\documentclass[reqno]{amsart} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2004(2004), No. 71, pp. 1--24.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2004 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2004/71\hfil Gain of regularity] {Gain of regularity for a Korteweg - de Vries - Kawahara type equation} \author[Octavio Paulo Vera Villagr\'{a}n\hfil EJDE-2004/71\hfilneg] {Octavio Paulo Vera Villagr\'{a}n} \address{Facultad de Ingenier\'{\i}a \\ Universidad Cat\'{o}lica de la Sant\'{\i}sima Concepci\'{o}n \\ Paicav\'{\i} 3000, Concepci\'{o}n - Chile} \email{overa@ucsc.cl \quad Fax: (41)735300} \date{} \thanks{Submitted December 15, 2003. Published May 17, 2004.} \thanks{Supported by MECESUP 9903, Universidad Cat\a'{o}lica de la Sant\a'{\i}sima Concepci\a'{o}n, Chile.} \thanks{The author dedicates this work to Dr. Patricio Sierralta Standen in the Iquique Hospital.} \subjclass[2000]{35Q53, 47J35} \keywords{Evolution equations, weighted Sobolev space} \begin{abstract} We study the existence of local and global solutions, and the gain of regularity for the initial value problem associated to the Korteweg - de Vries - Kawahara (KdVK) equation perturbed by a dispersive term which appears in several fluids dynamics problems. The study of gain of regularity is motivated by the results obtained by Craig, Kappeler and Strauss \cite{c3}. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] % theorems numbered with section # \newtheorem{lemma}[theorem]{Lemma} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{remark}[theorem]{Remark} \section{Introduction} In 1976, Saut and Temam [25] remarked that a solution $u$ of a Korteweg-de Vries type equation cannot gain or lose regularity. They showed that if $u(x, 0)=\varphi (x) \in H^{s}(\mathbb{R})$ for $s\geq 2$, then $u( \cdot, t)\in H^{s}(\mathbb{R})$ for all $t>0$. The same result was obtained independently by Bona and Scott [3] through a different method. For the Korteweg-de Vries equation on the line, Kato [17] motivated by work of Cohen \cite{c2} showed that if $u(x, 0)=\varphi (x)\in L_{b}^2\equiv H^2(\mathbb{R} )\cap L^2(e^{bx}dx)$ $(b>0)$ then the solution $u(x, t)$ of the KdV equation becomes $C^{\infty }$ for all $t>0$. A main ingredient in the proof was the fact that formally the semi-group $S(t)=e^{-t \partial _{x}^{3}}$ in $L_{b}^2$ is equivalent to $S_{b}(t)=e^{-t(\partial _{x} - b)^{3}}$ in $L^2$ when $t>0$. One would be inclined to believe that this was a special property of the KdV equation. This is not however the case. The effect is due to the dispersive nature of the linear part of the equation. Kruzkov and Faminskii \cite{k6} proved that for $u(x, 0)=\varphi (x)\in L^2$ such that $x^{\alpha }\varphi (x)\in L^2((0, +\infty ))$ the weak solution of the KdV equation has $l$-continuous space derivatives for all $t>0$ if $l<2\alpha $. The proof of this result is based on the asymptotic behavior of the Airy function and its derivatives, and on the smoothing effect of the KdV equation which was found in \cite{k2,k6}. Similar work for some special nonlinear Schr\"{o}dinger equations was done by Hayashi et al. \cite{h1,h2} and Ponce \cite{p1}. While the proof of Kato appears to depend on special a priori estimates, some of its mystery has been resolved by the result of local gain of finite regularity for various others linear and nonlinear dispersive equations due to Constantin and Saut \cite{c6}, Sjolin \cite{s2}, Ginibre and Velo \cite{g1} and others. However, all of them require growth conditions on the nonlinear term. All the physically significant dispersive equations and systems known to us have linear parts displaying this local smoothing property. To mention only a few, the KdV, Benjamin-Ono, intermediate long wave, various Boussinesq, and Schr\"{o}dinger equations are included. Continuing with the idea of Craig, Kappeler and Strauss \cite{c5} we study a equation of Korteweg - de Vries - Kawahara type (KdVK) which appears in fluids dynamics (see \cite{r1} and references therein). \begin{equation} \label{e1.1} u_{{t}} + \eta u_{xxxxx} + u_{xxx} + u u_{x}=0 \end{equation} with $-\infty 0$ and $\eta \in \mathbb{R}$. It is shown that $C^{\infty }$ solutions $u(x, t)$ are obtained for all $t>0$ if the initial data $u(x, 0)$ decays faster than polynomially on $\mathbb{R} ^{+}=\{x\in \mathbb{R} : x>0\}$ and has certain initial Sobolev regularity. In section three we prove the main inequality. In section 4 we prove an important a priori estimate. In section 5 we prove a basic local-in-time existence and uniqueness theorem. In section 6 we prove a basic global existence theorem. In section 7 we develop a series of estimates for solutions of equation \eqref{e1.1} in weighted Sobolev norms. These provide a starting point for the a priori gain of regularity. In section 8 we prove the following theorem. \begin{theorem} \label{mainthm} Let $T>0$ and $u(x, t)$ be a solution of \eqref{e1.1} in the region $\mathbb{R} \times [0, T]$ such that \begin{equation} \label{e1.2} u\in L^{\infty }([0, T]; H^{5}(W_{0L0})) \end{equation} for some $L\geq 2$ and all $\sigma >0$. Then \[ u\in L^{\infty }([0, T]; H^{5 + l}(W_{{\sigma ,L - l,l}}))\bigcap L^2([0, T]; H^{6 + l}(W_{{\sigma ,L - l,l}}) \cap H^{7 + l} (W_{\sigma ,L - l - 1,l}))\] for all $0\leq l\leq L - 1$. \end{theorem} \section{Preliminaries} We consider the initial-value problem \begin{equation} \label{e2.1} u_{{t}} + \eta u_{{xxxxx}} + u_{{xxx}} + u u_{{x}} =0 \end{equation} with $-\infty 0$ and there are constant $c_j, 0\leq j\leq 5$ such that \begin{gather} 01,\; 00 \\ 1 & \mbox {for }x\leq 0\,; \end{cases} \] then $\xi \in W_{{0 i 0}}$. \noindent{\bf Definition.} Let $s$ be a positive integer. We define the space \[ H^{s}(W_{{\sigma i k}})= \{v\colon \mathbb{R} \to \mathbb{R} : \| v \|^2= \sum _{j=0}^{s}\int_{-\infty }^{+\infty }| \partial ^{j}v(x) |^2 \xi (x, \cdot ) dx<+\infty \} \] with $\xi \in W_{{\sigma i k}}$ fixed. Note that $H^{s}(W_{{\sigma i k}})$ depends on $t$ because $\xi =\xi (x, t)$). \begin{lemma}[\cite{c1}] \label{lm0} For $\xi \in W_{{\sigma i 0}}$ and $\sigma \geq 0$, $i\geq 0$, there exists a constant $c>0$ such that, for $u\in H^{1}(W_{{\sigma i 0}})$, \[\sup _{x\in \mathbb{R}}| \xi u^2| \leq c\int _{-\infty }^{+\infty }\left( | u | ^2 + | \partial u | ^2 \right) \xi dx\] \end{lemma} \noindent {\bf Definition.