\documentclass[reqno]{amsart} %\pdfoutput=1\relax\pdfpagewidth=8.26in\pdfpageheight=11.69in\pdfcompresslevel=9 \usepackage{hyperref} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2004(2004), No. 37, pp. 1--17.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2004 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2004/37\hfil hemivariational inequalities] {An existence result for hemivariational inequalities} \author[Zsuzs\'{a}nna D\'{a}lyay \& Csaba Varga \hfil EJDE-2004/37\hfilneg] {Zsuzs\'{a}nna D\'{a}lyay \& Csaba Varga} % in alphabetical order \address{Zsuzs\'{a}nna D\'{a}lyay \hfill\break University of Szeged, Juh\'{a}sz Gyula Teacher Training Faculty, Department of Mathematics 6721, Szeged, Boldogasszony Sgt. 6. Hungary} \email{dalyay@jgytf.u-szeged.hu} \address{Csaba Varga \hfill\break ``Babe\c{s}- Bolyai" University, Department of Mathematics, Str. M Kog\u{A}lniceanu, Nr.1, Cluj-Napoca, Romania} \email{csvarga@cs.ubbcluj.ro} \date{} \thanks{Submitted November 17, 2003. Published March 16, 2004.} \thanks{Z. D\'{a}lyai was partially supported by contract HPRN-CT-1999-00118 from the EU} \thanks{C. Varga was partially supported by contract HPRN-CT-1999-00118 from the EU, and by \hfill\break\indent the Research Center of Sapientia Foundation} \subjclass{35A15, 35J60, 35H30} \keywords{Variational methods, discontinuous nonlinearities, \hfill\break\indent principle of symmetric criticality} \begin{abstract} We present a general method for obtaining solutions for an abstract class of hemivariational inequalities. This result extends many results to the nonsmooth case. Our proof is based on a nonsmooth version of the Mountain Pass Theorem with Palais-Smale or with Cerami compactness condition. We also use the Principle of Symmetric Criticality for locally Lipschitz functions. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{corollary}[theorem]{Corollary} \newtheorem{application}[theorem]{Application} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{remark}[theorem]{Remark} \section{Introduction} Let ($X, \|\cdot\|$) be a real, separable, reflexive Banach space, and let $(X^{\star}, \|\cdot\|_{\star})$ be its dual. Also assume that the inclusion $X \hookrightarrow L^{l}(\mathbb{R}^N)$ is continuous with the embedding constants $C(l)$, where $l \in [p, p^{\star}]$ ($p \geq 2, p^{\star}=\frac{ Np}{ N-p}$). Let us denote by $\|\cdot\|_{l}$ the norm of $L^{l}(\mathbb{R}^N)$. Let $A: X \to X^{\star}$ be a potential operator with the potential $a: X \to \mathbb{R}$, i.e. $a$ is G\^{a}teaux differentiable and $$ \lim _{t \to 0} \frac{ a(u +tv)-a(u)}{ t} = \langle A(u), v \rangle , $$ for every $u, v \in X$. Here $\langle \cdot, \cdot \rangle$ denotes the duality pairing between $X^{\star}$ and $X$. For a potential we always assume that $a(0)=0$. We suppose that $A : X \to X^{\star}$ satisfies the following properties: \begin{itemize} \item $A$ is hemicontinuous, i.e. $A$ is continuous on line segments in $X$ and $X^{\star}$ equipped with the weak topology. \item $A$ is homogeneous of degree $p-1$, i.e. for every $u \in X$ and $t > 0$ we have $A(tu)= t^{p-1} A(u)$. Consequently, for a homogeneous hemicontinuous operator of degree $p-1$, we have $a(u)= \frac{ 1}{ p} \langle A(u), u \rangle$. \item $A : X \to X^{\star}$ is a strongly monotone operator, i.e. there exists a function $\kappa : [0, \infty) \to [0, \infty)$ which is positive on $(0, \infty)$ and $ \lim _{t \to \infty} \kappa (t)= \infty$ and such that for all $u, v \in X$, $$ \langle A(u) - A(v), u -v \rangle \geq \kappa(\|u -v \|)\|u-v\|\,. $$ \end{itemize} In this paper we suppose that the operator $A : X \to X^{\star}$ is a potential, hemicontinuous, strongly monotone operator, homogeneous of degree $p-1$. Let $f : \mathbb{R}^{n} \times \mathbb{R} \to \mathbb{R}$ be a measurable function which satisfies the following growth condition: \begin{itemize} \item[(F1)] $|f(x, s)| \leq c(|s|^{p-1} + |s|^{r-1})$, for a.e. $x \in \mathbb{R}^N$, for all $s \in \mathbb{R}$ \item[(F1')] The embedings $X \hookrightarrow L^{r}(\mathbb{R}^{n})$ are compact ($p < r < p^{\star}$). \end{itemize} Let $F : \mathbb{R}^N \times \mathbb{R} \to \mathbb{R}$ be the function defined by \begin{equation}\label{monoton1} F(x, u) = \int _{0}^{u} f(x, s)ds, \quad \mbox{for a.e. } x \in \mathbb{R}^N, \; \forall s \in \mathbb{R}. \end{equation} For a.e. $x \in \mathbb{R}^N$ and for every $u, v \in \mathbb{R}$, we have: \begin{equation}\label{monoton2} |F(x, u) - F(x, v)| \leq c_{1}|u - v|\left(|u|^{p-1}+ |v|^{p-1}+ |u|^{r-1}+ |v|^{r-1} \right), \end{equation} where $c_{1}$ is a constant which depends only of $u$ and $v$. Therefore, the function $F(x, \cdot)$ is locally Lipschitz and we can define the partial Clarke derivative, i.e. \begin{equation}\label{monoton3} F^{0}_{2}(x,u; w) = \limsup _{y \to u , \; t \to 0^{+}} \frac{ F(x, y + t w) - F(x, y)}{ t}, \end{equation} for every $u, w \in \mathbb{R}$ and for a.e. $x \in \mathbb{R}$. Now, we formulate the hemivariational inequality problem that will be studied in this paper: \emph{Find $u \in X$ such that} \begin{equation}\label{P} \langle Au, v \rangle + \int _{\mathbb{R}^N} F^{0}_{2}(x, u(x); - v(x))dx \geq 0, \quad \forall\, v \in X. \end{equation} When the function $f : \mathbb{R}^{n} \times \mathbb{R} \to \mathbb{R}$ is continuous, the problem \eqref{P} is reduced to the problem: \emph{Find $u \in X$ such that} \begin{equation} \label{P'} \langle Au, v \rangle = \int _{\mathbb{R}^N} f(x, u(x))v(x)dx, \quad \forall\, v \in X. \end{equation} Such problems have been studied by many authors, see \cite{Bart1, BartWa, BarWill1, BarWill2, FanZhao, GazRad, Megrez, MontRad}. To study the existence of solutions of the problem \eqref{P} we introduce the functional $\Psi : X \to \mathbb{R}$ defined by $\Psi(u)=a(u) - \Phi(u)$, where $a(u)= \frac{ 1}{ p} \langle A(u), u \rangle$ and $\Phi(u) = \int _{\mathbb{R}^N} F(x, u(x))dx$. From Proposition \ref{kritpont} we will see that the critical points of the functional $\Psi$ are the solutions of the problem \eqref{P}. Therefore it is enough to study the existence of critical points of the functional $\Psi$. Considering such a problem is motivated by the works of Clarke \cite{Clarke}, D. Motreanu and P.D. Panagiotopoulos \cite{MotPan} and by the recent book of D. Motreanu and V. R\u{a}dulescu \cite{MotRad} , where several applications are given. To study the existence of the critical point of the function $\Psi$ is necessary to impose some condition on function $f$: \begin{itemize} \item[(F2)] There exists $\alpha > p$, $\lambda \in [0, \frac{ \kappa(1)(\alpha -p)}{C^p (p)}[$ and a continuous function $g: \mathbb{R} \to \mathbb{R}_{+}$, such that for a.e. $x \in \mathbb{R}^N$ and for all $ u \in \mathbb{R}$ we have \begin{equation}\label{monoton4} \alpha F(x,u) + F^{0}_{2}(x,u;-u) \leq g(u), \end{equation} where $ \lim_{|u| \to \infty} g(u)/ |u|^p = \lambda$. \item[(F2')] There exists $\alpha \in ( \max \{p, p^{\star} \frac{ r - p}{p^{\star} - p} \}, p^{\star})$ and a constant $C >0$ such that for a.e. $x \in \mathbb{R}^N$ and for all $u \in \mathbb{R}$ we have \begin{equation}\label{monoton5} -C|u|^{\alpha} \geq F(x,u) + \frac{ 1}{p} F^{0}_{2}(x,u; -u ). \end{equation} \end{itemize} Next, we impose further assumptions on $f$. First we define two functions by \begin{gather*} \underline{f}(x,s)= \lim _{\delta\to 0^{+}} \mathop{\rm essinf} \{ f(x,t) : |t-s| < \delta \},\\ \overline{f}(x,s)= \lim _{\delta \to 0^{+}} \mathop{\rm esssup} \{ f(x,t) : |t-s| < \delta \}, \end{gather*} for every $s \in \mathbb{R}$ and for a.e. $x \in \mathbb{R}^N$. It is clear that the function $\underline{f}(x, \cdot)$ is lower semicontinuous and $\overline{f}(x, \cdot)$ is upper semicontinuous. The following hypothesis on $f$ was introduced by Chang \cite{Chang}. \begin{itemize} \item[(F3)] The functions $\underline{f}, \overline{f}$ are $N$-measurable, i.e. for every measurable function $u : \mathbb{R}^N \to \mathbb{R}$ the functions $x \mapsto \underline{f}(x,u(x)), x \mapsto \overline{f}(x,u(x)) $ are measurable. \item[(F4)] For every $\varepsilon >0$, there exists $c(\varepsilon) >0$ such that for a.e. $x \in \mathbb{R}^N$ and for every $s \in \mathbb{R}$ we have $$|f(x,s)| \leq \varepsilon |s|^{p-1} + c(\varepsilon) |s|^{r-1}.$$ \item[(F5)] For the $\alpha \in (p , p^{\star})$ from condition (F2), there exists a $c^{\star} > 0$ such that for a.e. $x \in \mathbb{R}^N$ and for all $s \in \mathbb{R}$ we have $$ F(x,u) \geq c^{\star}(|u|^{\alpha} - |u|^p ). $$ \end{itemize} \begin{remark}\label{monremark1} \rm We observe that if we impose the following condition on $f$, \begin{itemize} \item[(F4')] $ \lim_{\varepsilon \to 0^{+}} \mathop{\rm esssup} \{ \frac{ |f(x, s)|}{ |s|^p } : (x,s) \in \mathbb{R}^N \times (- \varepsilon, \varepsilon)\}=0$, \end{itemize} then this condition with (F1) imply (F4). \end{remark} The main result of this paper can be formulated in the following manner. \begin{theorem} \label{thm2} \begin{enumerate} \item If conditions (F1), (F1'), and (F2)--(F5) hold, then problem \eqref{P} has a nontrivial solution. \item If conditions (F1), (F1'), (F2'), (F3), and (F4) hold, then problem \eqref{P} has a nontrivial solution. \end{enumerate} \end{theorem} Let $G$ be the compact topological group $O(N)$ or a subgroup of $O(N)$. We suppose that $G$ acts continuously and linear isometric on the Banach space $X$. We denote by $$ X^{G}=\{ u \in H : gx=x \mbox{ for all } g \in G \} $$ the fixed point set of the action $G$ on $X$. It is well known that $X^{G}$ is a closed subspace of $X$. We suppose that the potential $a: X \to \mathbb{R}$ of the operator $A : X \to X^{\star}$ is $G$-invariant and the next condition for the function $f: \mathbb{R}^N\times \mathbb{R} \to \mathbb{R}$ holds: \begin{itemize} \item[(F6)] For a.e. $x \in \mathbb{R}^N$ and for every $g \in G, s \in \mathbb{R}$ we have $f(gx, s)=f(x, s)$. \end{itemize} In several applications the condition (F1') is replaced by the condition \begin{itemize} \item[(F1'')] The embeddings $X^{G}\hookrightarrow L^{r}(\mathbb{R}^N)$ are compact ($p < r < p^{\star}$). \end{itemize} Now, using the Principle of Symmetric Criticality for locally Lipschitz functions, proved by Krawciewicz and Marzantovicz \cite{KrawMar}, from the above theorem we obtain the following corollary, which is very useful in the applications. \begin{corollary} \label{coro3} We suppose that the potential $a:X \to \mathbb{R}$ is $G$-invariant and (F6) is satisfied. Then the following assertions hold. \begin{itemize} \item[(a)] If (F1), (F1''), and (F2)--(F5) are fulfilled, then problem \eqref{P} has a nontrivial solution. \item[(b)] If (F1), (F1'), (F2'), F3), and (F4) are fulfilled, then problem \eqref{P} has a nontrivial solution. \end{itemize} \end{corollary} Next, we give an example of a discontinuous function $f$ for which the problem \eqref{P} has a nontrivial solution. \smallskip \noindent {\bf Example.} Let $(a_{n}) \subset \mathbb{R}$ be a sequence with $a_{0}=0, a_{n} >0, n \in \mathbb{N}^{\star}$ such that the series $ \sum _{n=0} ^{\infty} a_{n}$ is convergent and $ \sum _{n=0} ^{\infty} a_{n} > 1$. We introduce the following notation $$A_{n}:= \sum _{k=0}^{n} a_{k}, A:= \sum_{k=0}^{\infty} a_{k}.$$ With these notations we have $A >1 $ and $A_{n}=A_{n-1}+a_{n}$ for every $n \in \mathbb{N}^{\star}$. Let $f: \mathbb{R} \to \mathbb{R}$ defined by $f(s)=s|s|^{p-2}\left(|s|^{r-p}+A_{n} \right)$, for all $s \in (-n-1, -n] \cup [n, n+1), n \in \mathbb{N}$ and $r,s \in \mathbb{R}$ with $r > p>2$. The function $f$ defined above satisfies the properties (F1), (F2'), (F3), and (F4). The discontinuity set of $f$ is $\mathcal{D}_{f}=\mathbb{Z}^{\star}=\mathbb{Z} \setminus \{0\}$. It is easy to see that the function $f$ satisfies the conditions (F1) and (F4'), therefore (F4). Let $F: \mathbb{R}\to \mathbb{R}$ be the function defined by $F(u)= \int_{0}^{u} f(s)ds$ with $u \in [n, n+1)$, when $n \geq 1$. Because $F(u)=F(-u)$, it is sufficient to consider the case $u> 0$. We have $F(u)= \sum_{k=0}^{n-1} \int_{k}^{k+1}f(s)ds + \int_{n}^{u} f(s)ds$. Therefore, for $F(u)= \frac{ 1}{ r} u^{r} +\frac{ 1}{ p} A_{n} u^p -\frac{ 1}{ p} \sum_{k=0}^{n}a_{k}k^p $, for every $u \in [n, n+1]$. It is easy to see that $F^{0}(u; -u)=-u f(u)$ for every $u \in (n, n+1]$. i.e. $F^{0}(u,-u)=-u^{r}-A_{n}u^p $. Thus, $$ F(u) + \frac{ 1}{ p}F^{0}(u,-u) =-\big( \frac{ 1}{ p} -\frac{ 1}{ r}\big)u^{r} -\frac{ 1}{ p}\sum_{k=0}^{n}a_{k}k^p \leq -\big( \frac{1}{ p} - \frac{ 1}{r}\big)u^{r}. $$ If we choose $C=\frac{ 1}{ p}-\frac{ 1}{ r}, \alpha=r>2$, the condition (F2') is fulfilled. This paper is organized as follows: In Section 2, some facts about locally Lipschitz functions are given; In Section 3 a key inequality is proved; in Section 4 the Palais-Smale and Cerami condition is verified for the function $\Psi$; in Section 5 we prove Theorem 2 and in the last section we give some concrete applications. \section{Preliminaries and preparatory results} Let $(X, \|\cdot\|)$ be a real Banach space and $(X^{\star}, \|\cdot\|_{\star}$) its dual. Let $U \subset X$ be an open set. A function $\Psi : U \to \mathbb{R}$ is called locally Lipschitz function if each point $u \in U$ possesses a neighborhood $N_{u}$ of $u$ and a constant $K>0$ which depends on $N_{u}$ such that $$ |f(u_{1})-f(u_{2})|\leq K\| u_{1}-u_{2}\|, \quad \forall\, u_{1},\ u_{2} \in N_{u}. $$ The generalized directional derivative of a locally Lipschitz function $\Psi : X \to \mathbb{R}$ in $u\in U$ in the direction $ v\in X$ is defined by $$ \Psi^{0}(u;v)=\limsup_{\scriptstyle {\it w\to u}\frac \scriptstyle \it t\searrow 0}\frac{1}{t}(\Psi(w+tv)-\Psi(w)). $$ It is easy to verify that $\Psi^{0}(u;-v)=(-\Psi)^{0}(u;v)$ for every $u \in U$ and $v \in X$. The generalized gradient of $\Psi$ in $u\in X$ is defined as being the subset of $X^{\star}$ such that $$ \partial \Psi(u)=\{z\in X^{\ast}:\langle z,\ v\rangle \leq \Psi^{0}(u; v),\; \forall\, v\in X \}, $$ where $\langle \cdot, \cdot \rangle $ is the duality pairing between $X^{\star}$ and $X$. The subset $\partial \Psi(u) \subset X^{\star}$ is nonempty, convex and $w^{\star}$-compact and we have $$ \Psi^{0}(u; v)=\max\{\langle z,v\rangle :z\in \partial \Psi(u)\},\; \forall\, v\in X. $$ If $\Psi_{1}, \Psi_{2} : U \to \mathbb{R}$ are two locally Lipschitz functions, then $$ (\Psi_{1} + \Psi_{2})^{0}(u;\ v)\leq \Psi_{1}^{0}(u;\ v)+\Psi_{2}^{0}(u;\ v) $$ for every $u\in U$ and $v \in X$. We define the function $\lambda_{\Psi}(u)= \inf \{\|x^{\star}\|_{\star} : x^{\star} \in \Psi(u) \}$. This function is lower semicontinuous and this infimum is attained, because $\partial \Psi(u)$ is $w^{\star}$-compact. A point $u \in X$ is a critical point of $\Psi$, if $\lambda_{\Psi}(u)=0$, which is equivalent with $\Psi^{0}(u; v) \geq 0$ for every $v \in X$. For a real number $c\in \mathbb{R}$ we denote by $$ K_c=\{u \in X:\lambda_{\Psi}(u)=0, \ \Psi(u)=c\}. $$ \begin{remark}\label{psmejegyzes} \rm If $\Psi : X \to \mathbb{R}$ is locally Lipschitz and we take $u \in X$ and $\mu > 0$, the next two assertions are equivalent: \begin{itemize} \item[(a)] $\Psi^{0}(u, v) + \mu \|v\| \geq 0 $, for all $v\in X$; \item[(b)] $\lambda_{\Psi}(u) \leq \mu$. \end{itemize} \end{remark} Now, we define the following terms. \begin{itemize} \item[(i)] $\Psi$ satisfies the $(PS)$-condition at level $c$ (in short, $(PS)_{c}$) if every sequence $\{x_n\} \subset X$ such that $\Psi(x_n)\to c$ and $\lambda_{\Psi}(x_n)\to 0$ has a convergent subsequence. \item[(ii)] $\Psi$ satisfies the $(CPS)$-condition at level $c$ (in short, $(CPS)_{c}$) if every sequence $\{x_n\} \subset X$ such that $\Psi(x_n)\to c$ and $(1+\|x_n\|)\lambda_{\Psi}(x_n)\to 0$ has a convergent subsequence. \end{itemize} It is clear that $(PS)_c$ implies $(CPS)_c$. Now, we consider a globally Lipschitz function $\varphi:X \to \mathbb{R}$ such that $\varphi(x)\geq 1$, for all $x\in X$ (or, generally, $\varphi(x)\geq \alpha$, $\alpha> 0$). We say that \begin{itemize} \item[(iii)] $\Psi$ satisfies the $(\varphi-PS)$-condition at level $c$ (in short, $(\varphi-PS)_{c}$) if every sequence $\{x_n\}\subset X$ such that $\Psi(x_n)\to c$ and $\varphi(x_n)\lambda_{\Psi}(x_n)\to 0$ has a convergent subsequence. \end{itemize} The compactness $(\varphi-PS)_{c}$-condition in (iii) contains the assertions (i) and (ii) in the sense that if $\varphi\equiv 1$ we get the $(PS)_{c}$-condition and if $\varphi(x)=1+\|x\|$ we have the $(C)_{c}$-condition. In the next we use the following version of the Mountain Pass Theorem, see Krist\'{a}ly-Motreanu-Varga \cite{KrMoVa}, which contains the classical result of Chang \cite{Chang} and Kourogenis-Papageorgiu \cite{{Papa}}. \begin{proposition}[Mountain Pass Theorem] \label{mountaincer} Let X be a Banach space, $\Psi: X \to R$ a locally Lipschitz function with $\Psi(0)\leq 0$ and $\varphi :X \to R$ a globally Lipschitz function such that $\varphi(x)\geq 1$, $\forall x \in X.$ Suppose that there exists a point $x_1 \in X$ and constants $\rho, \alpha >0$ such that \begin{itemize} \item[(i)] $\Psi(x)\geq \alpha$, $\forall x\in X$ with $\|x\|=\rho$ \item[(ii)] $\| x_1 \|>\rho$ and $\Psi(x_1)<\alpha$ \item[(iii)] The function $\Psi$ satisfies the $(\varphi-PS)_c$-condition, where $$ c=\inf_{\gamma \in\Gamma}\max_{t \in [0,1]}\Psi(\gamma(t)), $$ with $\Gamma =\{\gamma \in C([0,1],X): \gamma(0)=0, \gamma(1)=x_1 \}$. \end{itemize} Then the minimax value $c$ in (iii) is a critical value of $\Psi$, i.e. $K_c$ is nonempty, and, in addition, $c\geq \alpha$. \end{proposition} Let $G$ be a compact topological group which acts linear isometrically on the real Banach space $X$, i.e. the action $G\times X\to X$ is continuous and for every $g\in~G,\ g:X\to X$ is a linear isometry. The action on $X$ induces an action of the same type on the dual space $X^*$ defined by $(gx^*)(x)=x^*(gx)$, for all $g\in G,\ x\in X$ and $x^*\in X^*$. Since \[ \|gx^*\|_{\star}=\sup_{\|x\|=1}|(gx^*)(x)|=\sup_{\|x\|=1}|x^*(gx)|, \] the isometry assumption for the action of $G$ implies \[ \|gx^*\|_{\star}= \sup_{\|x\|=1}|x^*(x)|=\|x^*\|_{\star},\ \forall \ x^*\in X^*,\ g\in G. \] We suppose that $\Psi:X\to \mathbb{R}$ is a locally Lipschitz and $G$-invariant function, i.e., $\Psi(gx)=\Psi(x)$ for every $g\in G$ and $x\in X$. From Krawcewicz-Marzantowicz [10] we have the relation \[ g\partial \Psi(x)=\partial \Psi(gx)=\partial \Psi(x), \mbox{ for every }g\in G\mbox{ and }x\in X. \] Therefore, the subset $\partial \Psi(x)\subset X^*$ is $G$-invariant, so the function \\ $\lambda_{\Psi}(x)=\inf_{w\in \partial \Psi(x)}\|w\|_{\star},\ x\in X$, is $G$-invariant. The fixed points set of the action $G$, i.e. $X^{G}=\{x \in X \ | gx=x \;\forall \, g \in G \}$ is a closed linear subspace of $X$. We conclude this section with the Principle of Symmetric Criticality, first proved by Palais \cite{Palais} for differentiable functions and for locally Lipschitz proved by Krawciewicz and Marzantovicz \cite{KrawMar}. \begin{theorem}\label{princisim} Let $\Psi: X \to \mathbb{R}$ be a $G$-invariant locally Lipschitz function and $u \in X^{G}$ a fixed point. Then $u \in X^{G}$ is a critical point of $\Psi$ if and only if $u$ is a critical point of $\Psi^{G}= \psi|_{X^{G}}: X^{G} \to \mathbb{R}$. \end{theorem} \section{Some basic lemmas} Define the function $\Phi : X \to \mathbb{R}$ by \begin{equation}\label{function} \Phi(u) = \int _{\mathbb{R}^N} F(x, u(x))dx, \quad \forall \, u \in X, \end{equation} where the function $F$ is defined in (\ref{monoton1}). \begin{remark}\label{fontos1} \rm The following two results are true for the general growth condition ($f_{1}$), but it is sufficient to prove them in the case when the function $f$ satisfies the growth condition $|f(x, s)| \leq c|u|^{p-1}$ for a.e. $x \in \mathbb{R}^N, \forall \ s \in \mathbb{R}$. For simplicity we denote $h(u)=c|u|^{p-1}$ and in the next two results we use only that the function $h$ is monotone increasing, convex and $h(0)=0$. \end{remark} \begin{proposition}\label{lipprop} The function $\Phi : X \to \mathbb{R}$, defined by $\Phi(u) = \int _{\mathbb{R}^N} F(x, u(x))dx$ is locally Lipschitz on bounded sets of $X$. \end{proposition} \begin{proof} For every $u, v \in X$, with $\|u\|, \|v\| < r$, we have \begin{align*} &\|\Phi(u)-\Phi(v)\|\\ &\leq \int _{\mathbb{R}^N}|F(x, u(x)) - F(x, v(x))| dx \\ &\leq c_{1}\int _{\mathbb{R}^N} |u(x) - v(x)|[h(|u(x)|)+ h(|v(x)|)]\\ &\leq c_{2} \big( \int_{\mathbb{R}^N}|u(x)-v(x)|^p \big)^{1/p} \big[\big(\int_{\mathbb{R}^N}(h(|u(x)|)^{p'}dx\big)^{1/p'} +\big( \int_{\mathbb{R}^N}(h(|v(x)|)^{p'}dx\big)^{1/p'}\big]\\ &\leq c_{2}\|u-v\|_{p}[\|h(|u|)\|_{p'}+\|h(|v|)\|_{p'})\\ &\leq C(u, v) \|u -v\|, \end{align*} where $\frac{ 1}{ p} + \frac{1}{ p'}=1$ and we used the H\"{o}lder inequality, the subadditivity of the norm $\| \cdot\|_{p'}$ and the fact that the inclusion $X\hookrightarrow L^p (\mathbb{R}^N)$ is