\documentclass[reqno]{amsart} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2004(2004), No. 82, pp. 1--23.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2004 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2004/82\hfil Homogenization of parabolic monotone operators] {Deterministic homogenization of parabolic monotone operators with time dependent coefficients} \author[G. Nguetseng \& J. Woukeng \hfil EJDE-2004/82\hfilneg] {Gabriel Nguetseng, Jean Louis Woukeng} % in alphabetical order \address{Gabriel Nguetseng \hfill\break University of Yaounde I, Department of Mathematics, P.O. Box 812 Yaounde, Cameroon} \email{gnguets@uycdc.uninet.cm} \address{Jean-Louis Woukeng \hfill\break University of Yaounde I, Department of Mathematics, P.O. Box 812 Yaounde, Cameroon} \email{jwoukeng@uycdc.uninet.cm} \date{} \thanks{Submitted March 20, 2004. Published June 8, 2004.} \subjclass[2000]{46J10, 35B40} \keywords{Deterministic homogenization, homogenization structures, \hfill\break\indent parabolic equations, monotone operators} \begin{abstract} We study, beyond the classical periodic setting, the homogenization of linear and nonlinear parabolic differential equations associated with monotone operators. The usual periodicity hypothesis is here substituted by an abstract deterministic assumption characterized by a great relaxation of the time behaviour. Our main tool is the recent theory of homogenization structures by the first author, and our homogenization approach falls under the two-scale convergence method. Various concrete examples are worked out with a view to pointing out the wide scope of our approach and bringing the role of homogenization structures to light. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}{Lemma}[section] \newtheorem{proposition}{Proposition}[section] \newtheorem{corollary}{Corollary}[section] \newtheorem{remark}{Remark}[section] \newtheorem{definition}{Definition}[section] \newtheorem{example}{Example}[section] \section{Introduction} Let $2\leq p<\infty $. Let $(y,\tau ,\lambda )\to a(y,\tau ,\lambda) $ be a function from $\mathbb{R}^{N}\times \mathbb{R\times R}^{N}$ to $\mathbb{R}^{N}$ $(N\geq 1)$ with the properties: \begin{align} &\parbox{10cm}{\noindent For each fixed $\lambda \in \mathbb{R}^{N}$, the function $(y,\tau)\to a(y,\tau ,\lambda )$ (denoted by $a(\cdot ,\cdot ,\lambda )$) from $\mathbb{R}^{N}\times \mathbb{R}$ to $\mathbb{R}^{N}$ is measurable} \label{1.1} \\[4pt] &\parbox{10cm}{\noindent $a(y,\tau ,\omega )=\omega$ almost everywhere (a.e.) in $(y,\tau )\in \mathbb{R}^{N}\times \mathbb{R}$, where $\omega$ denotes the origin in $\mathbb{R}^{N}$} \label{1.2} \\[4pt] &\parbox{10cm}{There are two constants $\alpha _{0},\alpha _{1}>0$ such that, a.e. in $(y,\tau )\in \mathbb{R}^{N}\times \mathbb{R}$: \\ (i)\; $(a(y,\tau ,\lambda )-a(y,\tau ,\mu ))\cdot (\lambda -\mu )\geq \alpha _{0}\mid \lambda -\mu \mid ^{p}$ \\ (ii)\; $| a(y,\tau ,\lambda )-a(y,\tau ,\mu )| \leq \alpha _{1}(| \lambda | +| \mu | )^{p-2}| \lambda -\mu |$ for all $\lambda ,\mu \in \mathbb{R}^{N}$, where the dot denotes the usual Euclidean inner product in $\mathbb{R}^{N}$, and $| \cdot |$ the associated norm.} \label{1.3} \end{align} Let $T$ be a positive real number, $\Omega $ a smooth bounded open set in $\mathbb{R}_{x}^{N}$ (the space $\mathbb{R}^{N}$ of variables $x=(x_{1},\dots ,x_{N})$), and $f\in L^{p'}(0,T;W^{-1,p'}(\Omega ;\mathbb{R}))$ with $p'=\frac{p}{p-1}$. For each given $\varepsilon >0$, we consider the initial-boundary value problem \begin{equation} \begin{gathered} \frac{\partial u_{\varepsilon }}{\partial t} -\mathop{\rm div}a\big( \frac{x}{\varepsilon },\frac{t}{\varepsilon }, Du_{\varepsilon }\big) =f \quad \text{in }Q=\Omega \times (0,T) \\ u_{\varepsilon }=0\quad \text{on }\partial \Omega \times (0,T) \\ u_{\varepsilon }(x,0)=0\quad\text{in }\Omega \end{gathered} \label{1.4} \end{equation} where $D$ denotes the usual gradient, i.e., $D=\left( D_{x_{i}}\right) _{1\leq i\leq N}$ with $D_{x_{i}}=\frac{\partial }{\partial x_{i}}$, and $\mathop{\rm div}$ the divergence with respect to the variable $x$. Provided the diffusion term of the differential operator in (\ref{1.4}) is rigorously defined (see \cite[Subsection 4.1]{18}) and further an existence and uniqueness result for (\ref{1.4}) is pointed out (all that will be accomplished in Section 2), our goal in this paper is to investigate the limiting behaviour, as $\varepsilon \to 0$, of $u_{\varepsilon }$ (the solution of (\ref{1.4})). In all probability such an undertaking is hopeless without any further suitable assumption termed a \textit{structure hypothesis} \cite[20]{18}, which specifies the behaviour of the function $(y,\tau )\to a(y,\tau ,\lambda )$ (for fixed $\lambda $). The common structure hypothesis is the so-called periodicity hypothesis. The latter states that there exist two networks $\mathcal{R}\subset \mathbb{R} _{y}^{N}$ and $\mathcal{S}\subset \mathbb{R}_{\tau }$, e.g., $\mathcal{R}=\mathbb{Z }^{N}$ and $\mathcal{S}=\mathbb{Z}$, such that for any given $k\in \mathcal{R}$ and $l\in \mathcal{S}$, we have $a(y+k,\tau +l,\lambda )=a(y,\tau ,\lambda )$ \ a.e. in $(y,\tau )\in \mathbb{R}^{N}\times \mathbb{R}$, where $\lambda $ is arbitrarily fixed. Under the periodicity hypothesis, homogenization results for problem (\ref{1.4}) are available; see, e.g., \cite[22, 24]{17} (see also \cite{24} for specific corrector results). It should be mentioned in passing that the homogenization of linear parabolic operators in the periodic setting is now a classical theory (see, e.g., \cite[3, 8, 12, 13]{2} ) with, further, an extension to the almost periodic setting (see \cite{26}). However, much yet remains to be done in this area. To a large extent, nonstochastic homogenization theory seems to confine itself to the periodic setting, and that in spite of the gap to be filled between periodic and stochastic homogenization \cite{par}. No doubt, to arrive~$-$via homogenization$-$~at a thorough understanding of physical problems we need to be released from the classical periodicity hypothesis, especially with regard to the behaviour in the time variable. Specifically, we study here the homogenization of problem (\ref{1.4}) in a very general setting characterized by an abstract assumption on $a(y,\tau ,\lambda )$ (for fixed $\lambda $) covering a wide range of behaviours, especially with respect to the time variable $\tau =\frac{t}{\varepsilon }$. Broadly speaking, this abstract assumption is \textit{proper} \cite{22} with respect to the space variable $y=\frac{x}{\varepsilon }$ and hence covers a great variety of concrete behaviours in $y$ (see \cite[Section 5]{22}) whereas, surprisingly enough, with respect to $\tau =\frac{t}{\varepsilon }$ it sets no further significant restriction on $a(y,\tau ,\lambda )$ (fixed $\lambda $), which we express by referring to the \textit{quasi-properness} introduced in Definition 3.1. This is a true advance in the homogenization of parabolic partial differential equations, and a great step towards a better understanding of evolution phenomena. Our main tool is the recent theory of homogenization structures earlier developed in \cite[21]{18} and our homogenization approach falls under the two-scale convergence method. For an obvious reason (see the diffusion term of the differential operator in (\ref{1.4})) the present study greatly leans on the elliptic case \cite{22} of which it is a natural continuation. The rest of the paper is organized as follows. In Section 2 we rigorously define the diffusion term of the differential operator in (\ref{1.4}) and we point out those of its basic properties that ensure an existence and uniqueness result for the initial-boundary value problem under consideration. The homogenization of problem (\ref{1.4}) proper begins with Section 3. Under an abstract deterministic hypothesis on $a(\cdot ,\cdot ,\lambda )$ (for fixed $\lambda $) we achieve fundamental homogenization results that prove quite similar to those obtained in the periodic setting. Finally, to illustrate the preceding abstract setting and point out its wide scope, we consider in Section 4 a few concrete homogenization problems for (\ref{1.4}). In particular it is shown how such concrete problems reduce in a natural way to the abstract setting of Section 3. In order that we may make use of basic tools provided by the classical Banach algebras theory, the vector spaces throughout are generally considered over $\mathbb{C}$ and the scalar functions are assumed to take complex values. If $X$ and $F$ denote a locally compact space and a Banach space, respectively, then we write $\mathcal{C}(X;F),\mathcal{B}(X;F)$ and $\mathcal{K}(X;F)$ for continuous mappings of $X$ into $F$, bounded continuous mappings of $X$ into $F$, and those mappings in $\mathcal{C}(X;F)$ having compact supports, respectively. We shall always assume that $\mathcal{ B}(X;F)$ is equipped with the supremum norm $\left\| u\right\| _{\infty }=\sup_{x\in X}\left\| u(x)\right\| $ \ ($\left\| \cdot \right\| $ denotes the norm in $F$). For shortness we will write $\mathcal{C}(X)=\mathcal{C}(X;\mathbb{C})$, $\mathcal{B}(X)=\mathcal{B}(X;\mathbb{C})$ and $\mathcal{K}(X)=\mathcal{K}(X;\mathbb{C})$. Likewise the usual spaces $L^{p}(X;F)$ and $L_{\rm loc}^{p}(X;F)$ ($X$ provided with a positive Radon measure) will be denoted by $L^{p}(X)$ and $L_{\rm loc}^{p}(X)$, respectively, in the case when $F=\mathbb{C}$. We refer to \cite[7, 9]{6} for integration theory. On the other hand, for convenience we will most of the time put $\mathcal{C}_{\mathbb{R}}(X)=\mathcal{C}(X;\mathbb{R})$, $\mathcal{B}_{\mathbb{R}}(X)=\mathcal{B}(X;\mathbb{R})$, $\mathcal{K}_{\mathbb{R}}(X)=\mathcal{K}(X;\mathbb{R})$ and $L_{\mathbb{R}}^{p}(X)=L^{p}(X;\mathbb{R})$. Finally, the numerical space $\mathbb{R}^{d}$ $(d\geq 1)$ and its open sets are each provided with Lebesgue measure denoted by $dx=dx_{1}\dots dx_{d}$. \section{Preliminaries} Let $10$ is freely fixed. As was pointed out in \cite[Subsection 4.1]{18}, it is worth emphasizing that this is a delicate matter because the set $\mathcal{Q}_{\varepsilon }=\{(x,t,y,\tau ):y=\frac{x}{\varepsilon }$ and $\tau =\frac{t}{\varepsilon }$ for $(x,t)\in Q\}$ is negligible in $\mathbb{R}^{N}\times \mathbb{R\times R}^{N}\times \mathbb{R}$. For $u\in L_{\rm loc}^{1}(Q\times \mathbb{R}_{y}^{N}\times \mathbb{R}_{\tau })$, we set \begin{equation} u^{\varepsilon }(x,t)=u\big( x,t,\frac{x}{\varepsilon },\frac{t}{ \varepsilon }\big) \quad \left( x\in \Omega ,\; 00. $ Let $g_{r}$ be the restriction to $B_{r}\cap \mathcal{C}_{\mathbb{R}}( \overline{Q})^{N}$ of the mapping $\mathbf{v}\to G^{\varepsilon }\left( \cdot ,\cdot ,\mathbf{v}\right) $ (where $\varepsilon >0$ is fixed, of course). Clearly \begin{equation} \left\| g_{r}(\Phi )-g_{r}(\Psi )\right\| _{L^{p'}(Q)}\leq \alpha _{1}r^{p-2}\left\| \Phi -\Psi \right\| _{L^{p}(Q)^{N}} \quad \text{for all }\Phi ,\Psi \in B_{r}\cap \mathcal{C}_{\mathbb{R}}(\overline{Q} )^{N}. \label{2.6} \end{equation} Since $B_{r}\cap \mathcal{C}_{\mathbb{R}}(\overline{Q})^{N}$ is dense in $B_{r}$ (the verification is an elementary exercise), it follows that $g_{r}$ extends by continuity to a continuous mapping, still denoted by $g_{r}$, of $B_{r}$ into $L^{p'}(Q)$ such that (\ref{2.6}) holds with $B_{r}$ in place of $B_{r}\cap \mathcal{C}_{\mathbb{R}}(\overline{Q})^{N}$. Whence we deduce a sequence $(g_{n})_{n\geq 1}$ of mappings $g_{n}:B_{n}\to L^{p'}(Q)$ with $g_{n}(\Phi )=G^{\varepsilon }(\cdot ,\cdot ,\Phi )$ for $\Phi \in B_{n}\cap \mathcal{C}_{\mathbb{R}}(\overline{Q})^{N}$. Noticing that $L_{\mathbb{R}}^{p}(Q)^{N}$ is the union of the balls $B_{n}$ $(n\geq 1)$ and, on the other hand, $g_{n+1}(\Phi )=g_{n}(\Phi )$ for $\Phi \in B_{n}$ ,we are led to a uniquely defined continuous mapping $g:L_{\mathbb{R} }^{p}(Q)^{N}\to L^{p'}(Q)$ such that $g(\Phi )=$ $ G^{\varepsilon }\left( \cdot ,\cdot ,\Phi \right) $ for any $\Phi \in \mathcal{C}_{\mathbb{R}}(\overline{Q})^{N}$. Hence the proposition follows by the density of $\mathcal{C}_{\mathbb{R}}(\overline{Q})^{N}$ in $L_{\mathbb{R}}^{p}(Q)^{N}$. \end{proof} \begin{corollary} \label{corol 2.1} We have \begin{gather} a^{\varepsilon }(\cdot ,\cdot ,\omega )=\omega \quad \text{ a.e. in } Q, \label{2.7} \\ \left\| a^{\varepsilon }(\cdot ,\cdot ,Du)-a^{\varepsilon }(\cdot ,\cdot ,Dv)\right\| _{L^{p'}(Q)^{N}}\leq \alpha _{1}\left\| \left| Du\right| +\left| Dv\right| \right\| _{L^{p}(Q)}^{p-2}\left\| Du-Dv\right\| _{L^{p}(Q)^{N}} \label{2.8} \end{gather} and \begin{equation} \begin{aligned} \Big[ a\big( \frac{x}{\varepsilon },\frac{t}{\varepsilon },Du(x,t)\big) -a\big( \frac{x}{\varepsilon },\frac{t}{\varepsilon },Dv(x,t)\big) \Big] \cdot \left( Du(x,t)-Dv(x,t)\right) \\ \geq \alpha _{0}\left| Du(x,t)-Dv(x,t)\right| ^{p}\quad \text{a.e. in } (x,t)\in Q \end{aligned} \label{2.9} \end{equation} for all $u,v\in L^{p}\left( 0,T;W^{1,p}\left( \Omega ;\mathbb{R}\right) \right) $, where $a^{\varepsilon }(\cdot ,\cdot ,Du)=\left\{ a_{i}^{\varepsilon }(\cdot ,\cdot ,Du)\right\} _{1\leq i\leq N}$. \end{corollary} Due to (\ref{1.1})-(\ref{1.3}) and Lemma \ref{lm2.2}, this corollary is a direct consequence of Proposition \ref{prop2.1} with $G=a_{i}$ (the i$^{\text{th}}$ component of the function $(y,\tau ,\lambda )\to a(y,\tau ,\lambda ))$. \begin{remark} \label{rm 2.1} \rm Thanks to Proposition \ref{prop2.1}, the diffusion term in (\ref{1.4}) can now be rigorously defined. Specifically, let $u\in L^{p}\left( 0,T;W^{1,p}\left( \Omega ;\mathbb{R}\right) \right) $. Then $a^{\varepsilon }(\cdot ,\cdot ,Du)\in L^{p'}(Q)^{N}$, as pointed out above. But we may as well view $a^{\varepsilon }(\cdot ,\cdot,Du)$ as a function in $L^{p'}(0,T;L^{p'}(\Omega)^{N})$. Consequently, $\mathop{\rm div}a^{\varepsilon }(\cdot ,\cdot ,Du)$ turns out to precisely represent the function $t\to \mathop{\rm div} a^{\varepsilon }\left( \cdot ,t,Du(\cdot ,t)\right)$ of $(0,T)$ into $W^{-1,p'}\left( \Omega ;\mathbb{R}\right) $, which lies in $L^{p'}(0,T;W^{-1,p'}(\Omega ;\mathbb{R)})$ (this is straightforward). \end{remark} \begin{corollary} \label{corol 2.2} Let $2\leq p<\infty $. For each given real $\varepsilon >0$, there exists a unique $u_{\varepsilon }\in L^{p}(0,T;W_{0}^{1,p}(\Omega ;\mathbb{R}))$ satisfying \eqref{1.4}. \end{corollary} The statement of this corollary is guaranteed by (\ref{2.7})-(\ref{2.9}). For more details we refer to, e.g., \cite[16, 26]{1}. \begin{remark} \label{rm 2.2} \rm More precisely, $u_{\varepsilon }$ lies in \begin{equation*} V^{p}=\Big\{ v\in L^{p}(0,T;W_{0}^{1,p}(\Omega ;\mathbb{R)}):v'=\frac{ \partial v}{\partial t}\in L^{p'}(0,T;W^{-1,p'}(\Omega ; \mathbb{R))}\Big\} . \end{equation*} With the norm $\| v\| _{V^{p}}=\| v\|_{L^{p}\left( 0,T;W_{0}^{1,p}(\Omega )\right) } +\| v'\|_{L^{p'}\left( 0,T;W^{-1,p'}(\Omega )\right) }$, $V^{p}$ is a Banach space. For further needs it is worth noting that, since $p\geq 2$, the space $W_{0}^{1,p}\left( \Omega ;\mathbb{R}\right)$ is continuously and densely embedded in $L_{\mathbb{R}}^{2}(\Omega )$. Hence, identifying $L_{\mathbb{R}}^{2}(\Omega )$ with its dual, it follows \begin{equation*} W_{0}^{1,p}\left( \Omega ;\mathbb{R}\right) \subset L_{\mathbb{R}}^{2}(\Omega )\subset W^{-1,p'}\left( \Omega ;\mathbb{R}\right) \end{equation*} with continuous embeddings. This has two important consequences:\\ 1) We will use the same symbol, to denote both the inner product in $L_{\mathbb{R}}^{2}(\Omega )$ and the duality between the spaces $W^{-1,p'}(\Omega ;\mathbb{R})$ and $W_{0}^{1,p}(\Omega ;\mathbb{R})$.\\ 2) The space $V^{p}$ is continuously embedded in $\mathcal{C}([0,T];L_{\mathbb{R}}^{2}(\Omega ))$ (this is a classical result). Thus, we may define $v(t)$ for $v\in V^{p}$ and $0\leq t\leq T$, and further the mapping $v\to v(t)$ sends continuously $V^{p}$ into $L_{\mathbb{R}}^{2}(\Omega )$. Hence, we may consider the space $V_{0}^{p}=\{v\in V^{p}:v(0)=0\}$, a Banach space with the $V^{p}$-norm, which turns out to contain the solution $u_{\varepsilon }$ of (\ref{1.4}). \end{remark} \section{The Abstract Homogenization problem} For any notation, notion and result concerning homogenization structures and homogenization algebras we refer the reader to \cite[21]{18}. The letter $E$ throughout will denote exclusively a family of positive real numbers admitting 0 as an accumulation point. In the particular case where $E=(\varepsilon _{n})_{n\geq 0}$ with $0<\varepsilon _{n}\leq 1$ and $\varepsilon _{n}\to 0$ as $n\to \infty $, we will refer to $E$ as a \textit{fundamental sequence}. \subsection{Fundamentals of homogenization structures} To the benefit of the reader we summarize below a few basic notions and results about the homogenization structures. We refer to \cite[21]{18} for further details. We start with one underlying concept. We say that a set $\Gamma \subset \mathcal{B}(\mathbb{R}_{y}^{N})$ is a \textit{structural representation} on $\mathbb{R}^{N}$ if (1) $\Gamma $ is a group under multiplication in $\mathcal{B}(\mathbb{R}_{y}^{N})$ (2) $\Gamma $ is countable (3) $\gamma \in \Gamma $ implies $\overline{\gamma }\in \Gamma $ ($\overline{ \gamma }$ the complex conjugate of $\gamma $) (4) $\Gamma \subset \Pi ^{\infty }$. Here, $\Pi ^{\infty }$ denotes the space of functions $u\in \mathcal{B}(\mathbb{R}_{y}^{N})$ such that $u^{\varepsilon }\to M(u)$ in $L^{\infty }(\mathbb{R}_{x}^{N})$-weak $*$ as $\varepsilon \to 0$ ($\varepsilon >0$), where $u^{\varepsilon }(x)=u\left( \frac{x}{\varepsilon }\right) $ ($x\in \mathbb{R}^{N}$) and $M(u)\in \mathbb{C}$. We recall in passing that the complex mapping $u\to M(u)$ on $\Pi^{\infty }$ is a positive continuous linear form with $M(1)=1$ and $M(\tau_{h}u)=M(u)$ (for $u\in \Pi ^{\infty }$ and $h\in \mathbb{R}^{N}$) where $\tau_{h}u(y)=u(y-h)$ ($y\in \mathbb{R}^{N}$). Thus, $M$ is a mean value (see \cite[19]{18} for further details). Now, in the collection of all structural representations on $\mathbb{R}^{N}$ we consider the equivalence relation $\sim $ defined as: $\Gamma \sim \Gamma'$ if and only if $CLS(\Gamma )=CLS(\Gamma ')$, where $CLS(\Gamma )$ denotes the closed vector subspace of $\mathcal{B}(\mathbb{R}_{y}^{N})$ spanned by $\Gamma $. By an $H$\textit{-structure} on $\mathbb{R}_{y}^{N}$ ($H$ stands for \textit{homogenization}) is understood any equivalence class modulo $\sim $. An $H$-structure is fully determined by its image. Specifically, let $\Sigma $ be an $H$-structure on $\mathbb{R}^{N}$. Put $A=CLS(\Gamma )$ where $\Gamma $ is any equivalence class representative of $\Sigma $ (such a $\Gamma $ is termed a \textit{representation} of $\Sigma $). The space $A$ is a so-called $H$-algebra on $\mathbb{R}_{y}^{N}$, that is, a closed subalgebra of $\mathcal{B}(\mathbb{R}_{y}^{N})$ with the properties: (5) $A$ with the supremum norm is separable (6) $A$ contains the constants (7) If $u\in A$ then $\overline{u}\in A$ (8) $A\subset \Pi ^{\infty }$. Furthermore, $A$ depends only on $\Sigma $ and not on the chosen representation $\Gamma $ of $\Sigma $. Thus, we may set $A=\mathcal{J}(\Sigma )$ (the \textit{image} of $\Sigma $). This yields a mapping $\Sigma\to \mathcal{J}(\Sigma )$ that carries the collection of all $H$-structures bijectively over the collection of all $H$-algebras on $\mathbb{R}_{y}^{N}$ (see \cite[Theorem 3.1]{18}). Let $A$ be an $H$-algebra on $\mathbb{R}_{y}^{N}$. Clearly $A$ (with the supremum norm) is a commutative $\mathcal{C}^{*}$-algebra with identity (the involution is here the usual one of complex conjugation). We denote by $\Delta (A)$ the spectrum of $A$ and by $\mathcal{G}$ the Gelfand transformation on $A$. We recall that $\Delta (A)$ is the set of all nonzero multiplicative linear forms on $A$, and $\mathcal{G}$ is the mapping of $A$ into $\mathcal{C}(\Delta (A))$ such that $\mathcal{G}(u)(s)=\left\langle s,u\right\rangle $ ($s\in \Delta (A)$), where $\langle ,\rangle $ denotes the duality between $A'$ (the topological dual of $A$) and $A$. The