} For fixed $\xi \in W_{{\sigma i k}}$, we define the spaces \begin{gather*} L^2([0, T]; H^{s}(W_{{\sigma i k}})) = \{v(x, t): ||| v ||| ^2= \int_{0}^{T}\| v( \cdot , t) \|^2 dt<+\infty \} \\ L^{\infty }([0, T]; H^{s}(W_{{\sigma i k}})) = \{v(x, t): |||v||| _{\infty }= \mathop{\rm ess\,sup} _{t\in [0, T]} \| v( \cdot , t) \|<+\infty \}, \end{gather*} where $s$ is a positive integer. Note that The usual Sobolev space $H^{s}(\mathbb{R})$ is $H^{s}(W_{{0 0 0}})$, i.e., without weight. We shall derive the a priori estimates assuming that the solution is $C^{\infty}$, bounded as $x\to -\infty $, and rapidly decreasing together with all of its derivatives as $x\to +\infty$. We consider the following KdVK equation \begin{equation} \label{e2.5} u_{{t}} + \eta u_5 + u_3 + u u_1 =0 \end{equation} with $\eta \in \mathbb{R} $ constant. This equation will be studied for $-\infty 0$ that \[ \partial _{t}\int_{\mathbb{R}}\xi u_{\alpha }^2 dx - c_5( 5 \eta + 3 )\int_{\mathbb{R}}\xi u_{\alpha + 1}^2 dx - 5 \eta \int_{\mathbb{R}}\partial \xi u_{\alpha + 2}^2 dx + \int_{\mathbb{R}}\theta u_{\alpha }^2 dx + \int_{\mathbb{R}}R_{\alpha } dx \leq 0\,, \] from where we obtain the {\em main inequality.} \begin{equation} \label{e3.2} \partial _{{t}}\int_{\mathbb{R}}\xi u_{{\alpha }}^2 dx + \int_{\mathbb{R}}{\mu _1} u_{{\alpha + 1}}^2 dx + \int_{\mathbb{R}}{\mu _2} u_{{\alpha + 2}}^2 dx + \int_{\mathbb{R}}\theta u_{{\alpha }}^2 dx + \int_{\mathbb{R}}R_{{\alpha }} dx\leq 0 \end{equation} with \begin{gather*} \mu _1 = -c_5(5\eta + 3)\xi \quad \mbox {for }\eta < -3/5 \quad (\mbox {Natural Condition}) \\ \mu _2 = -5\eta \partial \xi \\ \theta = -\xi _{{t}} - \eta \partial ^{5}\xi - \partial ^{3}\xi - \partial (\xi u)\\ R_{\alpha } = O(u_{{\alpha }}, \dots) \end{gather*} \end{proof} \begin{lemma} \label{lm3.2} For $\mu _2 \in W_{{\sigma i k}}$ an arbitrary weight function and $\eta <-3/5$, there exists $\xi \in W_{{\sigma ,i + 1,k}}$ that satisfies \begin{equation} \label{e3.3} \mu _2 = -5\eta \partial \xi \end{equation} \end{lemma} Indeed, we have \begin{equation} \label{e3.4} \xi = -\frac {1}{5 \eta } \int_{-\infty }^{x} \mu _2 (y, t) dy \end{equation} \begin{lemma} \label{lm3.3} The expression $R_{\alpha }$ in the inequality of Lemma \ref{lm3.1} is a sum of terms of the form \begin{equation} \label{e3.5} \xi u_{{\nu _1}} u_{{\nu _2}} u_{{\alpha }} \end{equation} where $1\leq \nu _1\leq \nu _2\leq \alpha $. \begin{equation} \label{e3.6} \nu _1 + \nu _2 = \alpha + 1 \end{equation} \end{lemma} \begin{proof} Differentiating \eqref{e2.5} once with respect to $x$ and multiplying by $2\xi u_{{\bf 1}}$ we have \[ 2 \xi u_{{\bf 1}}\partial _{t}u_1 + 2 \eta \xi u_{{\bf 1}}u_6 + 2 \xi u_{{\bf 1}} u_{4} + 2 \xi u_{{\bf 1}} u u_{2} + \xi u_{{\bf 1}} u_1 u_1 =0\,, \] where $R_1 \xi u_{{\bf 1}} =\xi u_1 u_1 u_{{\bf 1}}$. Taking 2-$x$derivatives of the equation \eqref{e2.5}, and multiplying by $2\xi u_{{\bf 2 }}$ we have \[ 2 \xi u_{{\bf 2}} \partial _{t}u_{2} + 2 \eta \xi u_{{\bf 2}} u_7 + 2 \xi u_{{\bf 2}} u_5 + 2 \xi u_{{\bf 2}} u u_{3} + 6 \xi u_{{\bf 2}} u_1 u_{2} =0 \] where $ R_{2} \xi u_{{\bf 2}} = 6 \xi u_1 u_{2} u_{{\bf 2}}$. Taking 3-$x$derivatives of the equation \eqref{e2.5}, and multiplying by $2\xi u_{{\bf 3}}$ we have \[ 2 \xi u_{{\bf 3}} \partial _{t}u_{3} + 2 \eta \xi u_{{\bf 3}} u_8 + 2 \xi u_{{\bf 3}} u_6 + 2 \xi u_{{\bf 3}} u u_{4} + 8 \xi u_{{\bf 3}} u_1 u_{3} + 6 \xi u_{{\bf 3}} u_{2} u_{2} =0 \] where $R_{3} \xi u_{{\bf 3}} = 8 \xi u_1 u_{3} u_{{\bf 3}} + 6 \xi u_{2} u_{2} u_{{\bf 3}}$. Taking 4-$x$derivatives of \eqref{e2.5}, and multiplying by $2\xi u_{{\bf 4 }}$ we have \[ 2 \xi u_{{\bf 4}} \partial _{t}u_{4} + 2 \eta \xi u_{{\bf 4}} u_9 + 2 \xi u_{{\bf 4}} u_7 + 2 \xi u_{{\bf 4}} u u_5 + 10 \xi u_{{\bf 4}} u_1 u_{4} + 20 \xi u_{{\bf 4}} u_{2} u_{3} =0 \] where $R_{4} \xi u_{{\bf 4}}=10 \xi u_1 u_{4} u_{{\bf 4}} + 20 \xi u_{2} u_{3} u_{{\bf 4}}$. Taking 5-$x$derivatives of \eqref{e2.5}, and multiplying by $2\xi u_{{\bf 5 }}$ we have \[ 2 \xi u_{{\bf 5}} \partial _{t}u_5 + 2 \eta \xi u_{{\bf 5}} u_{10} + 2 \xi u_{{\bf 5}} u_8 + 2 \xi u_{{\bf 5}} u u_6 + 12 \xi u_{{\bf 5}} u_1 u_5 + 30 \xi u_{{\bf 5}} u_{2} u_{4} + 20 \xi u_{{\bf 5}} u_{3} u_{3}=0 \] where $R_5 \xi u_{{\bf 5}}= 12 \xi u_1 u_5 u_{{\bf 5}} + 30 \xi u_{2} u_{4} u_{{\bf 5}} + 20 \xi u_{3} u_{3} u_{{\bf 5}}$. Throw away the first terms in each derivative and the result follows. \end{proof} \section{An a priori estimate} We show a fundamental {\em a priori} estimate used for a basic local-in-time existence theorem. We construct a mapping $Z:L^{\infty }([0, T]; H^{s}(\mathbb{R})) \to L^{\infty }([0, T]; H^{s}(\mathbb{R}))$ with the following property: Given $u^{(n)}=Z(u^{(n - 1)})$ and $\|u^{(n - 1)}\|_{{s}}\leq c_0$ then $\| u^{(n)}\|_{{s}}\leq c_0$, where $s$ and $c_0>0$ are constants. This property tells us, in fact, that $Z:\mathbb{B}_{c_0}(0) \to \mathbb{B}_{c_0}(0)$ where $\mathbb{B}_{c_0}(0)=\{ v(x, t); \| v( \cdot , t) \|_{{s}}\leq c_0 \}$ is a ball in $L^{\infty }([0, T]; H^{s}(\mathbb{R}))$. To guarantee this property, we will appeal to an a priori estimate which is the main object of this section. Differentiating \eqref{e2.5} four times leads to \begin{equation} \label{e4.1} \partial _{t}u_{4} + \eta u_9 + u_7 + u u_5 + 5 u_1 u_{4} + 10 u_{2} u_{3}=0 \end{equation} Let $u=\wedge v$ where $\wedge =(I - \partial ^{4})^{-1}$. Then $\partial _{{t}}u_4= -v_{{t}} + u_{{t}}$ by replacing in \eqref{e4.1} we have \begin{equation} \label{e4.2} -v_{t} + \eta {\wedge v}_9 + {\wedge v}_7 + {\wedge v}{\wedge v}_5 +5{\wedge v}_1{\wedge v}_{4} + 10{\wedge v}_{2}{\wedge v}_{3} - [\eta {\wedge v}_5 +{\wedge v}_{3} -{\wedge v}{\wedge v}_1]=0 \end{equation} The \eqref{e4.2} is linearized by substituting a new variable $w$ in each coefficient; \begin{equation} \label{e4.3} -v_{t} + \eta {\wedge v}_9 + {\wedge v}_7 + {\wedge w}{\wedge v}_5 +5{\wedge w}_1{\wedge v}_{4} + 10{\wedge w}_{2}{\wedge v}_{3}- [\eta {\wedge v}_5 + {\wedge v}_{3} -{\wedge w}{\wedge v}_1]=0 \end{equation} Equation \eqref{e4.3} is