continuous. We observe that C(u, v) is a constant which depends only of $u$ and $v$. \end{proof} \begin{proposition} \label{clarkeder} If condition (F1) holds, then for every $u, v \in X$, then \begin{equation}\label{clarkegyen} \Phi^{0}(u;v) \leq \int _{\mathbb{R}^N}F^{0}_{2}(x,u(x); v(x))dx. \end{equation} \end{proposition} \begin{proof} It is sufficient to prove the proposition for the function $f$, which satisfies only the growth condition $|f(x, s)| \leq c|u|^{p-1}$ from Remark \ref{fontos1}. Let us fix the elements $u, v \in X$. The function $F(x, \cdot)$ is locally Lipschitz and therefore continuous. Thus $F^{0}_{2}(x,u(x);v(x))$ can be expressed as the upper limit of $\big(F(x, y+ tv(x)) - F(x, y)\big)/t$, where $t \to 0^{+}$ takes rational values and $y \to u(x)$ takes values in a countable subset of $\mathbb{R}$. Therefore, the map $x \to F^{0}_{2}(x,u(x); v(x))$ is measurable as the ``countable limsup" of measurable functions in $x$. From condition (F1) we get that the function $x \to F_{2}^{0}(x,u(x);v(x))$ is from $L^{1}(\mathbb{R}^N)$. Using the fact that the Banach space $X$ is separable, there exists a sequence $w_{n} \in X$ with $\|w_{n} - u\| \to 0$ and a real number sequence $t_{n} \to 0^{+}$, such that \begin{equation}\label{iranym} \Phi^{0}(u, v)= \lim _{n \to \infty} \frac{ \Phi(w_{n} + t_{n}v)-\Phi(w_{n})}{ t_{n}}. \end{equation} Since the inclusion $X \hookrightarrow L^p (\mathbb{R}^N)$ is continuous, we get $\|w_{n}-u\|_{p} \to 0$. Using \cite[Theorem IV.9]{Brez}, there exists a subsequence of $(w_{n})$ denoted in the same way, such that $w_{n}(x) \to u(x)$ a.e. $x \in \mathbb{R}^N$. Now, let $\varphi_{n} : \mathbb{R}^N \to \mathbb{R} \cup \{ + \infty\}$ be the function defined by \begin{align*} \varphi_{n}(x) &= -\frac{ F(x,w_{n}(x) + t_{n}v(x)) - F(x, w_{n}(x))}{ t_{n}} \\ &\quad +c_{1} |v(x)|[h(|w_{n}(x)+ t_{n}v(x)|) + h(|w_{n}(x)|)]. \end{align*} We see that the the functions $\varphi _{n}$ are measurable and non-negative. If we apply Fatou's lemma, we get $$ \int _{\mathbb{R}^N} \liminf _{n \to \infty } \varphi_{n}(x)dx \leq \liminf _{n \to \infty} \int _{\mathbb{R}^N} \varphi_{n}(x)dx. $$ This inequality is equivalent to \begin{equation}\label{fatou1} \int _{\mathbb{R}^N} \limsup _{n\to \infty}[- \varphi_{n}(x)]dx \geq \limsup_{n \to \infty} \int _{\mathbb{R}^N} [-\varphi_{n}(x)]dx. \end{equation} For simplicity in the calculus we introduce the following notation: \begin{itemize} \item [(i)] $\varphi_{n}^{1}(x) = \frac{ F(x, w_{n}(x) + t_{n}v(x)) - F(x, w_{n}(x))}{ t_{n}}$; \item [(ii)] $\varphi_{n}^{2}(x)= c_{1} |v(x)|[h(|w_{n}(x)+ t_{n}v(x)|) + h(|w_{n}(x)|)]$. \end{itemize} With these notation, we have $\varphi_{n}(x)= - \varphi_{n}^{1}(x) + \varphi_{n}^{2}(x)$. Now we prove the existence of limit $b = \lim _{n \to \infty} \int_{\mathbb{R}^N} \varphi_{n}^{2}(x)dx$. Using the facts that the inclusion $X \hookrightarrow L^p (\mathbb{R}^N)$ is continuous and $\|w_{n} - u\| \to 0$, we get $\|w_{n} - u\|_{p} \to 0$. Using \cite[Theorem IV.9]{Brez}, there exist a positive function $g \in L^p (\mathbb{R}^N)$, such that $|w_{n}(x)| \leq g(x)$ a.e. $x \in \mathbb{R}^N$. Considering that the function $h$ is monotone increasing, we get $$ |\varphi_{n}^{2}(x)| \leq c_{1}|v(x)|[h(g(x)+ |v(x)|) + h(g(x))], \ \ {\rm a.e. } \ x\in \mathbb{R}^N. $$ Moreover, $\varphi_{n}^{2}(x) \to 2c_{1}|v(x)|h(|u(x)|)$ for a.e. $x \in \mathbb{R}^N$. Thus, using the Lebesque dominated convergence theorem, we have \begin{equation}\label{fontos} b= \lim _{n \to \infty} \int_{\mathbb{R}^N} \varphi_{n}^{2}(x)dx = \int_{\mathbb{R}^N} 2c_{1}|v(x)|h(|u(x)|) dx. \end{equation} If we denote by $I_{1}= \limsup _{n \to\infty} \int _{\mathbb{R}^N} [- \varphi_{n}(x)]dx$, then using (\ref{iranym}) and (\ref{fontos}), we have \begin{equation}\label{jobbold} I_{1}= \limsup _{n \to \infty} \int _{\mathbb{R}^N} [- \varphi_{n}(x)]dx = \Phi^{0}(u;v) - b. \end{equation} Next we estimate the expression $I_{2}= \int _{\mathbb{R}^N} \limsup _{n \to \infty}[- \varphi_{n}(x)]dx$. We have the inequality \begin{equation}\label{fatou2} \int_{\mathbb{R}^N} \limsup _{n \to\infty}[\varphi^{1}_{n}(x)]dx - \int_{\mathbb{R}^N} \lim _{n \to \infty}\varphi^{2}_{n}(x)dx \geq I_{2}. \end{equation} Using the fact that $w_{n}(x) \to u(x)$ a.e. $x \in \mathbb{R}^N$ and $t_{n} \to 0^{+}$, we get $$ \int _{\mathbb{R}^N} \lim _{n \to \infty} \varphi^{2}_{n}(x)dx = 2c_{1} \int_{\mathbb{R}^N}|v(x)| h(|u(x)|)dx. $$ On the other hand, \begin{align*} \int _{\mathbb{R}^N} \limsup _{n \to \infty} \varphi_{n}^{1}(x)dx &\leq \int _{\mathbb{R}^N} \limsup_{y\to u(x),\, t \to 0^{+}} \frac{ F(x,y + t v(x)) - F(x, y)}{ t}dx \\ &= \int_{\mathbb{R}^N} F_{2}^{0}(x,u(x); v(x))dx. \end{align*} Using relations (\ref{fatou1}), (\ref{jobbold}), (\ref{fatou2}) and the above estimates, we obtain the desired result. \end{proof} \section{The Palais-Smale and Cerami compactness condition} In this section we study the situation when the function $\Psi$ satisfies the $(PS)_{c}$ and $(CPS)_{c}$ conditions. We have the following result. \begin{proposition}\label{pskor} Let $(u_{n}) \subset X$ be a $(PS)_{c}$ sequence for the function $\Psi : X \to\mathbb{R}$. If the conditions (F1) and (F2) are fulfilled, then the sequence $(u_{n})$ is bounded in $X$. \end{proposition} \begin{proof} Because $(u_{n}) \subset X$ is a $(PS)_{c}$ sequence for the function $\Psi$, we have $\Psi(u_{n}) \to c$ and $\lambda_{\Psi}(u_{n}) \to 0$. From the condition $\Psi(u_{n}) \to c$ we get $c + 1 \geq \Psi(u_{n})$ for sufficiently large $n \in \mathbb{N}$. Because $\lambda_{\Psi}(u_{n}) \to 0$, $\|u_{n}\| \geq \|u_{n}\|\lambda_{\Psi}(u_{n}) $ for every sufficiently large $n \in \mathbb{N}$. From the definition of $\lambda_{\Psi}(u_{n})$ results the existence of an element $z^{\star}_{u_{n}} \in \partial \Psi(u_{n})$, such that $\lambda_{\Psi}(u_{n})=\|z^{\star}_{u_{n}}\|_{\star}$. For every $v \in X$, we have $|z^{\star}_{u_{n}}(v)| \leq \|z^{\star}_{u_{n}}\|_{\star} \|v\|$, therefore $\|z^{\star}_{u_{n}}\|_{\star} \|v\| \geq - z^{\star}_{u_{n}}(v)$. If we take $v=u_{n}$, then $\|z^{\star}_{u_{n}}\|_{\star} \|u_{n}\| \geq - z^{\star}_{u_{n}}(u_{n}).