topology on $\Delta (A)$ is the relative weak $*$ topology on $A'$. So topologized, $\Delta (A)$ is a metrizable compact space, and the Gelfand transformation is an isometric isomorphism of the $\mathcal{C}^{*}$-algebra $A$ onto the $\mathcal{C}^{*}$-algebra $\mathcal{C}(\Delta (A))$. For further details concerning the Banach algebras theory we refer to \cite{15}. The basic measure on $\Delta (A)$ is the so-called $M$-measure for $A$, namely the positive Radon measure $\beta $ (of total mass $1$) on $\Delta (A)$ such that $M(u)=\int_{\Delta (A)} \mathcal{G}(u)d\beta $ for $u\in A$ (see \cite[Proposition 2.1]{18}). The partial derivative of index $i$ ($1\leq i\leq N$) on $\Delta (A)$ is defined to be the mapping $\partial _{i}=\mathcal{G}\circ D_{y_{i}}\circ \mathcal{G}^{-1}$ (usual composition) of $\mathcal{D}^{1}(\Delta (A))=\{\varphi \in \mathcal{C}(\Delta (A)):\mathcal{G}^{-1}(\varphi )\in A^{1}\}$ into $\mathcal{C}(\Delta (A))$, where $A^{1}=\{\psi \in \mathcal{C} ^{1}(\mathbb{R}^{N}):$ $\psi ,D_{y_{i}}\psi \in A$ ($1\leq i\leq N$)$\}$. Higher order derivatives are defined analogously. At the present time, let $A^{\infty }$ be the space of $\psi \in \mathcal{C}^{\infty }(\mathbb{R} _{y}^{N}) $ such that $D_{y}^{\alpha }\psi =\frac{\partial ^{\left| \alpha \right| }\psi }{\partial y_{1}^{\alpha _{1}}\dots \partial y_{N}^{\alpha _{N}}}\in A$ for every multi-index $\alpha =(\alpha _{1},\dots ,\alpha _{N})\in \mathbb{N}^{N}$, and let $\mathcal{D}(\Delta (A))=\{\varphi \in \mathcal{C}(\Delta (A)):$ $\mathcal{G}^{-1}(\varphi )\in A^{\infty }\}$. Endowed with a suitable locally convex topology (see \cite {18}), $A^{\infty } $ (resp. $\mathcal{D}(\Delta (A))$) is a Fr\'{e}chet space and further, $\mathcal{G}$ viewed as defined on $A^{\infty }$ is a topological isomorphism of $A^{\infty }$ onto $\mathcal{D}(\Delta (A))$. Any continuous linear form on $\mathcal{D}(\Delta (A))$ is referred to as a distribution on $\Delta (A)$. The space of all distributions on $\Delta (A)$ is then the dual, $\mathcal{D}'(\Delta (A))$, of $\mathcal{D} (\Delta (A))$. We endow $\mathcal{D}'(\Delta (A))$ with the strong dual topology. If we assume that $A^{\infty }$ is dense in $A$ (this condition is always fulfilled in practice), which amounts to assuming that $\mathcal{D}(\Delta (A))$ is dense in $\mathcal{C}(\Delta (A))$, then $L^{p}(\Delta (A))\subset \mathcal{D}'(\Delta (A))$ ($1\leq p\leq \infty $) with continuous embedding (see \cite{18} for more details). Hence we may define \begin{equation*} W^{1,p}(\Delta (A))=\{u\in L^{p}(\Delta (A)):\text{ }\partial _{i}u\in L^{p}(\Delta (A))\text{ (}1\leq i\leq N\text{)}\} \end{equation*} where the derivative $\partial _{i}u$ is taken in the distribution sense on $\Delta (A)$ (exactly as the Schwartz derivative is taken in the classical case). We equip $W^{1,p}(\Delta (A))$ with the norm \begin{equation*} \|u\|_{W^{1,p}(\Delta (A))}=\|u\|_{L^{p}(\Delta (A))}+\sum_{i=1}^{N}\|\partial _{i}u\|_{L^{p}(\Delta (A))}\text{ \thinspace } \left( u\in W^{1,p}(\Delta (A))\right) , \end{equation*} which makes it a Banach space. However, we will be mostly concerned with the space \begin{equation*} W^{1,p}(\Delta (A))/\mathbb{C=}\Big\{ u\in W^{1,p}(\Delta (A)):\int_{\Delta (A)}u(s)d\beta (s)=0\Big\} \end{equation*} provided with the seminorm \begin{equation*} \|u\|_{W^{1,p}(\Delta (A))/\mathbb{C}}=\sum_{i=1}^{N}\|\partial _{i}u\|_{L^{p}(\Delta (A))} \quad \left( u\in W^{1,p}(\Delta (A))/\mathbb{C}\right) . \end{equation*} So topologized, $W^{1,p}(\Delta (A))/\mathbb{C}$ is in general nonseparated and noncomplete. We denote by $W_{\#}^{1,p}(\Delta (A))$ the separated completion of $W^{1,p}(\Delta (A))/\mathbb{C}$ and by $J$ the canonical mapping of $W^{1,p}(\Delta (A))/\mathbb{C}$ into its separated completion (see, e.g., chapter II of \cite{6} and page 29 of \cite{9}). $W_{\#}^{1,p}(\Delta (A))$ is a Banach space and $W_{\#}^{1,2}(\Delta (A))$ is a Hilbert space. Furthermore, as pointed out in \cite{18}, the distribution derivative $\partial _{i}$ viewed as a mapping of $W^{1,p}(\Delta (A))/\mathbb{C}$ into $L^{p}(\Delta (A))$ extends to a unique continuous linear mapping, still denoted by $\partial _{i}$, of $W_{\#}^{1,p}(\Delta (A))$ into $L^{p}(\Delta (A))$ such that $\partial _{i}J(v)=\partial _{i}v$ for $v\in W^{1,p}(\Delta (A))/\mathbb{C}$ and \begin{equation*} \|u\|_{W_{\#}^{1,p}(\Delta (A))}=\sum_{i=1}^{N}\|\partial _{i}u\|_{L^{p}(\Delta (A))}\text{ for }u\in W_{\#}^{1,p}(\Delta (A)). \end{equation*} To an $H$-structure $\Sigma $ on $\mathbb{R}^{N}$ there are attached the important concepts of weak and strong $\Sigma $-convergence in $L^{p}$ ($1\leq p<\infty $) for which we refer to \cite{18}. \subsection{The abstract structure hypothesis} Let $\Sigma _{y}$ and $\Sigma _{\tau }$ be two $H$-structures of class $\mathcal{C}^{\infty }$ on $\mathbb{R}_{y}^{N}$ and $\mathbb{R}_{\tau }$, respectively, and let $\Sigma =\Sigma _{y}\times \Sigma _{\tau }$ be their product, which is an $H$-structure of class $\mathcal{C}^{\infty }$ on $\mathbb{ R}^{N}\times \mathbb{R}$. We introduce their respective images (i.e., the associated $H$-algebras) : $A_{y}=\mathcal{J}(\Sigma _{y})$, $A_{\tau }= \mathcal{J}(\Sigma _{\tau })$ and $A=\mathcal{J}(\Sigma )$. The same letter, $\mathcal{G}$, will denote the Gelfand transformation on $A_{y}$, $A_{\tau }, $ and $A$, as well. Points in $\triangle (A_{y})$ (resp. $\triangle (A_{\tau })$) are denoted by $s$ (resp. $s_{0}$). The compact space $\triangle (A_{y}) $ (resp. $\triangle (A_{\tau })$) is equipped with the $M$ -measure, $\beta _{y}$ (resp. $\beta _{\tau }$), for $A_{y}$ (resp. $A_{\tau }$). We have $\triangle (A)=$ $\triangle (A_{y})\times \triangle (A_{\tau })$ (Cartesian product) and the $M$-measure for $A$, with which $\triangle (A)$ is equipped, is precisely the product $\beta =\beta _{y}\otimes \beta _{\tau}$. Now, let $1\leq p<\infty $. Let $\Xi ^{p}$ denote the space of all $u\in L_{\rm loc}^{p}\left( \mathbb{R}_{y}^{N}\times \mathbb{R}_{\tau }\right) $ for which the sequence $\left( u^{\varepsilon }\right) _{0<\varepsilon \leq 1}$ [where $u^{\varepsilon }(x,t)=u\left( \frac{x}{\varepsilon },\frac{t}{\varepsilon } \right) $ \ $\left( x\in \mathbb{R}^{N},t\in \mathbb{R}\right) $] is bounded in $L_{\rm loc}^{p}\left( \mathbb{R}_{x}^{N}\times \mathbb{R}_{t}\right) $. This is a Banach space with norm \begin{equation*} \left\| u\right\| _{\Xi ^{p}}=\sup_{0<\varepsilon \leq 1} \Big(\int_{B_{N+1}}\Big| u \Big(\frac{x}{\varepsilon },\frac{t}{\varepsilon } \Big)\Big| ^{p}dx\,dt\Big) ^{1/p} \end{equation*} where $B_{N+1}$ is the open unit ball in $\mathbb{R}^{N+1}$. Next, we define $\mathfrak{X}_{\Sigma }^{p}$ to be the closure of $A$ in $\Xi ^{p}$. We equip $\mathfrak{X}_{\Sigma }^{p}$ with the $\Xi ^{p}$-norm, which makes it a Banach space. It is worth recalling that the Gelfand transformation $\mathcal{G} :A\to \mathcal{C}\left( \triangle (A)\right) $ extends by continuity to a continuous linear mapping, still denoted by $\mathcal{G}$, of $\mathfrak{X} _{\Sigma }^{p}$ into $L^{p}\left( \triangle (A)\right) $. This is referred to as the canonical mapping of $\mathfrak{X}_{\Sigma }^{p}$ into $L^{p}\left( \triangle (A)\right) $. We are now in a position to state the so-called abstract homogenization problem for (\ref{1.4}). Let \begin{equation*} A_{\mathbb{R}}=A\cap \mathcal{C}_{\mathbb{R}}\left( \mathbb{R}^{N}\times \mathbb{R} \right) . \end{equation*} The main purpose of the present section is to investigate the limiting behaviour, as $\varepsilon \to 0$, of $u_{\varepsilon }$ (the solution of (\ref{1.4})) under the \textit{abstract structure hypothesis} \begin{equation} a_{i}\left( \cdot ,\cdot ,\Psi \right) \in \mathfrak{X}_{\Sigma }^{p'} \quad \text{for all }\Psi \in \left( A_{\mathbb{R}}\right) ^{N}\; (1\leq i\leq N) \label{3.1} \end{equation} with $2\leq p<\infty $ and $p'=\frac{p}{p-1}$, where $a_{i}(\cdot ,\cdot ,\Psi )$ denotes the function $(y,\tau )\to a_{i}(y,\tau ,\Psi (y,\tau ))$ from $\mathbb{R}^{N}\times \mathbb{R}$ to $\mathbb{R}$, which belongs to $L_{\mathbb{R}}^{\infty }\left( \mathbb{R}^{N}\times \mathbb{R}\right) $ (see point (4.1) of \cite{22}). The problem thus stated is precisely what is referred to as the \textit{abstract homogenization problem} for (\ref{1.4}) in a deterministic setting. However, as will be seen later, one further assumption on $\Sigma $, the \textit{quasi-properness} hypothesis, will be necessary to the resolution of the preceding abstract homogenization problem. Meanwhile, let us prove a few basic results we will need. In the sequel we assume that (\ref{3.1}) holds. Thus, if $\Psi \in \left( A_{\mathbb{R}}\right) ^{N}$, then $a_{i}\left( \cdot ,\cdot ,\Psi \right) $ lies in $\mathfrak{X}_{\Sigma }^{p',\infty }= \mathfrak{X}_{\Sigma }^{p'}\cap $ $L_{\mathbb{R}}^{\infty }\left( \mathbb{R} ^{N}\times \mathbb{R}\right) $. Consequently, $\mathcal{G}\left( a_{i}\left( \cdot ,\cdot ,\Psi \right) \right) \in L^{\infty }\left( \triangle (A)\right) $ \cite[corollary 2.2]{18}. With this in mind, let the index $1\leq i\leq N$ be arbitrarily fixed. For $\mathbf{\varphi }=\left( \varphi _{j}\right) _{1\leq j\leq N}$ in $\mathcal{C}_{\mathbb{R}}\left( \triangle (A)\right) ^{N}$, let \begin{equation*} b_{i}\left( \mathbf{\varphi }\right) =\mathcal{G}\left( a_{i}\left( \cdot ,\cdot ,\mathcal{G}^{-1}\mathbf{\varphi }\right) \right) \end{equation*} where $\mathcal{G}^{-1}\mathbf{\varphi }=\left( \mathcal{G}^{-1}\varphi _{j}\right) _{1\leq j\leq N}$. This defines a transformation $b_{i}$ of $\mathcal{C}_{\mathbb{R}}\left( \triangle (A)\right) ^{N}$ into $L^{\infty }\left( \triangle (A)\right) $. \begin{proposition} \label{prop3.1} Let $2\leq p<\infty $. Suppose \eqref{3.1} holds. For $\Psi =\left( \psi _{j}\right) _{1\leq j\leq N}$ in $\mathcal{C}(\overline{Q} ;(A_{\mathbb{R}})^{N})$, let $b_{i}(\widehat{\Psi }(x,t))=\mathcal{G} \left( a_{i}\left( \cdot ,\cdot ,\Psi \left( x,t\right) \right) \right) $ for $(x,t)\in \overline{Q}$, where $\widehat{\Psi }=(\widehat{\psi }_{j})_{1\leq j\leq N}$ with $\widehat{\psi }_{j}=\mathcal{G}\circ \psi _{j}$. This defines a mapping $(x,t)\to b_{i}(\widehat{\Psi }(x,t))$, still denoted by $b_{i}(\widehat{\Psi })$, of $\overline{Q}$ into $L^{\infty}(\triangle (A))$. The following assertions are true: \begin{itemize} \item[(i)] We have $b_{i}(\widehat{\Psi })\in \mathcal{C(}\overline{Q} ;L^{\infty }(\triangle (A)))$ and \begin{equation} a_{i}^{\varepsilon }\left( \cdot ,\cdot ,\Psi ^{\varepsilon }\right) \to b_{i}(\widehat{\Psi })\quad \text{in }L^{p'}(Q)\text{-weak } \Sigma \text{ as }\varepsilon \to 0, \label{3.3} \end{equation} where $\Psi ^{\varepsilon }=(\psi _{j}^{\varepsilon })_{1\leq j\leq N}$, $\psi _{j}^{\varepsilon }$ defined as in (\ref{2.4}). \item[(ii)] The mapping $\Phi \to b(\Phi )=(b_{i}(\Phi ))_{1\leq i\leq N}$ of $\mathcal{C}(\overline{Q};\mathcal{C}_{\mathbb{R}}(\triangle (A))^{N})$ into $L^{p'}(Q\times \triangle (A))^{N}$ extends by continuity to a mapping, still denoted by $b$, of the space $L^{p}(Q;L_{\mathbb{R}}^{p}(\triangle (A))^{N})$ into $L^{p'}(Q\times \triangle (A))^{N}$ such that \begin{equation} \left\| b\left( \mathbf{u}\right) -b\left( \mathbf{v}\right) \right\| _{L^{p'}(Q\times \triangle (A))^{N}} \leq \alpha _{1}\left\| \left| \mathbf{u}\right| +\left| \mathbf{v}\right| \right\| _{L^{p}(Q\times \triangle (A))}^{p-2}\left\| \mathbf{u}-\mathbf{v} \right\| _{L^{p}(Q;L_{\mathbb{R}}^{p}(\triangle (A))^{N})} \label{3.4} \end{equation} and \begin{equation} \left( b\left( \mathbf{u}\right) -b\left( \mathbf{v}\right) \right) \cdot \left( \mathbf{u}-\mathbf{v}\right) \geq \alpha _{0}\left| \mathbf{u}- \mathbf{v}\right| ^{p}\text{ a.e. in }Q\times \triangle (A) \label{3.5} \end{equation} for all $\mathbf{u},\mathbf{v}\in L^{p}(Q;L_{\mathbb{R}}^{p}(\triangle(A))^{N})$. \end{itemize} \end{proposition} The proof of \cite[Proposition 4.1]{22} carries over mutatis mutandis to the present setting. \begin{remark} \label{rm 3.1} \rm We have in particular \begin{itemize} \item[(1)] $b(\omega )=\omega $ \item[(2)] $| b(\lambda )-b(\mu )| \leq \alpha _{1}(\left| \lambda \right| +\left| \mu \right| )^{p-2}\left| \lambda -\mu \right|$ ($\lambda,\mu \in \mathbb{R}^{N}$) \item[(3)] $(b(\lambda )-b(\mu ))\cdot (\lambda -\mu )\geq \alpha _{0}\left| \lambda -\mu \right| ^{p}$ ($\lambda ,\mu \in \mathbb{R}^{N}$). \end{itemize} \end{remark} As a consequence of Proposition \ref{3.1}, there is the following important corollary. \begin{corollary} \label{corol 3.1} Let \begin{equation} \Phi _{\varepsilon }=\psi _{0}+\varepsilon \psi _{1}^{\varepsilon }, \label{3.6} \end{equation} i.e., $\Phi _{\varepsilon }(x,t)=\psi _{0}( x,t) +\varepsilon \psi _{1}( x,t,\frac{x}{\varepsilon },\frac{t}{\varepsilon }) $ for $(x,t)\in Q$, where $\psi _{0}\in \mathcal{D}_{\mathbb{R}}(Q)=\mathcal{K}_{ \mathbb{R}}(Q)\cap \mathcal{C}^{\infty }(Q)$ and $\psi _{1}\in \mathcal{D}_{\mathbb{R}}(Q)\otimes A_{\mathbb{R}}^{\infty }$ with $A_{\mathbb{R}}^{\infty}=A^{\infty }\cap A_{\mathbb{R}}$. Then, as $\varepsilon \to 0$, \begin{equation*} a_{i}^{\varepsilon }\left( \cdot ,\cdot ,D\Phi _{\varepsilon }\right) \to b_{i}(D\psi _{0}+\partial \widehat{\psi }_{1})\text{ in } L^{p'}(Q)\text{-weak }\Sigma \;\;\left( 1\leq i\leq N\right) \end{equation*} where $\partial $ stands for the