a linear equation at each iteration which can be solved in any interval of time in which the coefficients are defined. This equation has the form \begin{equation} \label{e4.4} \partial _{t}v=\eta {\wedge v}_9^{(n)} + {\wedge v}_7^{(n)} + b^{(1)} {\wedge v}_5^{(n)} + b^{(2)} {\wedge v}_{4}^{(n)} + b^{(3)} \end{equation} We consider the following lemma that will help us setting up the iteration scheme. \begin{lemma} \label{lm4.1} Let $\eta <-3/5$. Given initial data $\varphi \in H^{\infty }(\mathbb{R})=\bigcap _{{N\geq 0}}H^{N}(\mathbb{R})$ there exists a unique solution of \eqref{e4.4} where $b^{(1)}=b^{(1)}(\wedge w), b^{(2)}=b^{(2)}({\wedge w}_1)$ and $b^{(3)}= b^{(3)}({\wedge w}_{3}, \dots, \wedge w)$ are smooth bounded coefficients with $w\in H^{\infty }(\mathbb{R} )$. The solution is defined in any time interval in which the coefficients are defined. \end{lemma} \begin{proof} Let $T>0$ be arbitrary and $M>0$ a constant. Let \[ \mathcal{L} = 2 \xi (\partial _{t} - \eta {\wedge \partial }^{9} - {\wedge \partial }^{7} - b^{(1)} {\wedge \partial }^{5} - b^{(2)} {\wedge \partial }^{4})\] where $00$ and $\eta <-3/5$ that \begin{align*} & \partial _{t}\int_{\mathbb{R}}\xi (u - v)^2 dx - c_5\int_{\mathbb{R}}( 5 \eta +3 ) \xi (u - v)_1^2 dx - 5 \eta \int_{\mathbb{R}}\partial \xi (u - v)_{2}^2 dx \\ & \leq \int_{\mathbb{R}}( \xi _{t} + \eta \partial ^{5}\xi + \partial ^{3}\xi - 2 \xi u_1 + \partial ( \xi v ) ) (u - v)^2 dx \end{align*} and using Gagliardo-Nirenberg's inequality and standard estimates, we have \[ \partial _{t}\int_{\mathbb{R}}\xi (u - v)^2 dx\leq c\int_{\mathbb{R}}\xi (u - v)^2 dx \] By Gronwall's inequality and the fact that $(u - v)$ vanishes at $t=0$, it follows that $u=v$. This proves the uniqueness of the solution. \end{proof} We construct the mapping $Z\colon L^{\infty }([0, T]; H^{s}(\mathbb{R})) \to L^{\infty }([0, T]; H^{s}(\mathbb{R}))$ by \begin{gather*} u^{(0)} = \varphi (x) \\ u^{(n)} = Z(u^{(n - 1)})\quad n\geq 1, \end{gather*} where $u^{(n - 1)}$ is in place of $w$ in equation \eqref{e4.3} and $u^{(n)}$ is in place of $v$ which is the solution of equation \eqref{e4.3}. By Lemma \ref{lm4.1}, $u^{(n)}$ exists and is unique in $C((0, +\infty ); H^{N}(\mathbb{R}))$. A choice of $c_0$ and the use of the a priori estimate in \S 4 show that $Z\colon \mathbb{B}_{c_0}(0)\to \mathbb{B}_{c_0}(0)$ where $\mathbb{B}_{c_0}(0)$ is a bounded ball in $L^{\infty}([0, T]; H^{s}(\mathbb{R}))$ \end{proof} \begin{theorem}[Local solution] \label{thm5.2} Let $\eta <-3/5$ and $N$ an integer $\geq 5$. If $\varphi \in H^{N}(\mathbb{R})$, then there is $T>0$ and $u$ such that $u$ is a strong solution of \eqref{e2.5}, $u\in L^{\infty} ([0, T]; H^{N}(\mathbb{R}))$, and $u(x, 0)=\varphi (x)$ \end{theorem} \begin{proof} We prove that for $\varphi \in H^{\infty }(\mathbb{R})=\bigcap _{{k\geq 0}}H^{k}(\mathbb{R})$ there exists a solution $u\in L^{\infty }([0, T]; H^{N}(\mathbb{R}))$ with initial data $u(x, 0)=\varphi (x)$ which time of existence $T>0$ only depends on the norm of $\varphi $. We define a sequence of approximations to equation \eqref{e4.3} as \begin{equation} \label{e5.4} \begin{aligned} &-v_{t}^{(n)} + \eta {\wedge v}_9^{(n)} +{\wedge v}_7^{(n)} + {\wedge v}^{(n - 1)}{\wedge v}_5^{(n)} - \eta {\wedge v}_5^{(n)}\\ &+ 5{\wedge v}_1^{(n - 1)}{\wedge v}_{4}^{(n)} + O({\wedge v}_{3}^{(n - 1)}, {\wedge v}_1^{(n - 1)},\dots)=0 \end{aligned} \end{equation} where the initial condition $v^{(n)}(x, 0)=\varphi (x) - \partial ^{4}\varphi (x)$. The first approximation is given by $v^{(0)}(x, 0)=\varphi (x) - \partial ^{4}\varphi (x)$. Equation \eqref{e5.4} is a linear equation at each iteration which can be solved in any interval of time in which the coefficients are defined. This is shown in Lemma \ref{lm4.1}. By Lemma \ref{lm4.2}, it follows that \begin{equation} \label{e5.5} \partial _{t}\int_{\mathbb{R}}\xi [ {v_{\alpha }^{(n)} ]^2} dx \leq G( \| v^{(n - 1)} \|_{{\lambda }} ) \| v^{(n)} \|_{{\alpha }}^2 + F( \| v^{(n - 1)} \|_{{\alpha }} ) \end{equation} Choose $\alpha =1$ and let $c\geq \|\varphi - \partial ^{4}\varphi \|_1 \geq \| \varphi \|_5$. For each iterate $n, \| v^{(n)}( \cdot , t) \|$ is continuous in $t\in [0, T]$ and $\|v^{(n)} ( \cdot , 0) \|\leq c$. Define $c_0=\frac {c_9}{2c_8}c^2+ 1$. Let $T_{0}^{(n)}$ be the maximum time such that $\| v^{(k)}( \cdot , t) \|_1\leq c_3$ for $0\leq t\leq T_0^{(n)}$, $0\leq k\leq n$. Integrating \eqref{e5.5} over $[0, t]$ we have for $0\leq t\leq T_0^{(n)}$ and $j=0, 1$. \[ \int_{0}^{t}\big( \partial _{s}\int_{\mathbb{R}} \xi [ v_j^{(n)} ]^2 dx \big) ds \leq \int_{0}^{t}G( \| v^{(n - 1)} \|_1 ) \| v^{(n)} \|_j^2 ds + \int_{0}^{t}F( \| v^{(n - 1)} \|_j ) ds \] It follows that \begin{align*} &\int_{\mathbb{R}}\xi (x, t) [ v_j^{(n)}(x, t) ]^2 dx \\ & \leq \int_{\mathbb{R}}\xi (x, 0) [ v_j^{(n)}(x, 0) ]^2 dx + \int_{0}^{t}G( \| v^{(n - 1)} \|_1 ) \| v^{(n)} \|_j^2 ds + \int_{0}^{t}F( \| v^{(n - 1)} \|_j ) ds \end{align*} hence \begin{align*} c_8\int_{\mathbb{R}}[ v_j^{(n)} ]^2 dx &\leq \int_{\mathbb{R}}\xi [ v_j^{(n)} ]^2 dx \\ & \leq \int_{\mathbb{R}}\xi (x, 0) [ v_j^{(n)}(x, 0) ]^2 dx + \int_{0}^{t}G( \| v^{(n - 1)} \|_1 ) \| v^{(n)} \|_j^2 ds\\ &\quad +\int_{0}^{t}F( \| v^{(n - 1)} \|_j ) ds \end{align*} and \[ \int_{\mathbb{R}}[ v_j^{(n)} ]^2 dx \leq \frac {c_9}{c_8} \int_{\mathbb{R}}[ v_j^{(n)}(x, 0) ]^2 dx + \frac {G(c_3)}{c_8} c_3^2 t +\frac {F(c_3)}{c_8} t \] and we obtain for $j=0, 1$ that \[ \| v^{(n)} \|_1\leq \frac {c_9}{c_8}c^2 + \frac {G(c_0)}{c_8} c_0^2 t + \frac {F(c_0)}{c_8} t \] \noindent\textbf{Claim: $T_0^{(n)}$ does not approach $0$} \\ On the contrary, assume that $T_0^{(n)}\to 0$. Since $ \| v^{(n)}( \cdot , t) \|$ is continuous for $t\geq 0$, there exists $\tau \in [0, T]$ such that $\| v^{(k)}( \cdot , \tau ) \|_1=c_0$ for $0\leq \tau \leq T_0^{(n)}, 0\leq k \leq n$. Then \[ c_0^2\leq \frac {c_9}{c_8} c^2 + \frac {G(c_0)}{c_8} c_0^2 T_0^{(n)} + \frac {F(c_0)}{c_8} T_0^{(n)}. \] as $n\to +\infty $, we have \[ \big(\frac {c_9}{2c_8}c^2 + 1 \big)^2 \leq \frac {c_9}{c_8}c^2\quad \Longrightarrow \quad \frac {c_9^2}{4c_8^2}c^{4} + 1\leq 0 \] which is a contradiction. Consequently $T_0^{(n)}\not \to 0$. Choosing $T=T(c)$ sufficiently small, and $T$ not depending on $n$, one concludes that \begin{equation} \label{e5.6} \| v^{(n)} \|_1\leq C \end{equation} for $0\leq t\leq T$. This shows that $T_0^{(n)}\geq T$. Hence from \eqref{e5.6} we imply that there exists a subsequence $v^{(n_j)}:=v^{(n)}$ such that \begin{equation} \label{e5.7} v^{(n)}\stackrel {*}{\rightharpoonup }v\quad \mbox {weakly on}\quad L^{\infty }([0, T]; H^{1}(\mathbb{R} )) \end{equation} \noindent\textbf{Claim: $u={\wedge v}$ is a solution.