90} J. P. Gossez and P. Omari, ``Nonresonance with respect to the Fu\v{c}ik spectrum for periodic solutions of second order ordinary differential equations'', Nonlinear Anal.(TMA), 14(1990), 1079-1104. \bibitem{HUANGxiang94} X. K. Huang and Z. G. Xiang, ``$2\pi $-periodic solutions of Duffing equations with a deviating argument'', Chinese Sci. Bull., 39(1994), 201-203. \bibitem{MAwangYU} S. W. Ma, Z.C. Wang and J. S. Yu, \textquotedblleft Periodic Solutions of Duffing Equations with Delay" , Differential Equations and dynamical systems, 8 (2000), no. 3/4, 241-255. \bibitem{mahwin72} J. Mawhin, ``Equivalence theorems for nonlinear operator equations and coincidence degree theory for some mappings in locally convex topological vector spaces'', J. Diff. Eqns.\textit{,} 12(1972), 612-636. \bibitem{mahwin79} J. Mawhin, ``Topological Degree Methods in Nonlinear Boundary Value Problems'', CBMS. Vol. 40, Amer. Math. Soc., Providence, RI, 1979. \bibitem{MAHWINward83} J. Mahwin and J. R. Ward.Jr., ``Periodic solutions of some forced Li\'{e}nard differential equations at resonance'', Arch. Math., 41(1983), 337-351. \bibitem{MAHWINwillem89} J. Mahwin and M. Willem, ``Critical Point Theory and Hamiltonian Systems'', Springer-Verlag, New York, 1989. \bibitem{OMARIzanolin87} P. Omari and F. Zanolin, ``On the existence of periodic solutions of forced Li\'{e}nard differential equations" , Nonlinear Anal. (TMA), 11(1987), 275-284. \bibitem{ORTEGA2000} R. Ortega, ``Counting periodic solutions of the forced pendulum equation" , Nonlinear Anal. 42 (2000), 1055-1062. \bibitem{SERRAtarallo98} E. Serra and M. Tarallo, ``A reduction method for periodic solutions of second-order subquadratic equations" , Adv. Diff. Eq. 3 (1998), 199-226. \bibitem{TARANTELLO89} G. Tarantello, ``On the Number of Solutions for the Forced Pendulum Equation" , J. Diff. Eq. \textit{,} 80 (1989), 79-93. \bibitem{ZHANGwangYU2000} Z. Q. Zhang, Z. C. Wang, and J. S. Yu, ``Periodic solutions of neutral Duffing equations", Electron. J. Qual. Theory Differ. Equ. 2000, No. 5, 14~pp. (electronic). \end{thebibliography} \end{document}