\documentclass[reqno]{amsart} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2004(2004), No. 49, pp. 1--10.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2004 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2004/49\hfil Multiple solutions] {Multiple solutions for inhomogeneous nonlinear elliptic problems arising in astrophyiscs} \author[Marco Calahorrano \& Hermann Mena\hfil EJDE-2004/49\hfilneg] {Marco Calahorrano \& Hermann Mena} % in alphabetical order \address{Marco Calahorrano \hfill\break Escuela Polit\'{e}cnica Nacional, Departamento de Matem\'{a}tica, Apartado 17-01-2759, Quito, Ecuador} \email{calahor@server.epn.edu.ec} \address{Hermann Mena \hfill\break Escuela Polit\'{e}cnica Nacional, Departamento de Matem\'{a}tica, Apartado 17-01-2759, Quito, Ecuador} \email{hmena@server.epn.edu.ec} \date{} \thanks{Submitted May 15, 2003. Published April 6, 2004.} \subjclass[2000]{35J65, 85A30, 35J20} \keywords{Solar flares, variational methods, inhomogeneous nonlinear \hfill\break\indent elliptic problems} \begin{abstract} Using variational methods we prove the existence and multiplicity of solutions for some nonlinear inhomogeneous elliptic problems on a bounded domain in $\mathbb{R}^n$, with $n\geq 2$ and a smooth boundary, and when the domain is $\mathbb{R}_+^n$. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{thm}{Theorem}[section] \newtheorem{lem}[thm]{Lemma} \newtheorem{prop}[thm]{Proposition} \newtheorem{rem}[thm]{Remark} \newcommand{\norm}[1]{\|#1\|} \newcommand{\normw}[1]{\|#1\|_{W^{1,2}_0(\Omega)}} \section{Introduction} In this paper we study the boundary-value problem \begin{equation} \label{eq:*} \begin{gathered} -\Delta u+c(x)u=\lambda f(u)\quad\mbox{in } \Omega \\ u=h(x)\quad \mbox{on }\partial\Omega \end{gathered} \end{equation} when $\Omega$ is a bounded domain in $\mathbb{R}^{n}$, with $n\geq 2$ and smooth boundary $\partial\Omega$, and when the domain is $ \mathbb{R}_{+}^n :=\mathbb{R}^{n-1}\times \mathbb{R}_{+}$ with $\mathbb{R}_{+}=\{y\in \mathbb{R}: y>0\}$. The function $f:]-\infty,+\infty[\to \mathbb{R}$ is assumed to satisfy the following conditions: \begin{itemize} \item[(f1)] There exists $s_{0}>0$ such that $f(s)>0$ for all $s\in ]0,s_{0}[$. \item[(f2)] $f(s)=0$ for $s\leq0$ or $s\geq s_{0}$. \item[(f3)] $f(s)\leq as^{\sigma}$, $a$ is a positive constant and $1<\sigma<\frac{n+2}{n-2}$ if $n>2$ or $\sigma>1$ if $n=2$. \item[(f4)] There exists $l>0$ such that $|f(s_{1})-f(s_{2})|\leq l|s_{1}-s_{2}|$, for all $s_{1}$, $s_{2}$ $\in \mathbb{R}$. \end{itemize} The function $h$ is a non-negative bounded, smooth, $h\neq 0$, $\min h0$ and $\Omega$ big