} \\ In the linearized equation \eqref{e5.4} we have \[ {\wedge v}_9^{(n)} = {\wedge (I - (I - \partial ^{4}))} v_5^{(n)} = {\wedge v}_5^{(n)} - v_5^{(n)} = \partial ^{4} (\underbrace {{\wedge v}_1^{(n)}}_{\in L^2(\mathbb{R} )}) - \underbrace {\partial ^{4}(v_1^{(n)})}_{\in H^{-4}(\mathbb{R} )} \] Since ${\wedge }= (I - \partial ^{4})^{-1}$ is bounded in $H^{1}(\mathbb{R} )$ so ${\wedge v}_9^{(n)}$ belongs to $H^{-4}(\mathbb{R})$. $v^{(n)}$ is still bounded in $ L^{\infty }([0, T]; H^{1}(\mathbb{R})) \hookrightarrow L^2([0, T]; H^{1}(\mathbb{R}))$ and since ${\wedge }:L^2(\mathbb{R})\to H^{4}(\mathbb{R})$ is a bounded operator, \[ \|{\wedge v}_1^{(n)}\|_{{H^{4}(\mathbb{R})}}\leq c_{11} \|v_1^{(n)}\|_{{L^2(\mathbb{R})}}\leq c_{12}\|v_1^{(n)}\|_{{H^{1}(\mathbb{R})}}. \] Consequently ${\wedge v}_1^{(n)}$ is bounded in $ L^2([0, T]; H^{4}(\mathbb{R})) \hookrightarrow L^2([0, T]; L^2(\mathbb{R}))$. It follows that $\partial ^{4}({\wedge v}_1^{(n)})$ is bounded in $ L^2([0, T]; H^{-4}(\mathbb{R}))$, and \begin{equation} \label{e5.8} {\wedge v}_9^{(n)}\quad \mbox {is bounded in}\quad L^2([0, T]; H^{-4}(\mathbb{R})) \end{equation} Similarly, the other terms are bounded. By \eqref{e5.4}, $v_{t}^{(n)}$ is a sum of terms each of which is the product of a coefficient, uniformly bounded on $n$ and a function in $L^2([0, T]; H^{-4}(\mathbb{R}))$ uniformly bounded on $n$ such that $v_{t}^{(n)}$ is bounded in $L^2([0, T]; H^{-4}(\mathbb{R}))$. On the other hand, $H_{\rm loc}^{1}(\mathbb{R})\stackrel {c}{\hookrightarrow } H_{\rm loc}^{1/2}(\mathbb{R})\hookrightarrow H^{-4}(\mathbb{R})$. By Lions-Aubin's compactness Theorem \cite{l1} there is a subsequence $v^{(n_j)}:=v^{(n)}$ such that $v^{(n)}\to v$ strongly on $L^2([0, T]; H_{\rm loc}^{1/2}(\mathbb{R}))$. Hence, for a subsequence $v^{(n_j)}:=v^{(n)}$, we have $v^{(n)}\to v$ a. e. in $L^2([0, T]; H_{\rm loc}^{1/2}(\mathbb{R}))$. Moreover, from \eqref{e5.8}, ${\wedge v}_9^{(n)}\rightharpoonup {\wedge v}_9$ weakly in $ L^2([0, T]; H^{-4}(\mathbb{R}))$. Similarly, ${\wedge v}_5^{(n)}\rightharpoonup{\wedge v}_5$ weakly in $L^2([0, T]; H^{-4}(\mathbb{R}))$. Since $\| {\wedge v}^{(n)} \|_{{H^{5}(\mathbb{R})}} \leq c_{13} \| v^{(n)} \|_{{H^{1}(\mathbb{R})}}\leq c_{14} \| v^{(n)} \|_{{H^{1/2}(\mathbb{R})}}$ and $v^{(n)}\to v$ strongly on $ L^2([0, T]; H_{\rm loc}^{1/2}(\mathbb{R}))$ then ${\wedge v}^{(n)}\to \wedge v$ strong in $ L^2([0, T]; H_{\rm loc}^{5}(\mathbb{R}))\hookrightarrow L^2([0, T]; H_{\rm loc}^{4}(\mathbb{R}))$. Thus the fourth term on the right hand side of \eqref{e5.4}, ${\wedge v}^{(n - 1)}{\wedge v}_5^{(n)}\rightharpoonup {\wedge v} {\wedge v}_5$ weakly in $ L^2([0, T]; L_{\rm loc}^{1}(\mathbb{R}))$ as ${\wedge v}_5^{(n)}\rightharpoonup {\wedge v}_{5}$ weakly in $L^2([0, T]; H^{-4}(\mathbb{R}))$ and ${\wedge v}^{(n - 1)}\to{\wedge v}$ strongly on $L^2([0, T]; H_{\rm loc}^{4}(\mathbb{R}))$. Similarly, the other terms in \eqref{e5.4} converge to their limits, implying $v_{t}^{(n)}\rightharpoonup v_{t}$ weakly in $L^2([0, T]; L_{\rm loc}^{1}(\mathbb{R}))$. Passing to the limit \begin{align*} v_{t} &= \partial ^{4}(\eta {\wedge v}_5 + {\wedge v}_{3} +{\wedge v}{\wedge v}_1) -(\eta {\wedge v}_5 + {\wedge v}_{3} +{\wedge v}{\wedge v}_1)\\ &= -(I - \partial ^{4})(\eta {\wedge v}_5 + {\wedge v}_{3} + {\wedge v}{\wedge v}_1) \end{align*} thus $v_{t} + (I - \partial ^{4})(\eta {\wedge v}_5 + {\wedge v}_{3} + {\wedge v} {\wedge v}_1 ) =0$. This way, we have that \eqref{e2.5} for $u={\wedge v}$. Now, we prove that there exists a solution to \eqref{e2.5} with $u\in L^{\infty }([0, T]; H^{N}(\mathbb{R}))$ and $N\geq 6$, where $T$ depends only on the norm of $\varphi $ in $H^{5}(\mathbb{R})$. We already know that there is a solution $u\in L^{\infty }([0, T]; H^{5}(\mathbb{R}))$. It is suffices to show that the approximating sequence $v^{(n)}$ is bounded in $L^{\infty }([0, T]; H^{N - 4}(\mathbb{R}))$. Taking $\alpha = N - 2$ and considering \eqref{e5.5} for $\alpha \geq 2$, we define $c_{{N - 5}}=\frac {c_9}{2 c_8} \| \varphi ( \cdot ) \|_{{N}} + 1$. Let $T_{{N - 5}}^{(n)}$ be the largest time such that $\|v^{(k)}( \cdot , t) \|_{{\alpha }}\leq c_{{N - 5}}$ for $0\leq t\leq T_{{N - 5}}^{(n)}, 0\leq k\leq n$. Integrating \eqref{e5.5} over $[0, t]$, for $0\leq t\leq T_{{N - 5}}^{(n)}$, we have \[ \int_{0}^{t}\left(\partial _{s}\int_{\mathbb{R}} \xi [v_{{\alpha }}^{(n)}]^2dx\right)ds \leq \int_{0}^{t}G( \| v^{(n - 1)} \|_{{\alpha }} ) \| v^{(n)} \|_{{\alpha }}^2 ds + \int_{0}^{t}F( \| v^{(n - 1)} \|_{{\alpha }} ) ds. \] It follows that \begin{align*} &\int_{\mathbb{R}}\xi (x, t)[v_{{\alpha }}^{(n)}(x, t)]^2dx \\ & \leq \int_{\mathbb{R}}\xi (x, 0)[v_{{\alpha }}^{(n)}(x, 0)]^2dx + \int_{0}^{t}G(\|v^{(n - 1)}\|_{{\alpha }})\|v^{(n)}\|_{{\alpha }}^2ds + \int_{0}^{t}F(\|v^{(n - 1)}\|_{{\alpha }})ds \end{align*} hence \begin{align*} c_8\int_{\mathbb{R}}[ v_{{\alpha }}^{(n)} ]^2 dx &\leq \int_{\mathbb{R}}\xi [ v_{{\alpha }}^{(n)} ]^2 dx \\ & \leq \int_{\mathbb{R}}\xi (x, 0) [ v_{{\alpha }}^{(n)}(x, 0) ]^2 dx + \int_{0}^{t}G( \| v^{(n - 1)} \|_{{\alpha }} ) \| v^{(n)} \|_{{\alpha }}^2 ds \\ &\quad +\int_{0}^{t}F( \| v^{(n - 1)} \|_{{\alpha }} ) ds. \end{align*} Then \begin{align*} \int_{\mathbb{R}}[ v_{{\alpha }}^{(n)} ]^2 dx & \leq \frac {c_9}{c_8}\int_{\mathbb{R}}[ v_{{\alpha }}^{(n)}(x, 0) ]^2 dx + \frac {G(c_{{N - 5}})}{c_8} c_{{N - 5}}^2 t + \frac {F(c_{{N - 5}})}{c_8} t \\ & \leq \frac {c_9}{c_8} \| v^{(n)}( \cdot , 0) \|_{{\alpha }}^2 + \frac {G(c_{{N - 5}})}{c_8 } c_{{N - 5}}^2 t + \frac {F(c_{{N - 5}})}{c_8} t \\ & \leq \frac {c_9}{c_8}\| \varphi ( \cdot , 0) \|_{{N}}^2 + \frac {G(c_{{N - 5}})}{c_8} c_{{N - 5}}^2 t + \frac {F(c_{{N - 5}})}{c_8} t \end{align*} and we obtain \[ \| v^{(n)}( \cdot , t) \|_{{\alpha }}^2\leq \frac {c_9}{c_8} \| \varphi ( \cdot , 0) \|_{{N}}^2 + \frac {G(c_3)}{c_8} c_3^2 t + \frac {F(c_3)}{c_8} t\,. \] \noindent\textbf{Claim: $T_{{N - 5}}^{(n)}$ does not approach $0$.