\documentclass[reqno]{amsart} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2004(2004), No. 52, pp. 1--9.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2004 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2004/52\hfil Existence and uniqueness of strong solutions] {Existence and uniqueness of strong solutions to nonlinear nonlocal functional differential equations} \author[S. Agarwal \& D. Bahuguna\hfil EJDE-2004/52\hfilneg] {Shruti Agarwal \& Dhirendra Bahuguna} % in alphabetical order \address{Shruti Agarwal \hfill\break Department of Mathematics \\ Indian Institute of Technology, Kanpur - 208 016, India} \email{shrutiag@iitk.ac.in} \address{Dhirendra Bahuguna \hfill\break Department of Mathematics \\ Indian Institute of Technology, Kanpur - 208 016, India} \email{dhiren@iitk.ac.in} \date{} \thanks{Submitted October 6, 2003. Published April 8, 2004.} \subjclass[2000]{34K30, 34G20, 47H06} \keywords{Nonlocal problem, accretive operator, strong solution, method of lines} \begin{abstract} In the present work we consider a nonlinear nonlocal functional differential equations in a real reflexive Banach space. We apply the method of lines to establish the existence and uniqueness of a strong solution. We consider also some applications of the abstract results. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{remark}[theorem]{Remark} \section{Introduction} Consider the following nonlocal nonlinear functional differential equation in a real reflexive Banach space $X$, \begin{equation} \begin{gathered} u' (t) +Au(t) = f(t,u(t),u(b_1(t)),u(b_2(t)),\dots,u(b_m(t))), \quad t \in (0,T],\\ h(u)=\phi_0, \quad \mbox{on } [-\tau,0], \end{gathered} \label{cp} \end{equation} where $00$ $$ B_r(X^{m+1},(x_0,x_0,\dots,x_0))=\{(u_1,\dots,u_{m+1}) \in X^{m+1}:\sum_{i=1}^{m+1}\|u_i-x_0\| \le r\}. $$ \item[(A3)] The nonlinear map $h:\mathcal{C}_T \to \mathcal{C}_T$ is continuous and for any $\phi_1$ and $\phi_2$ in $\mathcal{C}_T$ with $\phi_1=\phi_2$ on $[-\tau,0]$, $h(\phi_1)=h(\phi_2)$ on $[-\tau,0]$. \item[(A4)] For $i=1,2,\dots,m$, the maps $b_i:[0,T] \to [-\tau,T]$ are continuous and $b_i(t) \le t$ for $t \in [0,T]$. \end{itemize} \begin{theorem} \label{mr} Suppose that the conditions (A1)-(A4) are satisfied and there exists $\psi_0 \in \mathcal{C}_T$ such that $h(\psi_0) =\phi_0$ on $[-\tau,0]$ and $\psi_0(0) \in D(A)$. Then (\ref{cp}) has a strong solution $u$ on $[-\tau,{\tilde{T}}]$, for some $0< {\tilde{T}} \le T$, in the sense that there exists a function $u \in \mathcal{C}_{\tilde{T}}$ such that $u(t) \in D(A)$ for a.e. $t \in [0,{\tilde{T}}]$, $u$ is differentiable a.e. on $[0,{\tilde{T}}]$ and \begin{equation} \begin{gathered} u' (t) +Au(t) = f(t,u(t),u(b_1(t)),\dots,u(b_m(t))), \quad \mbox{a.e. } t \in [0,{\tilde{T}}], \\ h(u)=\phi_0, \quad \mbox{on } [-\tau,0]. \end{gathered}\label{cplim} \end{equation} Also, $u$ is unique in $\mathcal{W}(\psi_0,\tilde{T})$ and $u$ is Lipschitz continuous on $[0,{\tilde{T}}]$. Furthermore, $u$ can be continued uniquely either on the whole interval $[-\tau,T]$ or there exists a maximal interval $[0,t_{\rm max})$, $0< t_{\rm max} \le T$, such that $u$ is a strong solution of (\ref{cp}) on every subinterval $[-\tau, {\tilde{T}}]$, $0< {\tilde{T}}0$ and let $R_0:=R+\sup_{t \in [-\tau,T]}\|\phi(t)-x_0\|$. We choose $t_{0}$ such that \begin{gather*} 0 \tau_i. \end{cases} $$ \noindent (b3) For $i=1,2,\dots,m$, let $b_i(t)=k_i t$, $t \in [0,T]$, $0 0$, for $i=1,\dots,r$. Let $x \in D(A)$. Consider the conditions: \begin{itemize} \item[(h1)] $g_1(\chi):=\int_{-\tau}^{0} k(\theta) \chi (\theta) d \theta =x$ for $\chi \in C([-\tau,0];X)$, where $k$ is in $L^1(-\tau,0)$ with $\kappa:=\int_{-\tau}^{0}k(s)ds \neq 0$ \item[(h2)] $g_2(\chi):=\sum_{i=1}^rc_i\chi(a_i)=x$ for $\chi \in C([-\tau,0];X)$; \item[(h3)] $g_3(\chi):=\sum_{i=1}^r {c_i \over \epsilon_i} \int_{a_i-\epsilon_i}^{a_i} \chi(s) ds=x$ for $\chi \in C([-\tau,0];X)$. \end{itemize} Clearly, $g_i:C([-\tau,0];X) \to X$, $i=1,2,3$. For $i=1,2,3$, define $h_i(\psi)(t)\equiv g_i(\psi|_{[-\tau,0]})$ on $[-\tau,T]$ for $\psi \in C([-\tau,T];X)$ where $\psi|_{[-\tau,0]}$ is the restriction of $\psi$ on $[-\tau,0]$. Let $\phi_0(t)\equiv x$ on $[-\tau,0].$ Then conditions (h1), (h2) and (h3) are equivalent to $h_i(\psi)=\phi_0$ on $[-\tau,0]$, $i=1,2,3$, respectively. For (h1), we may take $\psi_0(t)\equiv x/\kappa$ and for (h2) as well as for (h3), we may take $\psi_0(t)\equiv x/C$ on $[-\tau,T]$. \subsection*{Acknowledgements} The authors would like to thank the National Board for Higher Mathematics for providing the financial support to carry out this work under its research project No. NBHM/2001/R\&D-II. \begin{thebibliography}{99} \bibitem{br} D. Bahuguna and V. Raghavendra, Application of Rothe's method to nonlinear evolution equations in Hilbert spaces, {\em Nonlinear Anal.}, 23 (1994), 75-81. \bibitem{br1} D. Bahuguna and V. Raghavendra, Application of Rothe's method to nonlinear Schrodinger type equations, {\em Appl. Anal.}, 31 (1988), 149-160. \bibitem{bc} K. Balachandran and M. Chandrasekaran, Existence of solutions of a delay differential equation with nonlocal condition, {\em Indian J. Pure Appl. Math.}, 27 (1996), 443-449. \bibitem{vb} V. Barbu, {\em Nonlinear semigroups and differential equations in Banach spaces}, Noordhoff International Publishing, 1976. \bibitem{b1} L. Byszewski, Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem, {\em J. Math. Anal. Appl.}, 162 (1991), 494-505. \bibitem{ba} L. Byszewski and H. Akca, Existence of solutions of a semilinear functional-differential evolution nonlocal problem, {\em Nonlinear Anal.}, 34 (1998), 65-72. \bibitem{bl} L. Byszewski and V. Lakshmikantham, Theorem about the existence and uniqueness of a solution of a nonlocal abstract Cauchy problem in a Banach space, {\em Appl. Anal.}, 40 (1990), 11-19. \bibitem{k1} A.G. Kartsatos, On the construction of methods of lines for functional evolution in general Banach spaces, {\em Nonlinear Anal.}, 25 (1995), 1321-1331. \bibitem{kp} A.G. Kartsatos and M.E. Parrott, A method of lines for a nonlinear abstract functional evolution equation, {\em Trans. Amer. Math. Soc.}, 286 (1984), 73-89. \item \label{kz} A.G. Kartsatos and W.R. Zigler, Rothe's method and weak solutions of perturbed evolution equations in reflexive Banach spaces, {\em Math. Annln.}, 219 (1976), 159-166. \bibitem{ll} Y. Lin and J.H. Liu, Semilinear integrodifferential equations with nonlocal Cauchy problem, {\em Nonlinear Anal.}, 26 (1996), 1023-1033. \end{thebibliography} \end{document}