enough, by this we mean that there exists $x_{0}\in\Omega$ such that the Euclidean ball with center $x_{0}$ and radius R is contained in $\Omega$, with R large enough. In this case, we will eliminate the restrictions on $\tau$, obtaining similar results. Problem \eqref{eq:*} is a generalization of an astrophysical gravity-free model of solar flares in the half plane $\mathbb{R}^{2}_{+}$, given in \cite{h1}, \cite{h2} and \cite{h3}, namely: \begin{equation} \label{eq:hw} \begin{gathered} -\Delta u=\lambda f(u)\quad \mathbb{R}^{2}_{+} \\ u(x,0)=h(x)\quad \forall x\in \mathbb{R} \end{gathered} \end{equation} besides the above mentioned conditions for $f$ and $h$, the authors are interested in finding a positive range of $\lambda 's$ in which there is multiplicity of solutions for \eqref{eq:hw}, see \cite{h1,h2,h3} for a detail description. In section 4, a related problem is reviewed \begin{equation}\label{eq:Rn} \begin{gathered} -\Delta \omega+c(x)\omega=\lambda f(\omega+\tau)\quad \mbox{in }\mathbb{R}_+^n \\ \omega(x,0)=0\quad \forall x\in \mathbb{R}^{n-1} \end{gathered} \end{equation} and we prove the existence of solutions of \eqref{eq:Rn} as limit of a special family of solutions of \begin{equation}\label{eq:Dr} \begin{gathered} -\Delta \omega+c(x)\omega=\lambda f(\omega+\tau)\quad \mbox{in }D_{R}\\ \omega=0\quad \mbox{on }\partial D_{R} \end{gathered} \end{equation} where \[ D_{R}=\{(x_{1},\dots,x_{n})\in\ \mathbb{R}_+^n: \sum^{n}_{i=1}x^{2}_{i}0$ small enough there exists an interval $]\underline{\lambda},\overline{\lambda}(\Gamma)[$ with $\underline{\lambda}>0$ such that for all $\lambda\in]\underline{\lambda},\overline{\lambda}(\Gamma)[$ the problem \eqref{eq:*2} has at least three positive solutions. Moreover $\overline{\lambda}(\Gamma)\to +\infty$ as $\Gamma\to 0$. \end{thm} To prove Theorem \ref{thm1}, we will use arguments as those in \cite{cd}, for which the following lemmas are necessary. \begin{lem} \label{lm2} There exists $\omega_{0}\geq0$, $\omega_{0}\neq 0$ and $\underline{\lambda}>0 $ such that for all $\lambda>\underline{\lambda}$ and for all $\tau\geq 0$, $\Phi_{\lambda,\tau}(\omega_{0})<0$ \end{lem} \begin{proof}. Let $B_{r}(x_{0})$ denote an euclidean ball with center at $x_{0}$ and radius $r$. Let $x_{0}\in \Omega$ and $R>0$ such that $B_{R}(x_{0})\subset\Omega$. Then for all $0<\delta\underline{\lambda}(\delta)>0$, and for all $\tau\geq0$. Let \[ \psi(t)\equiv\frac{1-(1-t)^{n}}{t^{2}(1-t)^{n}} \] and let $t_{1}\in ]0,1[$ such that $\psi(t_{1})=\min_{]0,1[}\psi(t)$. If $\delta_{1}=t_{1}R$, $\omega_{o}=\omega_{\delta_{1},R}$ and $\underline{\lambda}=\underline{\lambda}(\delta_{1})$, then