} \\ On the contrary, assume that $T_{{N - 5}}^{(n)}\to 0$. Since $\|v^{(n)}( \cdot , t)\|$ is continuous for $t\geq 0$, there exists $\tau \in [0, T_{{N - 5}}]$ such that $\| v^{(k)}( \cdot , \tau ) \|_{{\alpha }}=c_{{N - 5}}$ for $0\leq \tau \leq T^{(n)}$, $0\leq k \leq n$. Then \[c_{{N - 5}}^2\leq \frac {c_9}{c_8} \| \varphi ( \cdot , 0) \|_{{N}}^2 + \frac {G(c_{{N - 5}})}{c_8} c_{{N - 5}}^2 T_{{N - 5}}^{(n)} + \frac {F(c_{{N - 5}})}{c_8} T_{{N - 5}}^{(n)}.\] as $n\to +\infty $ we have \[ \big( \frac {c_9}{2 c_8} \| \varphi ( \cdot , 0) \|_{{N}}^2 + 1 \big)^2 \leq \frac {c_9}{c_8} \| \varphi ( \cdot , 0) \|_{{N}}^2 \Longrightarrow \frac {c_9^2}{4 c_8^2} \| \varphi ( \cdot , 0) \|_{{N}}^{4} + 1\leq 0 \] which is a contradiction. Then $T_{{N - 5}}^{(n)}\not \to 0$. By choosing $T_{{N - 5}}=T_{{N - 5}}(\| \varphi ( \cdot , 0) \|_{{N}}^2)$ sufficiently small, and $T_{{N - 5}}$ not depending on $n$, we conclude that \begin{equation} \| v^{(n)}( \cdot , t) \|_{{\alpha }}^2\leq c_{{N - 5}}^2\quad \mbox {for all}\quad 0\leq t\leq T_{{N - 5}}. \end{equation} This shows that $T_{{N - 5}}^{(n)}\geq T_{{N - 5}}$. Thus, \[ v\in L^{\infty }([0, T_{{N - 5}}]; H^{\alpha }(\mathbb{R}))\equiv v\in L^{\infty }([0, T_{{N - 5}}]; H^{N - 4}(\mathbb{R})). \] Now, denote by $0\leq T_{{N - 5}}^{*}\leq +\infty $ the maximal number such that for all $00$, there exists $C=C(T, \| \varphi \|)$ such that \[ \| u \|_{\alpha }^2 + \int_{0}^{t}\int_{\mathbb{R}}( 5 \eta + 3 ) \xi u_{\alpha + 1}^2 dx ds - 5 \eta \int_{0}^{t}\int_{\mathbb{R}}\partial \xi u_{\alpha + 2}^2 dx ds \leq C. \] This concludes the proof. \end{proof} \section{Persistence Theorem} As a starting point for the a priori gain of regularity results that will be discussed in the next section, we need to develop some estimates for solutions of the equation \eqref{e2.5} in weighted Sobolev norms. The existence of these weighted estimates is often called the {\em persistence } of a property of the initial data $\varphi $. We show that if $\varphi \in H^{5}(\mathbb{R})\bigcap H^{L}(W_{{0 i 0}})$ for $ L\geq 0, i\geq 1$ then the solution $u( \cdot , t)$ evolves in $H^{L}(W_{{0 i 0}})$ for $t\in [0, T]$. The time interval of such persistence is at least as long as the interval guaranteed by the existence Theorem \ref{thm5.2}. \begin{theorem}[Persistence] \label{thm7.1} Let $i\geq 1$ and $L\geq 0$ be non-negative integers, $00$, we take a sequence $\mu _2^{\beta }(x)$ of smooth bounded weight functions approximating $\mu _2(x)$ from below, uniformly on any half line $(-\infty , c)$. Define the weight functions for the $\alpha $-th induction step as \[ \xi _{\beta}(x, t)=-\frac {1}{5 \eta } \Big(1 + \int_{-\infty }^{x}\mu _2^{\beta }(y, t) dy\Big) \] then the $\xi _{\beta}$ are bounded weight functions which approximate a desired weight function $\xi \in W_{{0 i 0}}$ from below, uniformly on a compact set. For $\alpha =0$, multiplying \eqref{e2.5} by $2\xi _{\beta}u$, and integrating over $x\in \mathbb{R} $. \begin{equation} \label{e7.4} 2\int_{\mathbb{R}}\xi _{\beta} u u_{t} dt + 2 \eta \int_{\mathbb{R}}\xi _{\beta} u u_5 dx + 2\int_{\mathbb{R}}\xi _{\beta} u u_{3} dx + 2\int_{\mathbb{R}}\xi _{\beta} u^2 u_1 dx =0. \end{equation} Each term is treated separately. In the first term we have \[ 2\int_{\mathbb{R}}\xi _{\beta} u u_{t} dx = \partial _{t}\int_{\mathbb{R}}\xi _{\beta} u^2 dx - \int_{\mathbb{R}}\partial _{t}\xi _{\beta} u^2 dx. \] For the others terms, using integration by parts, we have \begin{gather*} 2 \eta \int_{\mathbb{R}}\xi _{\beta} u u_5 dx = - \eta \int_{\mathbb{R}}\partial ^{5}\xi _{\beta} u^2 dx + 5 \eta \int_{\mathbb{R}}\partial ^{3}\xi _{\beta} u_1^2 dx - 5 \eta \int_{\mathbb{R}}\partial \xi _{\beta} u^2 dx.\\ 2\int_{\mathbb{R}}\xi _{\beta} u u_{3} dx = -\int_{\mathbb{R}}\partial ^{3}\xi _{\beta} u^2 dx + 3\int_{\mathbb{R}}\partial \xi _{\beta} u_1^2 dx\,,\\ 2\int_{\mathbb{R}}\xi _{\beta} u^2 u_1 dx = -\frac {2}{3}\int_{\mathbb{R}}\partial \xi _{\beta} u^{3} dx. \end{gather*} Replacing in \eqref{e7.4}, we obtain \begin{align*} & \partial _{t}\int_{\mathbb{R}}\xi _{\beta} u^2 dx - \int_{\mathbb{R}}\partial _{t}\xi _{\beta} u^2 dx - \eta \int_{\mathbb{R}}\partial ^{5}\xi _{\beta} u^2 dx + 5 \eta \int_{\mathbb{R}}\partial ^{3}\xi _{\beta} u_1^2 dx \\ & - 5 \eta \int_{\mathbb{R}}\partial \xi _{\beta} u^2 dx - \int_{\mathbb{R}}\partial ^{3}\xi _{\beta} u^2 dx + 3\int_{\mathbb{R}}\partial \xi _{\beta} u_1^2 dx - \frac {2}{3}\int_{\mathbb{R}}\partial \xi _{\beta} u^{3} dx =0 \end{align*} then \begin{align*} & \partial _{t}\int_{\mathbb{R}}\xi _{\beta} u^2 dx + \int_{\mathbb{R}}( 5 \eta \partial ^{3}\xi _{\beta} + 3 \partial \xi _{\beta} ) u_1^2 dx - 5 \eta \int_{\mathbb{R}}\partial \xi _{\beta} u_{2}^2 dx \\ & + \int_{\mathbb{R}}( - \partial _{t}\xi _{\beta} - \eta \partial ^{5}\xi _{\beta} - \partial ^{3}\xi _{\beta} - \frac {2}{3}\xi _{\beta} u ) u^2 dx =0\,. \end{align*} Using \eqref{e2.4}, for $c_5>0$ ($\eta <-3/5 $), \begin{align*} & & \partial _{t}\int_{\mathbb{R}}\xi _{\beta} u^2 dx - c_5 ( 5 \eta + 3 )\int_{\mathbb{R}}\xi _{\beta} u_1^2 dx - 5 \eta \int_{\mathbb{R}}\partial \xi _{\beta} u_{2}^2 dx \\ & & + \int_{\mathbb{R}}( - \partial _{t}\xi _{\beta} - \eta \partial ^{5}\xi _{\beta} - \partial ^{3}\xi _{\beta} - \frac {2}{3}\xi _{\beta} u ) u^2 dx \leq 0\,. \end{align*} Using again \eqref{e2.4} and Gagliardo-Nirenberg's inequality, we obtain \[ \partial _{t}\int_{\mathbb{R}}\xi _{\beta} u^2 dx - c_5 ( 5 \eta + 3 ) \int_{\mathbb{R}}\xi _{\beta} u_1^2 dx - 5 \eta \int_{\mathbb{R}}\partial \xi _{\beta} u_{2}^2 dx\leq c\int_{\mathbb{R}}\xi _{\beta} u^2 dx \] thus \[ \partial _{t}\int_{\mathbb{R}}\xi _{\beta} u^2 dx \leq c\int_{\mathbb{R}}\xi _{\beta} u^2 dx. \] We apply Gronwall's lemma to conclude \begin{equation} \label{e7.5} \int_{\mathbb{R}}\xi _{\beta} u^2 dx \leq C=C( T, \| \varphi \| ) \end{equation} for $0\leq t\leq T$ and $c$ not depending on $\beta >0$, the weighted estimate remains true for $\beta \to 