$ Using the properties $\Psi^{0}(u, v)= \max \{ z^{\star}(v) :z^{\star} \in \partial \Psi(u) \ \}$ for every $v \in X$, we have $- z^{\star}(v) \geq - \Psi^{0}(u, v) $ for all $z^{\star} \in \partial \Psi(u)$ and $v \in X$. If we take $u=v=u_{n}$ and $z^{\star}=z^{\star}_{u_{n}}$, we get $- z_{u_{n}}^{\star}(u_{n}) \geq - \Psi^{0}(u_{n}, u_{n})$. Therefore, for every $\alpha > 0$, we have $$ \frac{1}{ \alpha} \|u_{n}\| \geq \frac{1}{ \alpha} \|z^{\star}_{u_{n}}\|_{\star} \|u_{n}\| \geq - \frac{ 1}{ \alpha} \Psi^{0}(u_{n}, u_{n}). $$ When we add the above inequality with $c + 1 \geq \Psi(u_{n})$, we obtain $$ c + 1 + \frac{ 1}{ \alpha}\|u_{n}\| \geq \Psi(u_{n}) - \frac{ 1}{\alpha} \Psi^{0}(u_{n};u_{n}). $$ Using the above inequality, $\Psi^{0}(u, v) \leq \langle A(u), v \rangle + \Phi^{0}(u, - v)$, and Proposition \ref{clarkeder} we get \begin{align*} &c + 1 + \frac{1}{\alpha} \|u_{n}\| \\ &\geq \Psi(u_{n}) -\frac{1}{\alpha} \Psi^{0}(u_{n};u_{n})\\ &= \frac{1}{p} \langle A(u_{n}), u_{n}\rangle -\Phi(u_{n}) - \frac{ 1}{\alpha}\left( \langle A(u_{n}), u_{n} \rangle + \Phi^{0}(u_{n};-u_{n}) \right)\\ &\geq (\frac{1}{p} - \frac{1}{\alpha})\langle A(u_{n}), u_{n} \rangle -\int_{\mathbb{R}^N} \big[ F(x, u_{n}(x)) + \frac{1}{\alpha} F_{2}^{0}(x,u_{n}(x); - u_{n}(x) )\big]dx \\ &\geq (\frac{1}{p} -\frac{1}{\alpha})\langle A(u_{n}), u_{n} \rangle - \frac{1}{\alpha} \int_{\mathbb{R}^N}g(u_{n}(x))dx . \end{align*} The relation $ \lim_{|u|\to \infty} \frac{ g(u)}{ |u|^p }= \lambda$ assures the existence of a constant $M$, such that $\int_{\mathbb{R}^N}g(u_{n}(x))dx \leq M + \lambda \int_{\mathbb{R}^N} |u_{n}(x)|^p dx$. We use again that the inclusion $X \hookrightarrow L^p (\mathbb{R}^N)$ is continuous, that $a(u)= \frac{ 1}{p}\langle A(u), u \rangle$ and that $$ a(u)=\|u\|^p \langle A(\frac{ u}{ \|u\|}), \frac{ u}{ \|u\|} \rangle \geq \kappa(1) \|u\|^p, $$ to obtain \begin{align*} c + 1 + \|u_{n}\| &\geq (\frac{ 1}{ p} - \frac{ 1}{\alpha}) \langle A(u_{n}), u_{n} \rangle -\frac{ \lambda C^p (p)}{ \alpha}\|u_{n}\|^p - \frac{ M}{ \alpha}\\ &\geq \frac{ \kappa(1)(\alpha - p) - \lambda C^p (p)}{ \alpha}\|u_{n}\|^p - \frac{M}{ \alpha}. \end{align*} From the above inequality, it results that the sequence $(u_{n})$ is bounded. \end{proof} \begin{proposition}\label{cpskor} If conditions (F1), (F2') and (F4) hold, then every $(CPS)_{c} (c>0)$ sequence $(u_{n}) \subset X$ for the function $\Psi:X \to \mathbb{R}$ is bounded in $X$. \end{proposition} \begin{proof} Let $(u_{n}) \subset X$ be a $(CPS)_{c}$ $(c > 0)$ sequence for the function $\Psi$, i.e. $\Psi(u_{n}) \to c$ and $(1+\|u_{n}\|)\lambda_{\Psi}(u_{n}) \to 0$. From $(1+\|u_{n}\|)\lambda_{\Psi}(u_{n}) \to 0$, we get $\|u_{n}\|\lambda_{\Psi}(u_{n}) \to 0$ and $\lambda_{\Psi}(u_{n}) \to 0$. As in Proposition \ref{pskor}, there exists $z_{u_{n}}^{\star} \in \partial \Psi(u_{n})$ such that $$ \frac{ 1}{p}\|z_{u_{n}}^{\star}\|_{\star}\|u_{n}\| \geq-\Psi^{0}(u_{n}; \frac{ 1}{ p} u_{n}). $$ From this inequality, Proposition \ref{clarkeder}, condition (F2') and the property $\Psi^{0}(u;v) \leq \langle Au, v \rangle + \Phi^{0}(u; -v)$ we get \begin{align*} c+1 &\geq \Psi(u_{n}) - \frac{ 1}{ p}\Psi^{0}(u_{n}; u_{n}) \\ &\geq a(u_{n}) - \Phi(u_{n}) - \frac{ 1}{ p} \left[ \langle Au_{n}, u_{n}\rangle + \Phi^{0}(u_{n}; - u_{n})\right] \\ &\geq - \int_{\mathbb{R}^N} \big[ F(x, u_{n}(x)) + \frac{ 1}{ p} F_{2}^{0}(x, u_{n}(x); - u_{n}(x))\big]dx \\ &\geq C \|u_{n}\|_{\alpha}^{\alpha}. \end{align*} Therefore, the sequence $(u_{n})$ is bounded in $L^{\alpha}(\mathbb{R}^N)$. From the condition (F4) follows that, for every $\varepsilon > 0$, there exists $c(\varepsilon) > 0$, such that for a.e. $x \in \mathbb{R}^N$, $$ F(x, u(x)) \leq \frac{\varepsilon}{ p}|u(x)|^p + \frac{c(\varepsilon)}{ r}|u(x)|^{r}. $$ After integration, we obtain $$ \Phi(u) \leq \frac{ \varepsilon}{p}\|u\|_{p}^p + \frac{c(\varepsilon)}{r} \|u\|_{r}^{r}. $$ Using the above inequality, the expression of $\Psi$, and $\|u\|_{p}\leq C(p)\|u\|$, we obtain $$ \frac{\kappa(1)- \varepsilon C^p (p)}{ p}\|u\|^p \leq \Psi(u)+ \frac{ c(\varepsilon)}{ r}\|u\|_{r}^{r} \leq c + 1 + \|u\|^{r}_{r}. $$ Now, we study the behaviour of the sequence $(\|u_{n}\|_{r})$. We have the following two cases: \begin{itemize} \item[(i)] If $r=\alpha$, then it is easy to see that the sequence $(\|u_{n}\|_{r})$ is bounded in $\mathbb{R}$. \item[(ii)] If $r \in (\alpha, p^{\star})$ and $\alpha > p^{\star} \frac{ r -p}{p^{\star} - p}$, then we have $$ \|u\|_{r}^{r} \leq \|u\|_{\alpha}^{(1-s)\alpha} \cdot \|u\|_{p^{\star}}^{sp^{\star}}, $$ where $r=(1-s)\alpha +sp^{\star}, s \in (0,1)$. \end{itemize} Using the inequality $\|u\|_{p^{\star}}^{sp^{\star}}\leq C^{sp^{\star}}(p)\|u\|^{sp^{\star}}$, we obtain \begin{equation}\label{cpsec} \frac{ \kappa(1)- \varepsilon C^p (p)}{p}\|u\|^p \leq c+1+\frac{c(\varepsilon)}{r}\|u\|_{\alpha}^{(1-s)\alpha}\|u\|^{sp^{\star}}. \end{equation} When in the inequality (\ref{cpsec}) we take $\varepsilon \in \left(0, \frac{ \kappa(1)}{ C^p (p)} \right)$ and use b), we obtain that the sequence $(u_{n})$ is bounded in $X$. \end{proof} The main result of this section is as follows. \begin{theorem}\label{mainps} \begin{enumerate} \item If conditions (F1), (F1'), and (F2)--(F4) hold, then $\Psi$ satisfies the $(PS)_{c}$ condition for every $c \in \mathbb{R}$. \item If conditions (F1), (F1'), (F2'), (F3), and (F4) hold, then $\Psi$ satisfies the $(CPS)_{c}$ condition for every $c>0$. \end{enumerate} \end{theorem} \begin{proof} Let $(u_{n}) \subset X$ be a $(PS)_{c} (c\in \mathbb{R})$ or a $(CPS)_{c} (c > 0)$ sequence for the function $\Psi(u_{n})$. Using Propositions \ref{pskor} \ref{cpskor}, it follows that $(u_{n})$ is a bounded sequence in $X$. As $X$ is reflexive Banach space, the existence of an element $u \in X$ results, such that $u_{n} \rightharpoonup u$ weakly in $X$. Because the inclusions $X \hookrightarrow L^{r}(\mathbb{R}^N)$ is compact, we have that $u_{n} \to u$ strongly in $L^{r}(\mathbb{R}^N)$. Next we estimate the expressions $I_{n}^{1}=\Psi^{0}(u_{n}; u_{n}- u)$ and $I_{n}^{2}=\Psi^{0}(u; u- u_{n})$. First we estimate the expression $I_{n}^{2}=\Psi^{0}(u; u- u_{n})$. We know that $\Psi^{0}(u; v)=\max \{z^{\star}(v):z^{\star} \in \partial \Psi(u)\},\; \forall\, v\in X$. Therefore, there exists $z_{u}^{\star} \in \partial \Psi(u)$, such that $\Psi^{0}(u; v)= z_{u}^{\star}(v)$ for all $v \in X$. From the above relation and from the fact that $u_{n} \rightharpoonup u$ weakly in $X$, we get $\Psi^{0}(u; u- u_{n})=z^{\star}_{u}(u - u_{n})\to 0$. Now, we estimate the expression $I_{n}^{1}=\Psi^{0}(u_{n}; u_{n}- u)$. From $\lambda_{\Psi}(u_{n}) \to 0$ follows the existence of a positive real numbers sequence $\mu_{n} \to 0$, such that $\lambda_{\Psi}(u_{n}) \leq \mu_{n}$. If we use the Remark \ref{psmejegyzes}, we get $\Psi^{0}(u_{n},u_{n}-u)+ \mu_{n}\|u_{n}- u\| \geq 0$. Now, we estimate the expression $I_{n}=\Phi^{0}(u_{n}; u- u_{n}) + \Phi(u; u -u_{n})$. For the simplicity in calculus we introduce the notations $h_{1}(s)=|s|^{p-1}$ and $h_{2}(s)=|s|^{r}$. For this we observe that if we use the continuity of the functions $h_{1}$ and $h_{2}$, the condition (F4) implies that for every $\varepsilon > 0$, there exists a $c(\varepsilon) > 0$ such that \begin{equation}\label{psegyen1} \max \left\{|\underline{f}(x, s)|, |\overline{f}(x, s)| \right\} \leq \varepsilon h_{1}(s) + c(\varepsilon)h_{2}(s), \end{equation} for a.e. $x \in \mathbb{R}^N$ and for all $s \in \mathbb{R}$. Using this relation and Proposition \ref{clarkeder}, we have \begin{align*} I_{n}&=\Phi^{0}(u_{n}; u- u_{n}) +\Phi(u; u -u_{n}) \\ &\leq \int _{\mathbb{R}^N} \left [ F^{0}_{2}(x, u_{n}(x); u_{n}(x)-u(x)) + F^{0}_{2}(x, u(x); u(x)-u_{n}(x))\right ]dx\\ &\leq \int_{\mathbb{R}^N} \left[ \underline{f}(x, u_{n}(x))(u_{n}(x)-u(x)) + \overline{f}(x, u(x)) (u(x)-u_{n}(x)) \right]dx \\ &\leq 2\varepsilon \int _{\mathbb{R}^N}\left[ h_{1}(u(x))+ h_{1}(u_{n}(x))\right]|u_{n}(x) - u(x)|dx\\ &\quad+ 2c_{\varepsilon} \int _{\mathbb{R}^N} \left[(h_{2}(u(x))+ h_{2}(u_{n}(x))\right]|u_{n}(x) - u(x)|dx. \end{align*} Using H\"{o}lder inequality and that the inclusion $X \hookrightarrow L^p (\mathbb{R}^N)$ is continuous, we get \begin{align*} I_{n}&\leq 2\varepsilon C(p)\|u_{n} -u\|(\|h_{1}(u)\|_{p'} + \|h_{1}(u_{n})\|_{p'}) \\ &\quad + 2c(\varepsilon)\|u_{n}-u\|_{r}(\|h_{2}(u)\|_{r'} + \|h_{2}(u_{n})\|_{r'}), \end{align*} where $\frac{1}{ p} + \frac{ 1}{p'}=1$ and $\frac{ 1}{ r} +\frac{ 1}{ r'} =1$. Using the fact that the inclusion $X \hookrightarrow L^{r}(\mathbb{R}^N)$ is compact, we get that $\|u_{n}-u\|_{r} \to 0$ as $n \to \infty$. For $\varepsilon \to 0^{+}$ and $n \to \infty$ we obtain that $I_{n} \to 0$. Finally, we use the inequality $\Psi^{0}(u; v) \leq \langle A(u), v \rangle + \Phi^{0}(u; -v) $. If we replace $v$ with $-v$, we get $\Psi^{0}(u, -v) \leq -\langle A(u), v \rangle + \Phi^{0}(u; v)$, therefore $\langle A(u), v \rangle \leq \Phi^{0}(u; v) - \Psi^{0}(u, -v)$. In the above inequality we replace $u$ and $v$ by $u=u_{n}, v=u-u_{n}$ then $u=u, v=u_{n}-u$ and we get \begin{gather*} \langle A(u_{n}), u - u_{n} \rangle \leq \Phi^{0}(u_{n}, u- u_{n}) - \Psi^{0}(u_{n}; u_{n} - u),\\ \langle A(u),u_{n} - u \rangle \leq \Phi^{0}(u, u_{n} - u) - \Psi^{0}(u, u-u_{n}). \end{gather*} Adding these relations, we have the following key inequality: \begin{align*} &\|u_{n} - u\|\kappa(u_{n}-u) \\ &\leq \langle A(u_{n}-u), u_{n}- u\rangle \\ &\leq \left[\Phi^{0}(u_{n}; u- u_{n}) + \Phi(u; u-u_{n})\right] - \Psi^{0}(u_{n}; u_{n}- u)-\Psi^{0}(u; u- u_{n})\\ &=I_{n}-I_{n}^{1}- I_{n}^{2}. \end{align*} Using the above relation and the estimations of $I_{n}, I_{n}^{1}$ and $I_{n}^{2}$, we obtain $$ \|u_{n}-u\|\kappa(u_{n}-u) \leq I_{n} + \mu_{n}\|u_{n} - u\| - z_{u}^{\star}(u_{n} -u). $$ If $n\to \infty$, from the above inequality we obtain the assertion of the theorem. \end{proof} \begin{remark}\label{reszter} \rm It is important to observe then the above results remain true if we replace the Banach space $X$ with every closed subspace $Y$ of $X$. \end{remark} \section{Proof of Theorem \ref{thm2}} In this section we prove the main result of this paper, whihc is a result of Mountain Pass type. First we prove that the critical points of the function $\Psi: X \to \mathbb{R}$ defined by $\Psi(u)=a(u)-\Phi(u)$ are solutions of problem \eqref{P}. \begin{proposition}\label{kritpont} If $0 \in \partial \Psi(u)$, then $u$ solves the problem \eqref{P}. \end{proposition} \begin{proof} Because $0 \in \partial \Psi(u)$, we have $\Psi^{0}(u;v) \geq 0$ for every $v \in X$. Using the Proposition \ref{clarkeder} and a property of Clarke derivative we obtain \begin{align*} 0\leq \Psi^{0}(u;v) &\leq \langle u, v \rangle + (-\Phi)^{0}(u;v)\\ &= \langle A(u), v \rangle + \Phi^{0}(u;-v) \\ &\leq \langle A(u), v \rangle + \int_{\mathbb{R}^N} F_{2}^{0}(x,u(x),-v(x))dx, \end{align*} for every $v \in X$. \end{proof} \begin{proof}[Proof of Theorem \ref{thm2}] Using (1) in Theorem \ref{mainps}, and conditions (F1)--(F4), it follows that the functional $\Psi(u)=\frac{ 1}{ p} \langle A(u), u\rangle -\Phi(u)$ satisfies the $(PS)_{c}$ condition for every $c \in \mathbb{R}$. From Proposition \ref{mountaincer} we verify the following geometric hypotheses: \begin{gather}\label{mountain1} \exists \, \alpha, \rho > 0, \quad \mbox{such that } \Psi(u) \geq \beta \mbox{ on } B_{\rho}(0)=\{ u \in X :\|u\| =\rho\},\\ \label{mountain2} \Psi(0)=0 \quad\mbox{and there exists $v \in H \setminus B_{\rho}(0)$ such that $\Psi(v) \leq 0$}. \end{gather} For the proof of relation (\ref{mountain1}), we use the relation (F4), i.e. $|f(x,s)| \leq \varepsilon |s|^{p-1}+c(\varepsilon)|s|^{r-1}$. Integrating this inequality and using that the inclusions $X \hookrightarrow L^p (\mathbb{R}^N)$, $X\hookrightarrow L^{r}(\mathbb{R}^N)$ are continuous, we get that \begin{align*} \Psi(u) &\geq \frac{ \kappa(1) - \varepsilon C(p)}{ p} \langle A(u), u \rangle -\frac{ 1}{r}c(\varepsilon)C(r)\|u\|^{r}_{r}\\ &\geq \frac{ \kappa(1) - \varepsilon C(p)}{ p} \|u\|^p - \frac{1}{ r}c(\varepsilon)C(r)\|u\|^{r}. \end{align*} The right member of the inequality is a function $\chi: \mathbb{R}_{+}\to \mathbb{R}$ of the form $\chi(t)= At^p - Bt^{r}$, where $A=\frac{ \kappa(1) - \varepsilon C(p)}{ p}$, $B =\frac{ 1}{r}c(\varepsilon)C(r) $. The function $\chi$ attains its global maximum in the point $t_{M}= (\frac{pA}{ r B})^{\frac{ 1}{r-p}}$. When we take $\rho=t_{M}$ and $\beta \in ]0, \chi(t_{M})]$, it is easy to see that the condition (\ref{mountain1}) is fulfilled. From (F5) we have $\Psi(u) \leq \frac{1}{ p} \langle A(u), u \rangle + c^{\star} \|u\|_{p}^p - c^{\star}\|u\|_{\alpha}^{\alpha}$. If we fix an element $v \in H \setminus\{0\}$ and in place of $u$ we put $tv$, then we have $$ \Psi(tv) \leq (\frac{ 1}{ p} \langle A(v), v \rangle + c^{\star} \|v\|_{p}^p )t^p - c^{\star}t^{\alpha}\|v\|_{\alpha}^{\alpha}. $$ From this we see that if $t$ is large enough, $t v \notin B_{\rho}(0)$ and $\Psi(tv) < 0.$ So, the condition (\ref{mountain2}) is satisfied and Proposition \ref{mountaincer} assures the existence of a nontrivial critical point of $\Psi$. Now when we use (2) in Theorem \ref{mainps}, from conditions (F1), (F2'), (F3), and (F4), we get that the function $\Psi$ satisfies the condition $(CPS)_{c}$ for every $c >0$. We use again the Proposition \ref{mountaincer}, which assures the existence of a nontrivial critical point for the function $\Psi$. It is sufficient to prove only the relation $(\ref{mountain2})$, because $(\ref{mountain1})$ is proved in the same way. To prove the relation $(\ref{mountain2})$ we fix an element $u \in X$ and we define the function $h:(0, + \infty) \to \mathbb{R}$ by $h(t)= \frac{ 1}{ t}F(x,t^{1/p}u) - C \frac{ p}{\alpha- p} t^{\frac{\alpha}{ p}-1 }|u|^{\alpha}$. The function $h$ is locally Lipschitz. We fix a number $t >1$, and from the Lebourg's main value theorem follows the existence of an element $\tau \in (1,t)$ such that $$ h(t)-h(1) \in \partial_{t}h(\tau)(t-1), $$ where $\partial_{t}$ denotes the generalized gradient of Clarke with respect to $t \in \mathbb{R}$. From the Chain Rules we have $$ \partial_{t}F(x,t^{1/p}u)\subset \frac{ 1}{ p} \partial F(x, t^{1/p}u) t^{\frac{1}{p}-1}u. $$ Also we have $$ \partial_{t} h(t) \subset - \frac{ 1}{t^{2}}F(x, t^{1/p}u) + \frac{1}{ t} \partial F(x, t^{1/p}u) t^{\frac{1}{p}-1}u - C t^{\frac{\alpha}{p}-2}|u|^{\alpha}. $$ Therefore, \begin{align*} h(t)-h(1) &\subset \partial_{t}h(\tau)(t-1)\\ &\subset - \frac{ 1}{ t^{2}} \left[F(x,t^{1/p}u) - t^{1/p}u \partial F(x, t^{1/p}u) +C|t^{1/p}u|^{\alpha}\right](t-1). \end{align*} Using the relation (F2'), we obtain that $h(t) \geq h(1)$ ; therefore, $$ \frac{ 1}{ t} F(x, t^{1/p}u)-C \frac{ p }{ \alpha - p} t^{\frac{\alpha}{p}-1}|u|^{\alpha} \geq F(x, u) - C\frac{ p}{ \alpha - p}|u|^{\alpha}. $$ From this inequality, we get \begin{equation} F(x, t^{1/p}) \geq t F(x,u) + C \frac{ p}{ \alpha - p}[t^{\alpha/p} -t]|u|^{\alpha}, \end{equation} for every $t >1$ and $u \in \mathbb{R}$. Let us fix an element $u_{0} \in X \setminus \{0\}$; then for every $t>1$, we have \begin{align*} \Psi(t^{1/p}u_{0}) &= \frac{1}{ p} \langle A(t^{1/p}u_{0}), t^{1/p}u_{0} \rangle -\int_{\mathbb{R}^N}F(x, t^{1/p}u_{0}(x))dx\\ &\quad \leq \frac{ t}{ p} \langle Au_{0}, u_{0} \rangle - t \int_{\mathbb{R}^N} F(x, u_{0}(x))dx -C \frac{ p}{ \alpha - p} [t^{\alpha/p} - t]\|u_{0}\|_{\alpha}^{\alpha}. \end{align*} If $t$ is sufficiently large, then for $v_{0}=t^{1/p}u_{0}$ we have $\Psi(v_{0}) \leq 0$. This completes the proof. \end{proof} \section{Applications} In the first two examples we suppose that $X$ is a Hilbert space with the inner product $\langle \cdot, \cdot \rangle$. Let $f: \mathbb{R}^N \times \mathbb{R} \to \mathbb{R}$ be a measurable function as in the introduction of this paper. \begin{application} \label{appl1} \rm We consider the function $V \in \mathcal{C}(\mathbb{R}^N, \mathbb{R})$ which satisfies the following conditions: \begin{itemize} \item [(a)] $V(x) >0$ for all $x \in \mathbb{R}^N$ \item [(b)] $V(x) \to + \infty$ as $|x| \to + \infty$. \end{itemize} Let $X$ be the Hilbert space defined by $$ X= \{ u \in H^{1}(\mathbb{R}^N) :\int (|\nabla u(x)|^{2} + V(x)|u(x)|^{2}) dx < \infty\}, $$ with the inner product $$ \langle u, v \rangle = \int (\nabla u \nabla v + V(x) u v)dx. $$ It is well known that if the conditions (a) and (b) are fulfilled then the inclusion $X \hookrightarrow L^{2}(\mathbb{R}^N)$ is compact \cite{grosters}, therefore the condition (F1') is satisfied. \end{application} Now we formulate the problem. {\it Find a positive $u \in X$ such that for every $v \in X$ we have} \begin{equation} \int_{\mathbb{R}^N} (\nabla u\nabla v + V(x) u v)dx + \int_{\mathbb{R}^N} F^{0}_{2}(x, u(x);-v(x) )dx \geq 0. \label{P1} \end{equation} We have the following result. \begin{corollary}\label{schrodinger} If conditions (F1), (F2'), (F3), (F4), and (a), (b) hold, the problem \ref{P1} has a nontrivial positive solution. \end{corollary} \begin{proof} We replace the function $f$ by $f_{+}: \mathbb{R}^N \times \mathbb{R} \to \mathbb{R}$ defined by \begin{equation}\label{poz} f_{+}(x, u)=\begin{cases} f(x, u) &\mbox{if } u\geq 0;\\ 0, & \mbox{if } u < 0 \end{cases} \end{equation} and use (2) in Theorem \ref{thm2}. \end{proof} \begin{remark}\label{gazolla} \rm The above result improves a result in Gazolla-R\u{a}dulescu \cite{GazRad}. \end{remark} \begin{application} \label{app2} \rm Now, we consider $Au:= -\bigtriangleup u + |x|^{2}u$ for $u \in D(A)$, where $$ D(A):= \{ u\in L^{2}(\mathbb{R}^N) :Au \in L^{2}(\mathbb{R}^N)\}. $$ Here $|\cdot|$ denotes the Euclidian norm of $\mathbb{R}^N$. In this case the Hilbert space $X$ is defined by $$ X= \{ \ u \in L^{2}(\mathbb{R}^N) : \int _{\mathbb{R}^N} (|\nabla u|^{2} + |x|^{2} u^{2}) dx <\infty\}, $$ with the inner product $$ \langle u, v \rangle = \int_{\mathbb{R}^N} (\nabla u \nabla v + |x|^{2} u v)dx. $$ The inclusion $X \hookrightarrow L^{s}(\mathbb{R}^N)$ is compact for $s \in [2, \frac{ 2N}{ N-2})$, see Kavian \cite[Exercise 20, pp. 278]{Kavian}. Therefore, the condition (F1') is satisfied. \end{application} Now, we formulate the next problem. {\it Find a positive $u \in X$ such that for every $v \in X$ we have} \begin{equation} \int_{\mathbb{R}^N} (\nabla u \nabla v + |x|^{2} u v)dx + \int_{\mathbb{R}^N} F^{0}_{2}(x, u(x);-v(x) )dx \geq 0. \label{P2} \end{equation} \begin{corollary}\label{oscilatie} If (F1), (F2), (F3), and (F4) hold, then problem \eqref{P2} has a positive solution. \end{corollary} The proof of this corollary is similar to that of Corollary \ref{schrodinger}. \begin{remark}\label{varga} \rm This result improves a result from Varga \cite{varga}, where the condition (F5) was used. \end{remark} \begin{application} \label{app3} \rm In this example we suppose that $G$ is a subgroup of the group $O(N)$. Let $\Omega$ be an unbounded domain in $\mathbb{R}^N$ with smooth boundary $\partial \Omega$, and the elements of $G$ leave $\Omega$ invariant, i.e. $g(\Omega)=\Omega$ for every $g \in G$. We suppose that $\Omega$ is compatible with $G$, see the book of Willem \cite{W} Definition 1.22. The action of $G$ on $X=W_{0}^{1,p}$ is defined by $$gu(x):=u(g^{-1}x).$$ The subspace of invariant function $X^{G}$ is defined by $$ X^{G}:= \{u \in X :gu=u, \ \forall g \in G \ \}. $$ The norm on $X$ is defined by $$\|u\|= \Big( \int _{\Omega} (|\nabla u |^p + |u|^p )dx \Big)^{1/p}. $$ If $\Omega$ is compatible with $G$, then the embeddings $X\hookrightarrow L^{s}(\Omega)$, with $p < s < p^{\star}$ are compact, see the paper of Kobayashi and Otani \cite{kobotani}. Therefore the condition (F2'') is satisfied. \end{application} We consider the potential $a: X \to \mathbb{R}$ defined by $a(u)= \frac{ 1}{ p} \|u\|^p $. This function is $G$-invariant because the action of $G$ is isometric on $X$. The Gateaux differential $A:X \to X^{\star}$ of the function $a: X \to \mathbb{R}$ is given by $$ \langle Au, v \rangle = \int _{\Omega} \left(|\nabla u|^{p-2} \nabla u \nabla v + |u|^{p-2} u v\right)dx. $$ The operator $A$ is homogeneous of degree $p-1$ and strongly monotone, because $p \geq 2$. Now, we formulate the following problem. {\it Find $u \in X \setminus \{0\}$ such that for every $v \in X$ we have} \begin{equation} \int _{\Omega} \left(|\nabla u|^{p-2} \nabla u \nabla v + |u|^{p-2} u v \right)dx + \int_{\Omega} F^{0}_{2}(x, u(x);-v(x) )dx \geq 0. \label{P3} \end{equation} We have the following result. \begin{corollary}\label{plaplace1} If we suppose that the condition (F6) is true, then the following assertions hold. \begin{itemize} \item[(a)] If conditions (F1)--(F5) are fulfilled, then problem \eqref{P} has a nontrivial solution. \item[(b)] If conditions (F1), (F2'), (F3), and (F4) are fulfilled, then problem \eqref{P} has a nontrivial symmetric solution. \end{itemize} \end{corollary} \begin{remark}\label{plapmeg1} \rm The result (a) from Corollary \ref{plaplace1} is similar to the a result obtained by Kobayashi, \^{O}tani \cite{kobotani}, but the difference is that in the paper \cite{kobotani} the ``Principle of Symmetric Criticality" was used for Szulkin type functional, see \cite{szulkin}. \end{remark} \begin{application} \label{aap4} \rm In this case we consider $\Omega=\tilde{\Omega} \times \mathbb{R}^N, N-m \geq 2, \tilde{\Omega} \subset \mathbb{R}^{m} (m \geq 1)$ is open bounded and $2 \leq p \leq N$. We consider the Banach space $X=W_{0}^{1,p}(\Omega)$ with the norm $\|u\|= ( \int_{\Omega} |\nabla u|^p )^{1/p}$. Let $G$ be a subgroup of $O(N)$ defined by $G=id^{m} \times O(N-m)$. The action of $G$ on $X$ is defined by $gu(x_{1}, x_{2})=u(x_{1}, g_{1} x_{2})$ for every $(x_{1}, x_{2}) \in \tilde{\Omega} \times \mathbb{R}^{N-m}$ and $g=id^{m} \times g_{1} \in G$. The subspace of invariant function is defined by $$ X^{G}=W_{0, G}^{1,p}=\{ u \in X : gu=u, \;\forall \, g \in G\}. $$ The action of $G$ on $X$ is isometric, that is $$ \|gu\|=\|u\|, \; \forall \, g \in G. $$ If $2\leq p \leq N$, from a result of Lions \cite{Lion} follows that the embeddings $X \hookrightarrow L^{s}(\Omega), p < s < p^{\star}$ are compact. Therefore the condition $(f_{2}^{\prime\prime})$ is true. In this case condition (F6) will be replaced by \begin{itemize} \item[(F6')] $f(x,y_{1}, u)=f(x,y_{2}, u)$ for every $y_{1}, y_{2} \in \mathbb{R}^{N-m}$ ($N - m \geq 2$), $|y_{1}|=|y_{2}|$; i.e., the function $f(x, \cdot, u)$ is spherically symmetric on $\mathbb{R}^{N-m}$. \end{itemize} We consider the potential $a: X \to \mathbb{R}$ defined by $a(u)= \frac{ 1}{ p} \|u\|^p $. This functional is $G$-invariant because the action of $G$ is isometric on $X$. The Gateaux differential $A:X \to X^{\star}$ of the functional $a: X \to \mathbb{R}$ is given by $$ \langle Au, v \rangle = \int _{\Omega} |\nabla u|^{p-2} \nabla u \nabla v dx. $$ The operator $A$ is homogeneous of degree $p-1$ and strongly monotone, because $p \geq 2$. \end{application} Now, we formulate the following problem. {\it Find $u \in X \setminus \{0\}$ such that for every $v \in X$ we have} \begin{equation} \int _{\Omega} |\nabla u|^{p-2}\nabla u \nabla v dx + \int_{\Omega} F^{0}_{2}(x,u(x);-v(x) )dx \geq 0. \label{P4} \end{equation} We have the following result. \begin{corollary}\label{sferical} \begin{itemize} \item[(a)] If conditions (F1)--(F5), and (F6) hold, then problem \eqref{P4} has a nontrivial solution. \item[(b)] If conditions (F1), (F2'), (F3), (F4), and (F6') hold, then problem \eqref{P4} has a nontrivial solution. \end{itemize} \end{corollary} \subsection*{Acknowledgments} The authors want to express their gratitude to Dr. Alexandru Krist\'{a}ly for his helpful discussions. \begin{thebibliography}{20} \bibitem{Bart1} T. Bartsch, {\em Infinitely many solutions of a symmetric Dirichlet problems}, Nonlinear Analisys, TMA {\bf 20}(1993), 1205-1216. \bibitem{Bart2} T. Bartsch, {\em Topological Methods for Variational with Symmetries }, Springer-Verlag, Berlin, Heidelberg, New York, 1993. \bibitem{BartWa} T. Bartsch and Z.-Q. Wang, {\em Existence and multiplicity results for some superlinear elliptic problems in $\mathbb{R}^N$}, Communications of Partial Differential Equations {\bf 20}(1995), 1725-1741. \bibitem{BarWill1} T. Bartsch and M. Willem, {\em Infinitely many non-radial solutions of an Euclidian scalar field equation}, J. Func. Anal. {\bf 117}(1993), 447-460. \bibitem{BarWill2} T. Bartsch and M. Willem, {\em Infinitely many radial solutions of a semilinear problem in $\mathbb{R}^N$}, Arch. Rat. Mech. Anal. {\bf 124}(1993), 261-276. \bibitem{Brez} H. Brezis, {\em Analyse Fonctionelle}, Masson, Paris (1983). \bibitem{Chang} K.-C. Chang, {Variational methods for non-differentiable functionals and their applications to partial differential equations}, J. Math. Anal. Appl.{\bf 80}(1981). 102-129. \bibitem{Clarke} F. Clarke, {\em Optimization and Nonsmooth Analysis,} John Wiley\&Sons, New York, 1983. \bibitem{FanZhao} X.L. Fan, Y.Z. Zhao, {\em Linking and Multiplicity results for the p-Laplacian on Unbounded Cylinder}, Journal of Math. Anal. and Appl., {\bf 260}(2001), 479-489. \bibitem{GazRad} F. Gazolla and V. R\u{a}dulescu, {\em A nonsmooth critical point approach to some noninear elliptic equations in $\mathbb{R}^N$ }, Diff. Integral Equations, {\bf 13}(2000), no.1-3, 47-60. \bibitem{grosters} M.R. Grossinho, S.A. Tersian, {\em An Introduction to Minimax Theorems and Their Applications to Differential Equations}, Kluwer Academic Publishers, Dodrecht, Boston, London, 2001. \bibitem{Kavian} O. Kavian, {\em Introduction \`{a} la Th\'{e}orie des Point Critique et Applications aux Proble'{e}mes Elliptique}, Springer Verlag, 1995. \bibitem{kobotani} J. Kobayashi, M. \^{O}tani, {\em The Principle of Symmetric Criticality for Non-Differentiable Mappings}, preprint. \bibitem{KrawMar} W. Krawciewicz and W. Marzantovicz, {\em Some remarks on the Lusternik-Schnirelmann method for non-differentiable functionals invariant with respect to a finite group action}, Rocky Mountain J. of Math. {\bf 20}(1990), 1041-1049. \bibitem{Kris} A. Krist\'{a}ly, {Infinitely Many Radial and Non-radial Solutions for a class of hemivariational inequalities}, Rocky Math. Journal, in press \bibitem{Papa} N.-C. Kourogenis and N.-S. Papageorgiu, {\em Nonsmooth critical point theory and nonlinear elliptic equations at resonenace}, Kodai Math. J. {\bf 23}(2000), 108-135. \bibitem{KrMoVa} A. Krist\'{a}ly, V.V. Motreanu and Cs. Varga, {\em A minimax principle with a general Palais-Smale condition}, submitted. \bibitem{Lion} P.-L. Lions, {\em Sym\'{e}trie et compacit\'{e} dans les espaces de Sobolev}, J. Funct. Anal. {\bf 49}(1982), 312-334. \bibitem{Megrez} H. Megrez, {A nonlinear elliptic eigenvalue problem in unbounded domains}, Rostock Math. Kolloq, No.56 (2002), 39-48. \bibitem{MontRad} E. Montefusco, V. R\u{a}dulescu, {\em Nonlinear eigenvalue problems for quasilinear operators on unbounded domain}, Differential Equations Appl. {\bf 8}(2001), no. 4, 481-497. \bibitem{MotVar} D. Motreanu and Cs. Varga, {\em A nonsmooth mimimax equivariant principle}, Comm. Appl. Anal. {\bf 3}(1999), 115-130. \bibitem{MotPan} D. Motreanu and P.D. Panagiotopoulos, {Minimax Theorems and Qualitative Properties of the solutions of Hemivariational Inequalities}, Kluwer Academic Publishers, Dodrecht, Boston, London, 1999. \bibitem{MotRad} D. Motreanu, V. R\u{a}dulescu, {\em Variational and non-variational methods in nonlinear analysis and boundary value problems}, Kluwer Academic Publishers, Boston-Dordrecht- London 2003. \bibitem{Palais} R.S. Palais, {\em The principle of symmetric criticality}, Comm. Math. Phys. {\bf 69}(1979), 19-30. \bibitem{Rabi1} P. H. Rabinowitz, {Minimax Methods in Critical Point Theory with Applications to Differential Equations}, CBMS Reg, Conference Series in Mathematics, Vol. 65, American Mathematical Society, Providence, RI, 1986. \bibitem{Rabi2} P. H. Rabinowitz, {\em On a class of nonlinear Schr\"{o}dinger equations}, Z. angev. Math. Phys. {\bf 43}(1992), 270-291. 62. \bibitem{szulkin} A. Szulkin, {\em Minimax methods for lower semicontinuous functions and applications to nonlinear boundary value problems}, Ann. Inst. Henri Poincar\'{e} {\bf 3},(1986), 77-109. \bibitem{varga} Cs. Varga, {\em Existence and infinitely many solutions for an abstract class of hemivariational inequality}, Archives of Inequalities and Applications, in press \bibitem{W} M. Willem, {\em Minimax Theorems,} Birkhauser, Boston, 1996. \bibitem{ZhouHuang} Y. Zhou, Y. Huang, {\em Existence of solutions for a class of elliptic variational inequality}, Journal Math. Anal. Appl.{\bf 250}(2000), No.1, 187-195. \end{thebibliography} \end{document}