there results \[ \Phi_{\lambda,\tau}(\omega_{0})<0 \quad \forall \lambda>\underline{\lambda}>0 \quad and \quad \forall \tau\geq0 \] Moreover, \[ \|\omega_{0}\|=s_{0}\Bigl(\omega_{n}\Bigr)^{1/2}R^{\frac{n-2}{2}}\Bigl(\frac{1-(1-t_{1})^{n}}{t^{2}_{1}}\Bigr)^{1/2} \] \end{proof} \begin{lem} \label{lm3} There exists a constant K=K($a,\sigma,\Omega$) such that for all $\lambda<\overline{\lambda}(\Gamma)$ and $\|u\|=\Gamma$, $\Phi_{\lambda,\tau}(u)>0$ where $\overline{\lambda}\equiv K\Gamma^{1-\sigma}$. \end{lem} \begin{proof} From (f3), \[ \int_{\Omega}F(u+\tau)dx=\int_{\Omega}\int^{u+\tau}_{0}f(t)dt\,dx\leq \int_{\Omega}\frac{a(u+\tau)^{\sigma+1}}{\sigma+1}\,dx \] then, using the Sobolev immersion and Poincar\'{e} inequalities\\ \begin{align*} \Phi_{\lambda,\tau}(u)&= \frac{1}{2}\|u\|^{2}+\frac{1}{2}\int_{\Omega}c(x)u^{2}dx - \lambda\int_{\Omega}F(u+\tau)dx\\ &\geq \frac{1}{2}\|u\|^{2} - \lambda\int_{\Omega}\frac{a(u+\tau)^{\sigma+1}}{\sigma+1}dx\\ &\geq \frac{1}{2}\|u\|^{2} - \lambda\Bigl(\frac{a}{\sigma+1}\Bigr)(\|u\|_{L^{\sigma+1}(\Omega)} +\|\tau\|_{L^{\sigma+1}(\Omega)})^{\sigma+1}\\ &\geq \frac{1}{2}\|u\|^{2} - \lambda\Bigl(\frac{a}{\sigma+1}\Bigr)(C(\Omega)\|u\|+\Gamma)^{\sigma+1}, \end{align*} where $C(\Omega)$ is a constant depending on $\Omega$. Setting \[ K=\frac{\sigma+1}{2a(C(\Omega)+1)^{\sigma+1}} \] it follows that for all $\lambda<\overline{\lambda}(\Gamma)\equiv K\Gamma^{1-\sigma}$, $\Phi_{\lambda,\tau}(u)>0$. \end{proof} \begin{rem} \label{rmk4} \rm (i) Since $\overline{\lambda}(\Gamma)=K\Gamma^{1-\sigma}$ it follows $\overline{\lambda}\to +\infty$ as $\Gamma\to 0$.\\ (ii) $\Phi_{\lambda,\tau}(0)$ and $\Phi_{\lambda,\tau}'(0)(v)$ are negative for all $\lambda>0$ and $v\geq0$, $v \neq 0$. \end{rem} \begin{lem} \label{lm5} For all $0<\lambda<\overline{\lambda}(\Gamma)$ there exists $\overline{u}\in H^{1}_{0}(\Omega)$ with $\|\overline{u}\|<\Gamma$ such that $\Phi_{\lambda,\tau}(\overline{u})<0$ and $\Phi_{\lambda,\tau}'(\overline{u})=0$. \end{lem} \begin{proof} Using Lemma \ref{lm3} we prove that $\Phi_{\lambda,\tau}(u)>0$, for $0<\lambda<\overline{\lambda}(\Gamma)$ and $u$ such that $\|u\|=\Gamma$. Moreover $\Phi_{\lambda,\tau}(0)<0$ y $\Phi_{\lambda,\tau}'(0)(v)\neq0$. Keeping in mind that the solution of \[ \begin{gathered} \frac{d\alpha}{dt}=W(\alpha(t))\\ \alpha(0)=0 \end{gathered} \] where $W=-V$, $V$ pseudo-gradient vector field for $\Phi_{\lambda,\tau}$ in the set of regular points of $\Phi_{\lambda,\tau}$, with $0<\lambda<\overline{\lambda}$. Since $\Phi_{\lambda,\tau}$ verifies the Palais-Smale condition and is bounded from below, using \cite[Theorem 5.4]{p} we have that \begin{enumerate} \item $\alpha:[0,+\infty[\to H^{1}_{0}(\Omega)$ is continuous. \item $\Phi_{\lambda,\tau}(\alpha(t))$ is strictly decreasing. \item $\alpha(t)\to \overline{u}$ as $t\to +\infty$, $\Phi_{\lambda,\tau}'(\overline{u})=0$. \end{enumerate} then, $\overline{u}$ satisfies the required conditions. \end{proof} \begin{proof}[Proof of Theorem \ref{thm1}] Let $\omega_{0}$ and $\underline{\lambda}$ be defined in Lemma \ref{lm2}. Using Lemma \ref{lm3} for $\Gamma<\|\omega_{0}\|$, there exists $\overline{\lambda}(\Gamma)>0$ such that $\Phi_{\lambda,\tau}(u)>0$ for all $\lambda<\overline{\lambda}$ and $\|u\|=\Gamma$. But since $\underline{\lambda}$ is independent of $\Gamma$, using Remark \ref{rmk4} $\underline{\lambda}<\overline{\lambda}(\Gamma)$ for $\Gamma$ small enough. Now we claim that for $\Gamma$ small enough there exists $\widehat{u}\in H^{1}_{0}(\Omega)$, $\|\widehat{u}\|>\Gamma$ such that for all $\underline{\lambda}<\lambda<\overline{\lambda}(\Gamma)$ $\Phi_{\lambda,\tau}(\widehat{u})<0$ and $\Phi_{\lambda,\tau}'(\widehat{u})=0$. Indeed, we remember that for all $\underline{\lambda}<\lambda<\overline{\lambda}(\Gamma)$ lemmas 3 and 2 are verified. Keeping in mind that the solution of \[ \begin{gathered} \frac{d\beta}{dt}=W(\beta(t))\\ \beta(0)=\omega_{0} \end{gathered} \] Using similar arguments as those in Lemma \ref{lm5} we find the critical point $\widehat{u}$ with $\|\widehat{u}\|>\Gamma$. Let \[ c\equiv\inf_{\delta\in\Theta}\sup_{u\in\delta}\Phi_{\lambda,\tau}(u) \] where $\Theta$ is the set paths \[ \Theta=\{\gamma\in C([0,1],H^{1}_{0}(\Omega)):\gamma(0)=\overline{u}, \gamma(1)=\omega_{0}\} \] we are able to apply the Mountain Pass Theorem of Ambrosetti-Rabinowitz \cite{ar}. Then $c$ is achieved in $H^{1}_{0}(\Omega)$ at a function $\widetilde{u}$. Finally using Lemma \ref{lm5} we prove Theorem \ref{thm1}. \end{proof} \begin{rem} \label{rmk6} \rm (i) If we define $\mu\in R_{-}$, \[ \mu\equiv\min_{0\leq t\leq\Gamma}\frac{1}{2}t^{2}-\lambda\frac{a}{\sigma+1}(C(\Omega)t+\Gamma)^{\sigma+1} \] it is easy to prove \[ \Phi_{\lambda,\tau}(\widehat{u})<\mu\leq\Phi_{\lambda,\tau}(\overline{u})<0<\Phi_{\lambda,\tau}(\widetilde{u}) \] (ii) Unlike \cite{h1}, \cite{h2}, \cite{h3} and \cite{cd}, where the size of $\|\tau\|_{L^{\infty}(\Omega)}$ is relevant, in our approach the condition $\Gamma\equiv\|\tau\|_{L^{\sigma+1}(\Omega)}$ small is of primary importance. Note, that $\Gamma$ small does not say anything about $\|\tau\|_{L^{\infty}(\Omega)}$. \end{rem} \section{$\Omega$ big enough} Now we study problem (\ref{eq:*2}) for $\inf c(x)>0$ and $\Omega\subset\mathbb{R}^{n}$ ($n\geq3$) big enough. By big enough we mean that there exists $x_{0}\in\Omega$ such that the euclidean ball with center $x_{0}$ and radius R is contained in $\Omega$, with R large enough. Let $W^{1,2}_0(\Omega)$ be the usual Sobolev space, with $\normw u^{2}=\int_{\Omega}[u^{2}+|\nabla u|^{2}]dx$ and $\Gamma\equiv \norm \tau_{L^{2}(\Omega)}$. If $\inf c(x)>0$, then \begin{equation} \label{e3.1} \normw u^{2}\leq \frac{1}{m}\int_{\Omega}[c(x)u^{2}+|\nabla u|^{2}]dx \end{equation} where $m\equiv \min$\{$\inf c(x),1$\}. As was seen in section 2 we find an interval $\Lambda' \subset \mathbb{R}_{+}$ such that for all $\lambda\in\Lambda'$ there exists at least three positive solutions of (\ref{eq:*2}) and we eliminate the restrictions on $\tau$ . Consequently we obtain: \begin{thm} \label{thm7} Let us assume (f1)--(f4). For all $\Gamma>0$ and R large enough there exists an interval $]\underline{\lambda}(R),\overline{\lambda}[$ with $\underline{\lambda}(R)>0$ such that for all $\lambda\in]\underline{\lambda},\overline{\lambda}[$ the problem (\ref{eq:*2}) has at least three positive solutions. \end{thm} To prove this theorem, we need to redefine $\underline{\lambda}$ and $\overline{\lambda}$. Therefore, let \[ \omega_{\delta,R}(x) = \begin{cases} \dfrac{s_{0}}{\delta^{1/4}} & \text{if } |x-x_{0}|\leq\rho\\ \dfrac{s_{0}}{\delta^{5/4}} (R-|x-x_{0}|) & \text{if } \rho\leq|x-x_{0}|\leq R\\ 0 & \text{if } |x-x_{0}|\geq R \end{cases} \] If we define $\omega_{o}=\omega_{\delta_{1},R}$ where $\delta_{1}=t_{1}R$ and $t_{1}\in ]0,1[$ such that $\psi(t_{1})=\min_{]0,1[}\psi(t)$, $\psi(t)\equiv\frac{1-(1-t)^{n}}{t^{\frac{5}{2}}(1-t)^{n}}$; then with a similar development to Lemma \ref{lm2}, we obtain \[ \Phi_{\lambda,\tau}(\omega_{0})<0 \quad \forall \lambda>\underline{\lambda}>0 \quad and \quad \forall \tau\geq0 \] where \[ \underline{\lambda}(R)=\frac{s^{2}_{0}(1+\|c\|_{L^{\infty}}R^{2})}{2F (\tau(x_{0}))R^{\frac{5}{2}}}\Bigl(\frac{1-(1-t_{1})^{n}}{t^{\frac{5}{2}}_{1} (1-t_{1})^{n}}\Bigr). \] On the other hand, using the modification, to $n\geq3$ \begin{equation} \label{e3.2} \|\nabla\omega_{0}\|_{L^{2}(\Omega)}=s_{0}\Bigl(\omega_{n}\Bigr)^{1/2} R^{\frac{2n-5}{4}}\Bigl(\frac{1-(1-t_{1})^{n}}{t_{1}^{\frac{5}{2}}}\Bigr)^{1/2} \to\infty \end{equation} as $R\to \infty$. Since \[ 0\leq \lim_{s\to 0^{+}}\frac{2F(s)}{s^{2}}\leq\lim_{s\to 0^{+}}\frac{f(s)}{s}=0 \] for (f3) and since $F$ is bounded, we define \begin{equation} \label{e3.3} \frac{b}{2}\equiv\sup_{s>0}\frac{F(s)}{s^{2}}<+\infty \end{equation} \begin{lem} \label{lm8} For all $\lambda<\overline{\lambda}$ and $\normw