0$. Now, we assume that the result is true for $(\alpha - 1)$ and we prove that it is true for $\alpha $. To prove this, we start from the main inequality \eqref{e3.2} with $\mu _1, \mu _2$ and $\xi $ given by $\mu _1^{\beta }, \mu _2^{\beta }$ and $\xi _{\beta}$ respectively. \[ \partial _{t}\int_{\mathbb{R}}\xi _{\beta} u_{\alpha }^2 dx + \int_{\mathbb{R}}\mu _1^{\beta } u_{\alpha + 1}^2 dx + \int_{\mathbb{R}}\mu _2^{\beta } u_{\alpha + 2}^2 dx + \int_{\mathbb{R}}\theta _{\beta} u_{\alpha }^2 dx + \int_{\mathbb{R}}R_{{\alpha }} dx\leq 0 \] with \begin{gather*} \mu _1^{\beta } = -c_5 ( 5 \eta + 3 ) \xi _{\beta}\quad \mbox { for $\eta < - 3/5$ (Natural Condition)}\\ \mu _2^{\beta } = - 5 \eta \partial \xi _{\beta} \\ \theta _{\beta} = -\partial _{t}\xi _{\beta} - \eta \partial ^{5}\xi _{\beta} - \partial ^{3}\xi _{\beta} - \partial ( \xi _{\beta} u )\\ R_{\alpha } = O(u_{\alpha }, \dots) \end{gather*} then \begin{align*} \partial _{t}\int_{\mathbb{R}}\xi _{\beta} u_{\alpha }^2 dx + \int_{\mathbb{R}}\mu _1^{\beta } u_{\alpha + 1}^2 dx + \int_{\mathbb{R}}\mu _2^{\beta } u_{\alpha + 2}^2 dx & \leq -\int_{\mathbb{R}}\theta _{\beta} u_{\alpha }^2 dx - \int_{\mathbb{R}}R_{\alpha } dx \\ & \leq \big|-\int_{\mathbb{R}}\theta _{\beta} u_{\alpha }^2 dx - \int_{\mathbb{R}}R_{\alpha } dx\big| \\ & \leq \int_{\mathbb{R}}| \theta _{\beta} | u_{\alpha }^2 dx + \int_{\mathbb{R}}| R_{\alpha } | dx\,. \end{align*} Using \eqref{e2.4} and Gagliardo-Nirenberg in the first term of the right side we obtain \[ \int_{\mathbb{R}}| \theta _{\beta} | dx \leq c\int_{\mathbb{R}}\xi _{\beta} u_{\alpha }^2 dx \] Thus \[ \partial _{t}\int_{\mathbb{R}}\xi _{\beta} u_{\alpha }^2 dx + \int_{\mathbb{R}}\mu _1^{\beta } u_{\alpha + 1}^2 dx + \int_{\mathbb{R}}\mu _2^{\beta } u_{\alpha + 2}^2 dx \leq c\int_{\mathbb{R}}\xi _{\beta}u_{\alpha }^2 dx + \int_{\mathbb{R}}| R_{\alpha } | dx. \] According to \eqref{e3.5}, $\int_{\mathbb{R}}R_{\alpha }dx$ contains a term of the form \begin{equation} \label{e7.6} \int_{\mathbb{R}}\xi _{\beta} u_{{\nu _1}} u_{{\nu _2}} u_{{\alpha }} dx. \end{equation} Let $\nu _2\leq \alpha - 2$. Integrating \eqref{e7.6} by parts and using H\"{o}lder's inequality we obtain \begin{equation} \label{e7.7} c\Big[\Big(\int_{\mathbb{R}}\xi _{\beta} u_{\nu _2 + 1}^2 dx\Big)^{1/2} + \Big(\int_{\mathbb{R}}\xi _{\beta}u_{{\nu _2}}^2 dx\Big)^{1/2}\Big] \Big(\int_{\mathbb{R}}\xi _{\beta} u_{{\alpha - 1}}^2 dx\Big)^{1/2} \end{equation} where \eqref{e7.7} is bounded by hypothesis. Now suppose that $\alpha - 1=\nu _1=\nu _2$, then in \eqref{e7.6} we obtain \[ \big| \int_{\mathbb{R}}\xi _{\beta} u_{{\alpha - 1}} u_{{\alpha - 1}} u_{{\alpha }} dx \big| \leq \left\| u_{{\alpha - 1}} \right\|_{L^{\infty }(\mathbb{R})} \Big(\int_{\mathbb{R}}\xi _{\beta}u_{\alpha - 1}^2 dx\Big)^{1/2} \Big(\int_{\mathbb{R}}\xi _{\beta}u_{\alpha }^2 dx\Big)^{1/2} \] where $\|u_{\alpha - 1}\|_{{L^{\infty }(\mathbb{R})}}$ is bounded by hypothesis, and the estimate is complete. Finally, for $\nu _1=\alpha - 2; \nu _2=\alpha - 1$ we have \begin{align*} \big| \int_{\mathbb{R}}\xi _{\beta} u_{{\alpha - 2}} u_{{\alpha - 1}} u_{{\alpha }} dx\big| &= \big| \int_{\mathbb{R}}\sqrt {\xi _{\beta}} u_{{\alpha - 2}} u_{{\alpha - 1}} \sqrt {\xi _{\beta}} u_{{\alpha }} dx \big| \\ & \leq \big\| \sqrt {\xi _{\beta}} u_{{\alpha - 2}} \big\|_{{L^{\infty }(\mathbb{R})}} \big| \int_{\mathbb{R}}u_{{\alpha - 1}} \sqrt {\xi _{\beta}} u_{{\alpha }} dx \big| \\ & \leq \big\| \sqrt {\xi _{\beta}} u_{{\alpha - 2}} \big\|_{L^{\infty }(\mathbb{R})} \big\| u_{\alpha - 1} \big\|_{L^2(\mathbb{R})} \Big(\int_{\mathbb{R}}\xi _{\beta} u_{\alpha }^2 dx\Big)^{1/2} \\ & \leq c \left\| u_{{\alpha - 1}} \right\|_{{L^2(\mathbb{R})}} \Big(\int_{\mathbb{R}}\xi _{\beta} u_{{\alpha }}^2 dx\Big)^{1/2}. \end{align*} Using these estimates in \eqref{e7.5}, and applying the Gronwall's argument, we obtain for $0\leq t\leq T$, \[ \partial _{t}\int_{\mathbb{R}}\xi _{\beta} u_{\alpha }^2 dx + \int_{\mathbb{R}}\mu _1^{\beta } u_{\alpha + 1}^2 dx + \int_{\mathbb{R}}\mu _2^{\beta } u_{\alpha + 2}^2 dx \leq c_0 e^{c_1 t} \Big(\int_{\mathbb{R}}\xi _{\beta} \varphi _{{\alpha }}^2(x) dx + 1\Big) \] where $c_0$ and $c_1$ are independent $\beta $ such that letting the parameter $\beta \to 0$ the desired estimates \eqref{e7.2} and \eqref{e7.3} are obtained. \end{proof} \section{Main Theorem} In this section we state and prove our main Theorem, which states that if the initial data $u(x, 0)$ decays faster than polinomially on $\mathbb{R}^{+}=\{x\in \mathbb{R} ; x>0\}$ and possesses certain initial Sobolev regularity, then the solution $u(x, t)\in C^{\infty }$ for all $t>0$. For the main Theorem, we take $6\leq \alpha \leq L + 4$. For $\alpha \leq L + 4$, we take \begin{gather} \label{e8.1} \mu _1\in W_{{\sigma ,L -\alpha + 5,\alpha - 5}} \quad\Longrightarrow\quad \xi \in W_{{\sigma ,L - \alpha + 5,\alpha - 5}}\\ \mu _2\in W_{{\sigma ,L -\alpha + 4,\alpha - 5}} \quad\Longrightarrow\quad \xi \in W_{{\sigma,L - \alpha + 5,\alpha - 5}} \label{e8.2} \end{gather} \begin{lemma}[Estimate of error terms] \label{lm8.1} Let $6\leq \alpha \leq L + 4$ and the weight functions be chosen as in \eqref{e8.1}-\eqref{e8.2}, then \begin{equation} \label{e8.3} \big| \int_{0}^{T}\int_{\mathbb{R}} \left(\theta u_{\alpha }^2 + R_{\alpha } \right) dx dt\big| \leq c\,, \end{equation} where $c$ depends only on the norms of $u$ in \begin{gather*} L^{\infty }([0, T]; H^{\beta }(W_{{\sigma ,L - \beta + 5,\beta - 5}})) \bigcap L^2([0, T]; H^{\beta + 1} (W_{{\sigma ,L - \beta + 5,\beta - 5}})\\ \bigcap H^{\beta + 2} (W_{{\sigma ,L - \beta + 4,\beta - 5}})) \end{gather*} for $5\leq \beta \leq \alpha - 1$, and the norms of $ u $ in $L^{\infty }([0, T]; H^{5}(W_{0L0}))$. \end{lemma} \begin{proof} We must estimate both $R_{\alpha }$ and $\theta$. We begin with a term of $R_{\alpha }$ of the form \begin{equation} \label{e8.4} \xi u_{{\nu _1}} u_{{\nu _2}} u_{{\alpha }} \end{equation} assuming that $\nu _1\leq \alpha - 2$. By the induction hypothesis, $u$ is bounded in \\ $L^{\infty }([0, T]; H^{\beta }(W_{{\sigma ,L - (\beta - 5)^{+}, (\beta - 5)^{+}}}))$ for $0\leq \beta \leq \alpha - 1$. By Lemma \ref{lm0}, \begin{equation} \label{e8.5} \sup _{t>0} \sup _{x\in \mathbb{R}} \zeta u_{\beta}^2< + \infty \end{equation} for $0\leq \beta \leq \alpha - 2$ and $\zeta \in W_{{\sigma ,L - (\beta - 4)^{+},(\beta - 4)^{+}}}$. We estimate $u_{{\nu _1}}$ using \eqref{e8.5}. We estimate $u_{{\nu _2}}$ and $u_{{\alpha }}$ using the weighted $ L^2 $ bounds \begin{equation} \label{e8.6} \int_{0}^{T}\int_{\mathbb{R}}\zeta u_{\nu _2}^2 dx dt<+\infty \quad \mbox {for }\zeta \in W_{{\sigma ,L - (\nu _2 - 5)^{+},(\nu _2 - 6)^{+}}} \end{equation} and the same with $\nu _2$ replaced by $\alpha $. It suffices to check the powers of $t$, the powers of $x$ as $x\to +\infty $ and the exponential of $x$ as $x\to -\infty .$\\ For $x>1. $ In the term \eqref{e8.4}, the factor $\xi $ constributed according to \eqref{e8.1}-\eqref{e8.2} \[ \xi (x, t) = t^{(\alpha - 5)} x^{(L - \alpha + 5)} t^{-(\alpha - 5)} x^{-(L - \alpha + 5)} \xi (x, t) \\ \leq c_2 t^{(\alpha - 5)} x^{(L - \alpha + 5)} \] by \eqref{e2.3}. Then $\xi u_{{\nu _1}}u_{{\nu _2}} u_{{\alpha }}\leq c_2 t^{(\alpha - 5)} x^{(L - \alpha + 5)} u_{{\nu _1}} u_{{\nu _2}} u_{{\alpha }}$. Moreover \begin{align*} u_{{\nu _1}} u_{{\nu _2}} u_{{\alpha }} & = t^{\frac {(\nu _1 - 4)^{+}}{2}} x^{\frac {L - (\nu _1 - 4)^{+}}{2}} t^{\frac {-(\nu _1 - 4)^{+}}{2}} x^{\frac {-(L - (\nu _1 - 4)^{+})}{2}} \\ &\quad\times u_{{\nu_1}} t^{\frac {(\nu _2 - 6)^{+}}{2}} x^{\frac {L - (\nu _2 - 5)^{+}}{2}} t^{\frac {-(\nu _2 - 6)^{+}}{2}} x^{\frac {-(L - (\nu _2 - 5)^{+})}{2}} u_{{\nu _2}} \\ &\quad\times t^{\frac {(\alpha - 6)^{+}}{2}} x^{\frac {L - (\alpha - 5)^{+}}{2}} t^{\frac {-(\alpha - 6)^{+}}{2}} x^{\frac {-(L - (\alpha - 5)^{+})}{2}} u_{\alpha }. \end{align*} It follows that \begin{equation} \label{e8.7} \begin{aligned} &\xi u_{{\nu_1}} u_{{\nu _2}} u_{{\alpha }}\\ &\leq c_2 t^{M} x^{T}t^{\frac {(\nu _1 - 4)^{+}}{2}} x^{\frac {L - (\nu _1 - 4)^{+}}{2}} u_{{\nu _1}} t^{\frac {(\nu_2 - 6)^{+}}{2}} x^{\frac {L - (\nu _2 - 5)^{+}}{2}} u_{{\nu _2}} t^{\frac {(\alpha - 6)^{+}}{2}} x^{\frac {L - (\alpha - 5)}{2}} u_{{\alpha }} \end{aligned} \end{equation} where $M = \alpha - 5 - \frac {1}{2}(\nu _1 - 4)^{+} - \frac {1}{2}(\nu _2 - 6)^{+} - \frac {1}{2}(\alpha - 6)^{+}$ and \[ T = (T - \alpha + 5) -\frac {1}{2}(T - (\alpha - 5)^{+}) - \frac {1}{2}(T - (\nu _2 - 5)^{+}) - \frac {1}{2}(T - (\nu _1 - 4)^{+}). \] \noindent\textbf{Claim $M\geq 0$ is large enough, that the extra power of $t$ can be omitted.} \begin{align*} 2M & = 2 \alpha - 10 - (\nu _1 - 4)^{+} - (\nu _{2} - 6)^{+} - (\alpha - 6)^{+}\\ & = \alpha - 4 - (\nu _1 - 4)^{+} -(\nu _2 - 6)^{+}\\ &= \alpha - 4 - \nu _1 + 4 - \nu _2 + 6\\ & = \alpha + 6 - (\nu _1 + \nu _2)\\ &= \alpha + 6 - (\alpha + 1) = 5\geq 0. \end{align*} \noindent\textbf{Claim $T\leq 0$ is such that the extra power $x^{T}$ can be bounded as $x\to +\infty $.} \[ T=L - \alpha + 5 - \frac {1}{2}(L - (\alpha - 5)^{+}) - \frac {1}{2} (L - (\nu _2 - 5)^{+}) -\frac {1}{2}(L - (\nu _1 - 4)^{+}). \] Thus \begin{align*} 2 T & = 2 L - 2 \alpha + 10 - (L - (\alpha - 5)^{+}) - L + (\nu _2 - 5)^{+} - L + (\alpha - 4)^{+}\\ & = - L - \alpha + \nu _1 + \nu _2 - 4\\ & = - L - \alpha + \alpha + 1 - 4\\ & = - (L + 3)\leq 0. \end{align*} Now, we study the behavior as $x \to -\infty $. Since each factor $u_{{\nu _j}} (j=1, 2)$ must grow slower than an exponential $e^{\sigma ^{^{,}} | x |}$ and $\xi $ decays as an exponential $e^{-\sigma | x |}$, we simply need to choose the appropriate relationship between $\sigma $ and $ \sigma ^{^{,}}$ at each induction step. The analysis of all the terms of $R_{\alpha }$ will be completed with the case of $\nu _1\geq \alpha - 1$. Then in \eqref{e3.6} if $2(\alpha + 1)\leq \alpha + 1$, $\alpha \leq 3$, but $\alpha \geq 5$ so this possibility is impossible. For $x<1$ the estimate is similar, except for an exponential weight. This completes the estimate of $R_{\alpha }$. Now we estimate the term $\theta u_{{\alpha }}^2$ where $\theta $ is given in \eqref{e3.2}. We have that $\theta $ involves derivatives of $u$ only up to order one and hence $\theta u_{{\alpha }}^2$ is a sum of terms of the same type which we have already encountered in $R_{\alpha }$. So, its integral can be bounded in the same manner. Indeed \eqref{e3.2} shows that $\theta $ depends on $\xi _{t}, \partial ^{5}\xi $ and derivatives of lower order. By using \eqref{e3.3} we have the claim. \end{proof} \begin{theorem}[Main Theorem] \label{thm8.2.} Let $T>0$ and $u(x, t)$ be a solution of \eqref{e2.5} in the region $\mathbb{R} \times [0, T]$ such that \begin{equation} \label{e8.8} u\in L^{\infty }([0, T]; H^{5}(W_{0L0})) \end{equation} for some $L\geq 2$ and all $\sigma >0$. Then $u$ is in $L^{\infty }([0, T]; H^{5 + l}(W_{{\sigma ,L - l,l}}))\newline \cap L^2([0, T]; H^{6 + l}(W_{{\sigma ,L - l,l}}) \cap H^{7 + l}(W_{{\sigma ,L - l - 1,l}})) $ for all $0\leq l\leq L - 1$. \end{theorem} \begin{remark} \label{rmkl8.1} \rm If the assumption \eqref{e8.8} holds for all $L\geq 2$, the solution is infinitely differentiable in the $x$-variable. From \eqref{e2.5} we have that the solution is $C^{\infty }$ in both variables. \end{remark} \begin{proof} We use induction on $\alpha $. For $\alpha = 5$, let $u$ be a solution of \eqref{e2.5} satisfying \eqref{e8.8}. Therefore, $u_{{t}}\in L^{\infty }([0, T]; L^2(W_{0L0}))$ where $ u\in L^{\infty }([0, T]; H^{5}(W_{0L0}))$ and $u_{{t}}\in L^{\infty }([0, T]; L^2(W_{0L0}))$. Then $ u\in C([0, T]; L^2(W_{0L0}))\bigcap C_{w}([0, T]; H^{5}(W_{0L0}))$. Hence $u\colon [ 0, T ]\mapsto H^{5}(W_{0L0})$ is a weakly continuous function. In particular, $u( \cdot , t)\in H^{5}(W_{0L0})$ for all $t$. Let $t_0\in (0, T)$ and $u( \cdot , t_0) \in H^{5}(W_{0L0})$, then there are $\{ \varphi ^{(n)} \}\subset C_0^{\infty }(\mathbb{R})$ such that $\varphi ^{(n)}( \cdot ) \to u( \cdot , t_0)$ in $H^{5}(W_{0L0})$. Let $u^{(n)}(x, t)$ be a unique solution of \eqref{e2.5} with $u^{(n)}(x, t_0)=\varphi ^{(n)}(x)$. Then by Theorems \ref{thm5.1} and \ref{thm5.2}, there exists in a time interval $[t_0, t_0 + \delta ]$ where $\delta >0$ does not depend on $n$ and $u$ is a unique solution of \eqref{e2.5} $u^{(n)}\in L^{\infty }([t_0, t_0 + \delta ]; H^{5}(W_{0L0}))$ with $ u^{(n)}(x, t_0)\equiv \varphi ^{(n)}(x) \to