u=\Gamma$, $\Phi_{\lambda,\tau}(u)>0$. \end{lem} \begin{proof} Using \eqref{e3.1} and \eqref{e3.3} \begin{align*} \Phi_{\lambda,\tau}(u)&= \frac{1}{2}\int_{\Omega}[c(x)u^{2}+|\nabla u|^{2}]dx - \lambda\int_{\Omega}F(u+\tau)dx\\ &\geq \frac{m}{2}\normw u^{2} - \frac{\lambda b}{2}\int_{\Omega}(u+\tau)^{2}dx\\ &\geq \frac{m}{2}\normw u^{2} - \frac{\lambda b}{2}(\norm u_{L^{2}(\Omega)}+\norm \tau _{L^{2}(\Omega)})^{2}\\ &> \frac{m}{2}\normw u^{2} - \frac{\lambda b}{2}(\normw u+\norm \tau _{L^{2}(\Omega)})^{2} \end{align*} So, when we define $\overline{\lambda}\equiv m/4b$, then for all $\lambda<\overline{\lambda}$, $\Phi_{\lambda,\tau}(u)>0$. \end{proof} \begin{proof}[Proof of Theorem \ref{thm7}] Let $\omega_{0}$ and $\underline{\lambda}(R)$ be as above, using Lemma \ref{lm8} there exists $\overline{\lambda}>0$ such that $\Phi_{\lambda,\tau}(u)>0$ for all $\lambda<\overline{\lambda}$ and $\normw u=\Gamma$. From the $\underline{\lambda}$, $\overline{\lambda}$ definition and \eqref{e3.2} to R large enough $\underline{\lambda}<\overline{\lambda}$ and $\|\omega_{0}\|_{W^{1,2}_{0}(\Omega)}>\Gamma$. Finally using a similar development to Theorem \ref{thm1}, Theorem \ref{thm7} is proven. \end{proof} \begin{rem} \label{rmk9} \rm For $n=2$ Theorem \ref{thm7} is false. \end{rem} \section{The problem in $R^{n}_{+}$} Let $W^{1,2}_0(\mathbb{R}_+^n)$ and $V^{1,2}_{c,0}(\mathbb{R}_+^n)$ be the completion of $C^{\infty}_{0}(\mathbb{R}^{n}_{+})$ in $(\|.\|^{2}_{2}+\|\nabla(.)\|^{2}_{2})^{1/2}$ and $(\|c.\|^{2}_{2}+\|\nabla(.)\|^{2}_{2})^{1/2}$ respectively, where $\|.\|_{2}$ is the usual $L^{2}$ norm for the respective domain. If $\inf c(x)>0$, then by \eqref{e3.1}, \[ W^{1,2}_0(\mathbb{R}_+^n)\sim V^{1,2}_{c,0}(\mathbb{R}_+^n) \] We define for all $\lambda\geq 0$ and for all non-negative function $\tau$ such that $\|\tau\|_{L^{\sigma+1}(\mathbb{R}_+^n)}<\infty$, the functional $\Phi_{\lambda,\tau,\infty}:W^{1,2}_0(\mathbb{R}_+^n)\to \mathbb{R}$ \[ \Phi_{\lambda,\tau,\infty}(u)=\frac{1}{2}\int_{\mathbb{R}_+^n}[c(x)u^{2}+|\nabla u|^{2}]dx - \lambda\int_{\mathbb{R}_+^n}F(u+\tau)dx \] where $F(s)=\int^{t}_{0}f(t)dt$. The function $\Phi_{\lambda,\tau,\infty}$ is well-defined; even more if $u\in W^{1,2}_0(\mathbb{R}_+^n)$, using (f3) and Sobolev immersion we obtain \begin{align*} 0\leq \int_{\mathbb{R}_+^n}F(u+\tau) &\leq \frac{a}{\sigma+1}\int_{\mathbb{R}_+^n}(u+\tau)^{\sigma+1}\\ &\leq \frac{a}{\sigma+1}(\norm u_{L^{\sigma+1}(\mathbb{R}_+^n)}+\|\tau\|_{L^{\sigma+1}(\mathbb{R}_+^n)})^{\sigma+1}\\ &\leq \frac{a}{\sigma+1}(C_{s}\norm u_{W^{1,2}_0(\mathbb{R}_+^n)}+\|\tau\|_{L^{\sigma+1}(\mathbb{R}_+^n)})^{\sigma+1} \end{align*} where $C_{s}$ is the usual Sobolev immersion constant. Then using \eqref{e3.1} \begin{equation} \label{e4.1} \Phi_{\lambda,\tau,\infty}(u)\geq \frac{m}{2}\norm u^{2}_{W^{1,2}_0(\mathbb{R}_+^n)} -\lambda\frac{a}{\sigma+1}(C_{s}\norm u_{W^{1,2}_0(\mathbb{R}_+^n)}+\|\tau\|_{L^{\sigma+1} (\mathbb{R}_+^n)})^{\sigma+1} \end{equation} It is easy to verify that $\Phi_{\lambda,\tau,\infty}$ is a $C^{1}$ functional, so if $u\in W^{1,2}_0(\mathbb{R}_+^n)$ is a critical point of $\Phi_{\lambda,\tau,\infty}$ then $u$ is a weak solution and by regularity, so classical solution of \eqref{eq:Rn}. \begin{prop} \label{prop10} (i) Let $m$ be as above then for all $\lambda<\frac{m}{b}$, $\Phi_{\lambda,\tau,\infty}$ is coercive and bounded from below.\\ (ii) For all $\lambda<\frac{\inf c(x)}{l}$, \eqref{eq:Rn} has at most one solution in $W^{1,2}_0(\mathbb{R}_+^n)$. \end{prop} \begin{proof} (i) Using \eqref{e3.1} and \eqref{e3.3} \begin{align*} \Phi_{\lambda,\tau,\infty}(u)&\geq \frac{m}{2}\norm u^{2}_{W^{1,2}_0(\mathbb{R}_+^n)} - \frac{\lambda b}{2}\int_{\mathbb{R}_+^n}(u+\tau)^{2}\\ &> \frac{m}{2}\norm u^{2}_{W^{1,2}_0(\mathbb{R}_+^n)} - \frac{\lambda b}{2}(\norm u_{W^{1,2}_0(\mathbb{R}_+^n)}+\norm \tau _{L^{2}(\mathbb{R}_+^n)})^{2}\\ &= \Bigl(\frac{m-\lambda b }{2}\Bigr)\|u\|^{2}_{W^{1,2}_0(\mathbb{R}_+^n)}-\lambda b\|u\|_{W^{1,2}_0(\mathbb{R}_+^n)}\|\tau\|_{L^{2}(\mathbb{R}_+^n)}-\frac{\lambda b}{2}\|\tau\|^{2}_{L^{2}(\mathbb{R}_+^n)} \end{align*} so, (i) is proven. \noindent (ii) The uniqueness is proved as in \cite{aa}. Indeed: if $u_{1}$ and $u_{2}$ are two solutions of \eqref{eq:Rn} then, \[ \inf c(x)\int_{\mathbb{R}_+^n}(u_{1}-u_{2})^{2}dx\leq\int_{\mathbb{R}_+^n}[c(x)(u_{1}-u_{2})^{2}+|\nabla (u_{1}-u_{2})|^{2}]dx\leq\lambda l\int_{\mathbb{R}_+^n}(u_{1}-u_{2})^{2}dx \] \end{proof} Now we consider problem \eqref{eq:Dr} and we define $\Phi_{\lambda,\tau,R}:W^{1,2}_{0}(D_{R})\to \mathbb{R}$ in the same way that $\Phi_{\lambda,\tau,\infty}$. It can be verified that, if $R'\geq R$, then \[ W^{1,2}_{0}(D_{R})\subset W^{1,2}_{0}(D_{R'})\subset W^{1,2}_0(\mathbb{R}_+^n) \] in addition for all $u\in W^{1,2}_{0}(D_{R})$, $\Phi_{\lambda,\tau,\infty}(u)\leq\Phi_{\lambda,\tau,R'}(u)\leq\Phi_{\lambda,\tau,R}(u)$, more precisely \begin{equation} \label{e4.2} \Phi_{\lambda,\tau,R'}(u)=\Phi_{\lambda,\tau,R}(u)-\lambda\int_{D_{R'}-D_{R}}F(\tau)dx \end{equation} \begin{rem} \label{rmk11} \rm There exists a positive constant $C=C(a,\sigma,C_{s},m)$ such that for all $\lambda<\overline{\overline{\lambda}}(\|\tau\|_{L^{\sigma+1}(\mathbb{R}_+^n)})$ and for all $u$: $\|u\|_{W^{1,2}_0(\mathbb{R}_+^n)}=\|\tau\|_{L^{\sigma+1}(\mathbb{R}_+^n)}$, $\Phi_{\lambda,\tau,\infty}(u)$ $>0$, where $\overline{\overline{\lambda}}(\|\tau\|_{L^{\sigma+1}(\mathbb{R}_+^n)})\equiv C\|\tau\|^{1-\sigma}_{L^{\sigma+1}(\mathbb{R}_+^n)}$. In fact, applying \eqref{e4.1} and taking \[ C\equiv\frac{(\sigma+1)m}{2a}[C_{s}+1]^{-\sigma-1} \]the result is obvious. Furthermore for \eqref{e4.2} \[ \Phi_{\lambda,\tau,R}(u)>0 \quad\forall u\in W^{1,2}_{0}(D_{R})\quad \norm u_{W^{1,2}_{0}(D_{R})}=\|\tau\|_{L^{\sigma+1}(\mathbb{R}_+^n)} \] then as in Lemma \ref{lm5}, for $\lambda<\overline{\overline{\lambda}}$ there exists $\overline{u}_{R}\in W^{1,2}_{0}(D_{R})$ with $\|\overline{u}_{R}\|_{W^{1,2}_{0}(D_{R})}<\|\tau\|_{L^{\sigma+1}(\mathbb{R}_+^n)}$ such that $\Phi_{\lambda,\tau,R}(\overline{u}_{R})<0$ and $\Phi'_{\lambda,\tau,R}(\overline{u}_{R})=0$. \end{rem} Now we will prove a sufficient condition to approximate solutions of \eqref{eq:Rn} with solutions of \eqref{eq:Dr} with $R$ large enough. \begin{lem} \label{lm12} Let $f$ and $\tau$ be as above and $\lambda\in R_{+}$. Suppose $(R_{n})_{n}$ is a sequence $\mathbb{R}_{+}$ such that $R_{n}\to +\infty$ and $(u_{n})_{n}$ is a sequence of positive solutions of \eqref{eq:Dr} with $R_{n}$ instead of R, such that for all n, $u_{n}\in W^{1,2}_{0}(D_{R_{n}})$ and $(u_{n})_{n}$ is bounded in $W^{1,2}_0(\mathbb{R}_+^n)$, i.e. there exists $\Gamma'>0$ such that for all n, $\|u_{n}\|_{L^{2}(D_{R_{n}})}+\|\nabla u_{n}\|_{L^{2}(D_{R_{n}})}<\Gamma'$. Then, there exists a subsequence (called again $(u_{n})_{n})$) and a function $u\in W^{1,2}_0(\mathbb{R}_+^n)$ such that $u_{n}\to u$ weakly in $W^{1,2}_0(\mathbb{R}_+^n)$ and $u$ is a classical solution of \eqref{eq:Rn}. \end{lem} \begin{proof} Using the Calder\'{o}n-Zygmund inequality for all $n$ \cite[theorems 9.9 and 9.11]{gt}, $u_{n}\in W^{1,2}_{0}(D_{R_{n}})\bigcap H^{2,p}(D_{R_{n}})$. ($H^{2,p}(D_{R_{n}})$ denotes the usual Sobolev space \\ $W^{2,p}(D_{R_{n}})$). Fixed $R'>0$, for any $\Omega'\subset\subset D_{R'}$, \[ \|u_{n}\|_{H^{2,p}(\Omega')}\leq C(\|u_{n}\|_{L^{p}(D_{R'})}+\|\lambda f(u_{n}+\tau)\|_{L^{p}(D_{R'})}) \] for all $n$ such that $R_{n}>R'$. The constant $C$ depends on $D_{R'}$, $n$, $p$ and $\Omega'$. Since $(u_{n})$ is bounded in $W^{1,2}_0(\mathbb{R}_+^n)$, using Sobolev immersion and Poincar\'{e} inequality \[ \|u_{n}\|_{H^{2,p}(\Omega')}\leq C(C_{1}\Gamma'+\lambda \sup f |D_{R'}|^{\frac{1}{p}}) \] for $p$ such that \begin{gather*} 1R'$. From this and the Sobolev embedding theorem for $\Omega'$, there exists a subsequence $(u_{n})_{n}$ such that if n=2,3 $u_{n}\to u $ in $C^{1,\alpha}(\overline{\Omega'})$ and if $n\geq 4$ and $1