u(x, t_0)\equiv \varphi (x)$ in $H^{5}(W_{0L0})$. Now, by Theorem \ref{thm7.1}, we have \[ u^{(n)}\in L^{\infty }([t_0, t_0 + \delta ]; H^{5}(W_{0L0})) \bigcap L^2([t_0, t_0 + \delta ]; H^{6}(W_{{\sigma L 0}})\cap H^{7}(W_{{\sigma ,L - 1,0}})) \] with a bound that depends only on the norm of $\varphi ^{(n)}$ in $H^{5}(W_{0L0})$. Furthermore, Theorem \ref{thm7.1} guarantees the non-uniform bounds \[ \sup _{[t_0, t_0 + \delta ]} \sup _{x} (1 + | x_{+} | )^{k} | \partial ^{\alpha }u^{(n)}(x, t) |<+\infty \] for each $n, k$ and $\alpha $. The main inequality \eqref{e3.2} and the estimate \eqref{e8.3} are therefore valid for each $ u^{(n)} $ in the interval $[t_0, t_0 + \delta ]$. $\mu _2$ may be chosen arbitrarily in its weight class \eqref{e8.1} and then $\xi $ is defined by \eqref{e3.4} and the constant $c_1, c_2, c_3, c_4$ are independent of $n$. From \eqref{e3.2} and \eqref{e8.1}-\eqref{e8.2} we have \begin{equation} \label{e8.9} \sup _{[t_0, t_0 + \delta ]} \int_{\mathbb{R}}\xi [u_{\alpha }^{(n)}]^2 dx + \int_{t_0}^{t_0 + \delta }\int_{\mathbb{R}}{\mu _1} [u_{\alpha + 1}^{(n)}]^2 dx dt + \int_{t_0}^{t_0 + \delta }\int_{\mathbb{R}}{\mu _2} [u_{\alpha + 2}^{(n)}]^2 dx dt \leq c \end{equation} where by \eqref{e8.3}, $c$ is independ of $n$. Estimate \eqref{e8.9} is proved by induction for $\alpha =5, 6, \dots$ Thus $u^{(n)}$ is also bounded in \begin{equation} \label{e8.10} \begin{gathered} L^{\infty }([t_0, t_0 + \delta ]; H^{\alpha }(W_{{\sigma ,L - \alpha + 5,\alpha - 5}})) \bigcap L^2([t_0, t_0 + \delta ]; H^{\alpha + 1}(W_{{\sigma ,L - \alpha + 5,\alpha - 5}})) \\ \bigcap L^2([t_0, t_0 + \delta ]; H^{\alpha + 2}(W_{{\sigma ,L - \alpha + 4,\alpha - 5}})) \end{gathered} \end{equation} for $\alpha \geq 5$. Since $u^{(n)}\longrightarrow u$ in $ L^{\infty }([t_0, t_0 + \delta ]; H^{5}(W_{0L0}))$. By Corollary \ref{coro5.3} it follows that $u$ belongs to the space \eqref{e8.10}. Since $\delta $ is fixed, this result is valid over the whole interval $[0, T]$. \end{proof} \begin{thebibliography}{00} \bibitem{b1} H. A. Biagioni and F. Linares. On the Benney-Lin and Kawahara Equations, Journal of Mathematical Analysis and Applications, 211, (1997) 131--152. \bibitem{b2} J. Bona, G. Ponce, J.C. Saut and M. M. Tom. A model system for strong interaction between internal solitary waves, Comm. Math. Phys. Appl. Math., 143, 1992, pp. 287-313. \bibitem{b3} J. Bona and R. Scott. Solutions of the Korteweg - de Vries equation in fractional order Sobolev space, Duke Math. J. 43(1976), 87-99. \bibitem{b4} J. Bona and R. Smith. The initial value problem for the Korteweg - de Vries equation, Philos. Trans. Royal Soc. London, Ser. A, 278, 1975, pp. 555-601. \bibitem{b5} J. Bona and J.C. Saut. Dispersive blow-up of solutions of generalized Korteweg - de Vries equation, Journal of Diff. equations., 103, 1993, pp. 3-57. \bibitem{c1} H. Cai. Dispersive smoothing effect for generalized and high order K-dV type equations. Journal of Diff. equations., 136, 1997, pp.191-221. \bibitem{c2} A. Cohen. Solutions of the Korteweg - de Vries equations from irregular data, Duke Math., J., Vol. 45, springer, 1991, pp. 149-181. \bibitem{c3} W. Craig and J. Goodman. Linear dispersive equations of Airy Type, J. Diff. equations., Vol. 87, 1990, pp. 38-61. \bibitem{c4} W. Craig, T. Kappeler and W. Strauss. Infinite gain of regularity for dispersive evolution equations, Microlocal Analysis and Nonlinear waves, I.M.A., Vol. 30, springer, 1991, pp. 47-50. \bibitem{c5} W. Craig, T. Kappeler and W. Strauss. Gain of regularity for equations of Korteweg - de Vries type, Ann. Inst. Henri Poincar\a'{e}, Vol. 9, Nro. 2, 1992, pp. 147-186. \bibitem{c6} P. Constantin and J.C. Saut. Local smoothing properties of dispersive equations, Journal A.M.S., Nro. 1, 1988, pp. 413-439. \bibitem{g1} J. Ginibre and G. Velo. Conmutator expansions and smoothing properties of generalized Benjamin - Ono equations. Ann. Inst. Henri Poincar\a'{e}, Vol. 51, Nro. 2, 1989, pp. 221-229. \bibitem{h1} N. Hayashi, K. Nakamitsu and M. Tsutsumi. On solutions on the initial value problem for the nonlinear Schr\"{o}dinger equations in One Space Dimension, Math. Z., Vol. 192, 1986, pp. 637-650. \bibitem{h2} N. Hayashi, K. Nakamitsu and M. Tsutsumi. On solutions of the initial value problem for nonlinear Schr\"{o}dinger equations, J. of Funct. Anal., Vol. 71, 1987, pp. 218-245. \bibitem{h3} N. Hayashi and T. Ozawa. Smoothing effect for some Schr\"{o}dinger equations, J. of Funct. Anal., Vol. 85, 1989, pp. 307-348. \bibitem{k1} T. Kato. Quasilinear equations of evolutions with applications to partial differential equations, Lecture notes in mathematics, Springer-Verlag, Vol. 448, 1975, pp. 27-50. \bibitem{k2} T. Kato. On the Cauchy problem for the ( generalized ) Korteweg - de Vries equations, Adv. in Math. Suppl. Studies, Studies in Appl. Math., Vol. 8, 1983, pp. 93-128. \bibitem{k3} T. Kato and G. Ponce. Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Applied Math., Vol. 41, 1988, pp. 891-907. \bibitem{k4} C. Kenig, G. Ponce and L. Vega. On the (generalized) Korteweg - de Vries equation, Duke Math. J., Vol. 59 (3), 1989, pp. 585-610. \bibitem{k5} C. Kenig, G. Ponce and L. Vega. Oscillatory integrals and regularity equations, Indiana Univ. Math., J., Vol. 40, 1991, pp. 33-69. \bibitem{k6} S. N. Kruzhkov and A.V. Faminskii. Generalized solutions to the Cauchy problem for the Korteweg - de Vries equations, Math. U.S.S.R. Sbornik, Vol. 48, 1984, pp. 93-138. \bibitem{l1} J. L. Lions. Quelque m\a'{e}thodes de r\a'{e}solution des problemes aux limites non lin\a'{e}aires. Gauthiers- Villars. \bibitem{p1} G. Ponce. Regularity of solutions to nonlinear dispersive equations, J. Diff. Eq., Vol. 78, 1989, pp. 122-135. \bibitem{r1} H. Roitner. A numerical diagnostic tool for perturbed KdV equations, preprint. \bibitem{s1} J.C. Saut and R. Temam. Remark on the Korteweg - de Vries equation, Israel J. Math., Vol. 24, 1976, pp. 78-87. \bibitem{s2} P. Sjolin. Regularity of solutions to the Schr\"{o}dinger equation. Duke Math. J., Vol. 55, 1987, pp. 699-715. \bibitem{t1} R. Temam. Sur un probleme non-lineaire, J. Math. Pures Appl., Vol. 48, 1969, pp. 159-172. \end{thebibliography} \end{document}