gradient operator on $\Delta (A_{y})$ [specifically, we have here $\partial \widehat{\psi }_{1}=(\partial _{j} \widehat{\psi }_{1})_{1\leq j\leq N}$ with $\partial _{j}\widehat{\psi }_{1}=\partial _{j}\circ \widehat{\psi }_{1}$ viewed as a function of $\overline{Q}\times \Delta (A_{\tau })$ into $\mathcal{D}(\Delta (A_{y}))$, where $\partial _{j}$ is the partial derivative of index $j$ on $\Delta (A_{y})$]. Furthermore, if $\left( v_{\varepsilon }\right) _{\varepsilon \in E}$ is a sequence in $L^{p}(Q)$ such that $v_{\varepsilon }\to v_{0}$ in $L^{p}(Q)$-weak $\Sigma $ as $E\ni \varepsilon \to 0$, then, as $E\ni \varepsilon \to 0$, \begin{equation*} \int_{Q}a_{i}^{\varepsilon }\left( \cdot ,\cdot ,D\Phi _{\varepsilon }\right) v_{\varepsilon }dxdt\to \int \int_{Q\times \Delta (A)}b_{i}(D\psi _{0}+\partial \widehat{\psi }_{1})v_{0}\text{\thinspace } \,dx\,dt\,d\beta \quad \left( 1\leq i\leq N\right) . \end{equation*} \end{corollary} The proof of this corollary is a simple adaptation of the proof of \cite[Corollary 4.1]{22}. \subsection{Quasi-proper H-structures} The basic notation and hypotheses are as in the preceding subsection. Now, for $1\leq p<\infty $, we put \begin{equation*} \mathcal{H}=L^{p}(\Delta (A_{\tau });W_{\#}^{1,p}(\Delta (A_{y});\mathbb{R})), \end{equation*} a Banach space with an obvious norm. The canonical mapping of $W^{1,p}(\Delta (A_{y}))/\mathbb{C}$ into its separated completion, $W_{\#}^{1,p}(\Delta (A_{y}))$, will be denoted by $J_{y}$. \begin{definition} \label{def 3.1} \rm The $H$-structure $\Sigma =\Sigma _{y}\times \Sigma _{\tau }$ is said to be quasi-proper for some real $p>1$ if the following two conditions are fulfilled: \begin{itemize} \item[(QP1)] $\Sigma _{y}$ is total for $p$, i.e., $\mathcal{D}(\Delta (A_{y}))$ is dense in $W^{1,p}(\Delta (A_{y}))$ \item[(QP2)] Given a bounded sequence $(u_{\varepsilon})_{\varepsilon \in E}$ in $V^{p}$ (see Remark 2.2), where $E$ is a fundamental sequence, there exist a subsequence $E'$ from $E$ and some $\mathbf{u}=(u_{0},u_{1})\in V^{p}\times L^{p}(Q;\mathcal{H})$ such that, as $E'\ni \varepsilon \to 0$, \begin{gather} u_{\varepsilon }\to u_{0}\quad \text{in }V^{p}\text{-weak} \label{3.7} \\ \frac{\partial u_{\varepsilon }}{\partial x_{j}}\to \frac{\partial u_{0}}{\partial x_{j}}+\partial _{j}u_{1}\;\;in\;L^{p}(Q)\text{-weak } \Sigma \;\;(1\leq j\leq N). \label{3.8} \end{gather} \end{itemize} \end{definition} \begin{remark} \label{rm 3.2} \rm The partial derivative $\partial _{j}u_{1}$ in (\ref{3.8}) needs an explanation. First, let us once for all keep in mind that for $1\leq j\leq N$, the symbol $\partial _{j}$ denotes the partial derivative of index $j$ on $\Delta (A_{y})$ whereas $\partial _{0}$ denotes the derivative on $\Delta (A_{\tau})$. Now, let $1\leq j\leq N$. It is to be noted that $\partial _{j}$ yields a transformation, still denoted by $\partial_{j}$, that maps continuously and linearly $W_{\#}^{1,p}\left( \Delta(A_{y})\right) $ into $L^{p}\left( \Delta (A_{y})\right) $ and in particular $W_{\#}^{1,p}\left( \Delta (A_{y});\mathbb{R}\right) $ into $L_{\mathbb{R}}^{p}\left( \Delta (A_{y})\right) $ (see \cite{22}). With this in mind, if $\Phi \in \mathcal{H}$, then $\partial_{j}\Phi $ is understood as $\partial _{j}\circ \Phi $ (usual composition). We have $\partial _{j}\Phi \in L_{\mathbb{R}}^{p}\left( \Delta(A)\right) $, and the transformation $\Phi \to \partial_{j}\Phi $ maps continuously and linearly $\mathcal{H}$ into $L_{\mathbb{R}}^{p}\left( \Delta (A)\right) $. Accordingly if $u_{1}\in L^{p}\left( Q;\mathcal{H}\right)$, then $\partial _{j}u_{1}$ is naturally defined as being the function $(x,t)\to \partial_{j}\left( u_{1}(x,t)\right) $ from $Q$ to $L_{\mathbb{R}}^{p}\left( \Delta (A)\right) $. We have $\partial _{j}u_{1}\in L_{\mathbb{R}}^{p}\left( Q\times \Delta (A)\right)$, and the transformation $u_{1}\to \partial _{j}u_{1}$ maps continuously and linearly $L^{p}\left( Q;\mathcal{H}\right) $ into $L_{\mathbb{R}}^{p}\left( Q\times \Delta (A)\right) $. \end{remark} \begin{remark} \label{rm 3.3} \rm Let $E\ni \varepsilon \to 0$. In order that (\ref{3.7}) hold, it is necessary and sufficient that we have $u_{\varepsilon }\to u_{0}$ in $L^{p}(0,T;W_{0}^{1,p}(\Omega))$-weak and $\frac{\partial u_{\varepsilon }}{\partial t}\to \frac{\partial u_{0}}{\partial t}$ in $L^{p'}(0,T;W^{-1,p'}(\Omega ))$-weak. \end{remark} \subsection{Homogenization results} Throughout this subsection we assume that $2\leq p<\infty $ and the $H$-structure $\Sigma =\Sigma _{y}\times \Sigma _{\tau }$ is quasi-proper for $p $. In the sequel, the space $\mathbb{H}=L^{p}(0,T;W_{0}^{1,p}(\Omega ;\mathbb{R}))\times L^{p}(Q;\mathcal{H})$ is equipped with the norm $\left\| \mathbf{v} \right\| _{\mathbb{H}}=\left\| v_{0}\right\| _{L^{p}(0,T;W_{0}^{1,p}(\Omega ; \mathbb{R}))}+\left\| v_{1}\right\| _{L^{p}(Q;\mathcal{H})}$, $\mathbf{v=}(v_{0},v_{1})\in \mathbb{H}$, which makes it a Banach space. We will need the following lemma. \begin{lemma} \label{lm 3.1} $\mathfrak{F}_{0}^{\infty }=\mathcal{D}_{\mathbb{R}}(Q)\times ( \mathcal{D}_{\mathbb{R}}(Q)\otimes [\mathcal{D}_{\mathbb{R}}(\Delta (A_{\tau }))\otimes J_{y}(\mathcal{D}_{\mathbb{R}}(\Delta (A_{y}))/\mathbb{C})])$ is dense in $L^{p}(0,T;W_{0}^{1,p}(\Omega ;\mathbb{R}))\times L^{p}(Q;\mathcal{H})$. \end{lemma} \begin{proof} In view of (QP1) (Definition \ref{3.1}), the space $\mathcal{D}_{\mathbb{R}}(\Delta (A_{\tau }))\otimes J_{y}(\mathcal{D}_{\mathbb{R} }(\Delta (A_{y}))/\mathbb{C})$ is dense in $\mathcal{H}$ (use \cite[Remark 3.5]{22} and the fact that $\Sigma _{\tau }$ is of class $\mathcal{C}^{\infty }$). We deduce immediately that $\mathcal{D}_{\mathbb{R}}(Q)\otimes [\mathcal{ D}_{\mathbb{R}}(\Delta (A_{\tau }))\otimes J_{y}(\mathcal{D}_{\mathbb{R}}(\Delta (A_{y}))/\mathbb{C})]$ is dense in $L^{p}(Q;\mathcal{H})$. Hence, the lemma follows by the density of $\mathcal{D}_{\mathbb{R}}(Q)$ in $L^{p}(0,T;W_{0}^{1,p}(\Omega ;\mathbb{R}))$. \end{proof} \begin{remark} \label{rm 3.4} \rm We have \begin{equation*} \mathcal{D}_{\mathbb{R}}\left( \Delta (A_{\tau })\right) \otimes \left[ \mathcal{D}_{\mathbb{R}}\left( \Delta (A_{y})\right) /\mathbb{C}\right] =\mathcal{G }\left( _{\mathbb{R}}A_{\tau }^{\infty }\otimes \left[ _{\mathbb{R}}A_{y}^{\infty }/\mathbb{C}\right] \right) \end{equation*} where $\mathcal{G}$ is here the Gelfand transformation on $A$, and where $_{\mathbb{R}}A_{\tau }^{\infty }=A_{\tau }^{\infty }\cap \mathcal{C}_{\mathbb{R}}(\mathbb{R})$ and $_{\mathbb{R}}A_{y}^{\infty }/\mathbb{C}=\left\{ \psi \in A_{y}^{\infty } \cap \mathcal{C}_{\mathbb{R}}(\mathbb{R}^{N}):M(\psi )=0\right\} $ ($M$ denotes the mean value on $\mathbb{R}^{N}$ in the sense of \cite[Subsection 2.1]{18}). \end{remark} \begin{lemma} \label{lm 3.2} The variational problem \begin{equation} \begin{gathered} \mathbf{u}=(u_{0},u_{1})\in \mathbb{F}_{0}^{1,p}=V_{0}^{p}\times L^{p}(Q; \mathcal{H})\quad \text{:} \\ \int_{0}^{T}(u_{0}'(t),v_{0}(t))dt+\int \int_{Q\times \Delta (A)}b(Du_{0}+\partial u_{1})\cdot (Dv_{0}+\partial v_{1})\,dx\,dt\,d\beta \\ =\int_{0}^{T}(f(t),v_{0}(t))dt, \end{gathered} \label{3.10} \end{equation} for all $\mathbf{v} =(v_{0},v_{1})\in \mathbb{F}_{0}^{1,p}$, has at most one solution. \end{lemma} The proof of this lemma follows in a quite classical way (use in particular (\ref{3.5}) and $b(\omega )=\omega $). We are now in a position to state and prove the main result in the present section. \begin{theorem} \label{th 3.1} Let $2\leq p<\infty $. Suppose \eqref{3.1} holds and $\Sigma=\Sigma _{y}\times \Sigma _{\tau }$ is quasi-proper for $p$. For each fixed real number $\varepsilon >0$, let $u_{\varepsilon }$ be the solution of the initial-boundary value problem \eqref{1.4}. As $\varepsilon \to 0$, we have \begin{gather} u_{\varepsilon }\to u_{0}\quad\mbox{in }L^{p}(0,T;W_{0}^{1,p}(\Omega )) \text{-weak} \label{3.11} \\ \frac{\partial u_{\varepsilon }}{\partial t}\to \frac{\partial u_{0} }{\partial t}\quad\mbox{in } L^{p'}(0,T;W^{-1,p'}(\Omega ))\text{-weak} \label{3.12} \\ \frac{\partial u_{\varepsilon }}{\partial x_{j}}\to \frac{\partial u_{0}}{\partial x_{j}}+\partial _{j}u_{1}\quad\mbox{in } L^{p}(Q)\text{-weak }\Sigma \quad (1\leq j\leq N), \label{3.13} \end{gather} where $\mathbf{u}=\left( u_{0},u_{1}\right) $ is the unique solution of \eqref{3.10}. \end{theorem} \begin{proof} The first point is to check that the sequence $(u_{\varepsilon})_{\varepsilon >0}$ is bounded in $V^{p}$. To this end, observe that $u_{\varepsilon }\in V_{0}^{p}$ (Remark \ref{2.2}) and \begin{equation} \int_{0}^{T}(u_{\varepsilon }'(t),v(t))dt+\int_{Q}a^{\varepsilon }(x,t,Du_{\varepsilon }(x,t))\cdot Dv(x,t)dx\,dt =\int_{0}^{T}(f(t),v(t))dt \label{3.14} \end{equation} for all $v\in V_{0}^{p}$, where $\varepsilon >0$ is arbitrarily fixed. Taking in particular $v=u_{\varepsilon }$ and using \begin{equation} \int_{0}^{T}(u_{\varepsilon }'(t),u_{\varepsilon }(t))dt=\frac{1}{2} \left\| u_{\varepsilon }(T)\right\| _{L^{2}(\Omega )}^{2}\geq 0 \label{3.15} \end{equation} and (\ref{2.7})-(\ref{2.9}), we obtain by mere routine \begin{equation} \underset{\varepsilon >0}{\sup }\left\| u_{\varepsilon }\right\| _{L^{p}(0,T;W_{0}^{1,p}(\Omega ))}<\infty . \label{3.16} \end{equation} Using (\ref{2.7})-(\ref{2.8}), once again, it follows \begin{equation*} \underset{\varepsilon >0}{\sup }\left\| a^{\varepsilon }(\cdot ,\cdot ,Du_{\varepsilon })\right\| _{L^{p'}(Q)^{N}}<\infty , \end{equation*} hence $\underset{\varepsilon >0}{\sup }\left\| \mathop{\rm div}a^{\varepsilon }(\cdot ,\cdot ,Du_{\varepsilon })\right\| _{L^{p'}(0,T;W^{-1,p'}(\Omega ))}<\infty $. We deduce by (\ref{1.4}) that \begin{equation*} \underset{\varepsilon >0}{\sup }\Big\| \frac{\partial u_{\varepsilon }}{ \partial t}\Big\| _{L^{p'}(0,T;W^{-1,p'}(\Omega ))}<\infty , \end{equation*} which combines with (\ref{3.16}) to show that the sequence $(u_{\varepsilon })_{\varepsilon >0}$ is bounded in $V^{p}$, hence also in $V_{0}^{p}$. Thus, given an arbitrary fundamental sequence $E$, the quasi-properness of $\Sigma $ (see especially (QP2)) guarantees the existence of a subsequence $E'$ from $E$ and of some $\mathbf{u}=(u_{0},u_{1})\in \mathbb{F}_{0}^{1,p}=V_{0}^{p}\times L^{p}(Q;\mathcal{H})$ such that as $E'\ni \varepsilon \to 0$, (\ref{3.11})-(\ref{3.13}) hold true (see Remark \ref{rm 3.3}). Therefore, thanks to Lemma \ref{lm 3.2}, the theorem is proved once we have established that the vector function $\mathbf{ u}=(u_{0},u_{1})$ satisfies the variational equation in (\ref{3.10}) (the conclusive argument is classical; see, e.g., the proof of \cite[Theorem 4.1]{22}). To do this, let $\Phi \in \mathfrak{F}_{0}^{\infty }$ (see Lemma \ref{lm 3.1}), i.e., $\Phi =(\psi _{0},J_{y}(\widehat{\psi }_{1}))$ with $\psi _{0}\in \mathcal{D}_{\mathbb{R}}(Q),\;\psi _{1}\in \mathcal{D}_{\mathbb{R}}(Q)\otimes [_{ \mathbb{R}}A_{\tau }^{\infty }\otimes (_{\mathbb{R}}A_{y}^{\infty }/\mathbb{C})]$ (see Remark \ref{rm 3.4}), $\widehat{\psi }_{1}=\mathcal{G}\circ \psi _{1}$ and $J_{y}(\widehat{\psi }_{1})=\;J_{y}\circ \widehat{\psi }_{1}$ ($\widehat{\psi }_{1}$ viewed as a function of $\overline{Q}\times \Delta (A_{\tau }) $ into $\mathcal{D}(\Delta (A_{y}))/\mathbb{C})$. Define $\Phi _{\varepsilon }$ as in (\ref{3.6}). Clearly $\Phi _{\varepsilon }\in \mathcal{D}_{\mathbb{R}}(Q). $ In (\ref{3.14}), take $v=\Phi _{\varepsilon }$ and then use (\ref{2.9}) to get \begin{equation*} 0\leq \int_{0}^{T}(f(t)-u_{\varepsilon }'(t),u_{\varepsilon }(t)-\Phi _{\varepsilon }(t))dt-\int_{Q}a^{\varepsilon }(\cdot ,\cdot ,D\Phi _{\varepsilon })\cdot (Du_{\varepsilon }-D\Phi _{\varepsilon })dxdt \end{equation*} or, according to (\ref{3.15}), \begin{equation} \begin{aligned} \frac{1}{2}\left\| u_{\varepsilon }(T)\right\| _{L^{2}(\Omega )}^{2} &\leq \int_{0}^{T}(f(t),u_{\varepsilon }(t)-\Phi _{\varepsilon }(t))dt+\int_{0}^{T}(u_{\varepsilon }'(t),\Phi _{\varepsilon }(t))dt\\ &\quad -\int_{Q}a^{\varepsilon }(\cdot ,\cdot ,D\Phi _{\varepsilon })\cdot (Du_{\varepsilon }-D\Phi _{\varepsilon })dxdt \end{aligned} \label{3.17} \end{equation} and that for any $\varepsilon >0$. Our goal now is to pass to the limit when $E'\ni \varepsilon \to 0$. First, as $\varepsilon \to 0$, we have \begin{gather} \frac{\partial \Phi _{\varepsilon }}{\partial x_{j}}\to \frac{ \partial \psi _{0}}{\partial x_{j}}+\partial _{j}\widehat{\psi } _{1}\quad\mbox{in }L^{q}(Q)\text{-weak }\Sigma \quad (1\leq j\leq N) \label{3.18}\\ \frac{\partial \Phi _{\varepsilon }}{\partial t}\to \frac{\partial \psi _{0}}{\partial t}+\partial _{0}\widehat{\psi }_{1}\quad\mbox{in }L^{q}(Q) \text{-weak }\Sigma , \label{3.19} \end{gather} and that for any given $1\leq q<\infty $. Choosing in particular $q=p$ and using \cite[Propositions 2.5 and 4.4]{18}, it follows that $\Phi _{\varepsilon }\to \psi _{0}$ in $W_{0}^{1,p}(Q)$-weak. Hence $\Phi _{\varepsilon }\to \psi _{0}$ in $L^{p}(0,T;W_{0}^{1,p}(\Omega ))$-weak as $\varepsilon \to 0$, since $W_{0}^{1,p}(Q)$ is continuously embedded in $L^{p}(0,T;W_{0}^{1,p}(\Omega ))$. Recalling (\ref{3.11}) (when $E'\ni \varepsilon \to 0\;$), we finally arrive at $\int_{0}^{T}(f(t),u_{\varepsilon }(t)-\Phi _{\varepsilon }(t))dt\to \int_{0}^{T}(f(t),u_{0}(t)-\psi _{0}(t))dt$ when $E'\ni \varepsilon \to 0$. Next, observe that \begin{equation*} \int_{0}^{T}(u_{\varepsilon }'(t),\Phi _{\varepsilon }(t))dt=-\int_{Q}u_{\varepsilon }\frac{\partial \Phi _{\varepsilon }}{ \partial t}dxdt. \end{equation*} Thanks to the fact that $V^{p}\;$(for $2\leq p<\infty $) is compactly embedded in the space $L^{p}(0,T;L^{2}(\Omega ))$ (this is a classical property; use, e.g., \cite[p.58, Theorem 5.1]{16}) and that the latter is continuously embedded in $L^{2}(Q)$, we have (from (\ref{3.11})-(\ref{3.12} ))\ \ $u_{\varepsilon }\to u_{0}$ in $L^{2}(Q)$ as $E'\ni \varepsilon \to 0$. Combining this with (\ref{3.19}) (for $q=2$), it follows that \begin{equation*} \int_{0}^{T}(u_{\varepsilon }'(t),\Phi _{\varepsilon }(t))dt\to \int_{0}^{T}(u_{0}'(t),\psi _{0}(t))dt\quad \text{as }E'\ni \varepsilon \to 0. \end{equation*} Now, based on (\ref{3.13}) (when $E'\ni \varepsilon \to 0$, of course) and (\ref{3.18}) (with $q=p$), a quick application of Corollary 3.1 yields \begin{equation*} \int_{Q}a^{\varepsilon }(\cdot ,\cdot ,D\Phi _{\varepsilon })\cdot (Du_{\varepsilon }-D\Phi _{\varepsilon })dxdt\to \;\int \int_{Q\times \Delta (A)}b(\mathbb{D}\Phi )\cdot \mathbb{D}(\mathbf{u}-\Phi )\,dx\,dt\,d\beta \end{equation*} as $E'\ni \varepsilon \to 0$, where, for $\mathbf{v} =(v_{0},v_{1})\in L^{p}(0,T;\;W_{0}^{1,p}(\Omega ))\;\times L^{p}(Q;\mathcal{ H})$, we denote $\mathbb{D}\mathbf{v}=Dv_{0}+\partial v_{1}$ with $D=(D_{x_{i}})_{1\leq i\leq N}$ and $\partial =(\partial _{i})_{1\leq i\leq N}$. Finally, as pointed out in Remark \ref{rm 2.2}, the transformation $v\to \left\| v(T)\right\| _{L^{2}(\Omega )}^{2}$ is continuous on $V_{0}^{p}$. On the other hand, according to (\ref{3.11})-(\ref{3.12}), we have $u_{\varepsilon }\to u_{0}$ in $V_{0}^{p}$-$weak$ as $E'\ni \varepsilon \to 0$. Hence, by a classical argument it follows that \begin{equation*} \left\| u_{0}(T)\right\| _{L^{2}(\Omega )}^{2}\leq \underset{E'\ni \varepsilon \to 0}{\lim \inf }\left\| u_{\varepsilon }(T)\right\| _{L^{2}(\Omega )}^{2}. \end{equation*} Therefore, taking the $\lim \inf_{E'\ni \varepsilon \to 0}$ of both sides of (\ref{3.17}) and using \begin{equation*} \frac{1}{2}\left\| u_{0}(T)\right\| _{L^{2}(\Omega )}^{2}=\int_{0}^{T}(u_{0}'(t),u_{0}(t))dt, \end{equation*} one arrives at \begin{equation*} 0\leq \int_{0}^{T}(f(t)-u_{0}'(t),u_{0}(t)-\psi _{0}(t))dt-\int \int_{Q\times \Delta (A)}b(\mathbb{D}\Phi )\cdot \mathbb{D}(\mathbf{u}-\Phi )dx\,dt\,d\beta \end{equation*} and that for any $\Phi \in \mathfrak{F}_{0}^{\infty }$. Thanks to Lemma 3.1, this still holds true for $\Phi \in L^{p}(0,T;W_{0}^{1,p}(\Omega ;\mathbb{R} ))\times L^{p}(Q;\mathcal{H})$, hence for $\Phi \in \mathbb{F}_{0}^{1,p}$. Therefore the theorem follows by a classical line of reasoning (proceed as in the proof of \cite[Theorem 4.1]{22}). \end{proof} The variational problem (\ref{3.10}) is called the global homogenized problem for (\ref{1.4}) under the abstract structure hypothesis (\ref{3.1}) with $\Sigma $ quasi-proper (for the given real $p\geq 2$). The term \textit{ global} is used here to lay emphasis on the fact that (\ref{3.10}) includes both the local (or microscopic) equation for $u_{1}(x,t)$ (where $(x,t)$ is fixed in $Q$) and the macroscopic homogenized equation for $u_{0}$. Specifically, by choosing in (\ref{3.10}) the test function $\mathbf{v} =(v_{0},v_{1})$ such that $v_{0}=0$ and $v_{1}(x,t)=\varphi (x,t)w$ with $\varphi \in \mathcal{D}_{\mathbb{R}}(Q)$ and $w\in \mathcal{H}$, we obtain the so-called local equation at (fixed) $(x,t)\in Q$ : \begin{equation} \int_{\Delta (A)}b(Du_{0}(x,t)+\partial u_{1}(x,t))\cdot \partial w\text{ \thinspace }d\beta =0\text{ \ for all }w\in \mathcal{H}. \label{3.20} \end{equation} As regards the derivation of the macroscopic homogenized equation, let $r\in \mathbb{R}^{N}$ be freely fixed. Consider the so-called cell problem \begin{gather*} \pi (r)\in \mathcal{H}: \\ \int_{\Delta (A)}b(r+\partial \pi (r))\cdot \partial w\text{\thinspace } d\beta =0\quad \text{for all }w\in \mathcal{H} \end{gather*} which uniquely determines $\pi (r)$, thanks to Remark \ref{rm 3.1} (see \cite[Chap.3]{14}). Then, taking in particular $r=Du_{0}(x,t)$ with $(x,t)$ arbitrarily fixed in $Q$, and comparing with (\ref{3.20}), it follows at once \begin{equation} u_{1}=\pi (Du_{0}) \label{3.21} \end{equation} where the right-hand side stands for the function $(x,t)\to \pi (Du_{0}(x,t))$ from $Q$ to $\mathcal{H}$. Hence, substituting (\ref{3.21}) in (\ref{3.10}) and choosing there the test functions $\mathbf{v} =(v_{0},v_{1})$ such that $v_{1}=0$, we are led to the so-called macroscopic homogenized problem for (\ref{1.4}), viz. \begin{equation} \begin{gathered} \frac{\partial u_{0}}{\partial t}-\mathop{\rm div}q(Du_{0})=f\quad \text{in }Q \\ u_{0}=0\quad \text{on }\partial \Omega \times (0,T) \\ u_{0}(x,0)=0\quad \text{in }\Omega, \end{gathered} \label{3.22} \end{equation} where $q(r)=\int_{\Delta (A)}b(r+\partial \pi (r))d\beta$ ($r\in \mathbb{R}^{N}$). \begin{remark} \label{rm 3.5} \rm A vector function $\mathbf{u}=(u_{0},u_{1})$ satisfies (\ref{3.10}) if and only if the macroscopic component $u_{0}$ solves (\ref{3.22}) and the microscopic component, $u_{1}(x,t)$, at a given point $(x,t)\in Q$ solves (\ref{3.20}). Thanks to Lemma \ref{lm 3.2}, this guarantees the uniqueness in (\ref{3.22}). \end{remark} \begin{remark} \label{rm 3.6} \rm We have $q(\omega )=0$ and further it can be shown that the function $r\to q(r)$ satisfies inequalities of the same type \textit{mutatis mutandis} as in Remark \ref{rm 3.1}. \end{remark} \subsection{Study of a concrete case. Harmonic H-structures} We start with the following definition. \begin{definition} \label{def 3.2} \rm The $H$-structure (of class $\mathcal{C}^{\infty }$) $\Sigma_{y}$ on $\mathbb{R}^{N}$ is termed $p$-harmonic (for some given $11$). Then $\Sigma =\Sigma _{y}\times \Sigma _{\tau }$ is quasi-proper for $p$. \end{proposition} \begin{proof} We need verify only (QP2). So let $(u_{\varepsilon })_{\varepsilon \in E}$ be a bounded sequence in $V^{p}$, $E$ being fundamental. Based on the reflexivity of $V^{p}$ and on the $\Sigma $-reflexivity of $L^{p}(Q)$ \cite[Theorem 4.1]{18}, we can find a subsequence $E'$ from $E$, a function $u_{0}\in V^{p}$ and a family $(z_{j})_{1\leq j\leq N}\subset L_{ \mathbb{R}}^{p}(Q\times \Delta (A))$ such that as $E'\ni \varepsilon \to 0$, we have $u_{\varepsilon }\to u_{0}$ in $V^{p}$-$weak$ and $\frac{\partial u_{\varepsilon }}{\partial x_{j}}\to z_{j}$ in $L^{p}(Q)$-$weak\;\Sigma \;\;(1\leq j\leq N)$. Thus, the proposition is proved if we can establish that there is some function $u_{1}\in L^{p}(Q; \mathcal{H})$ such that \begin{equation} z_{j}=\frac{\partial u_{0}}{\partial x_{j}}+\partial _{j}u_{1}\quad (1\leq j\leq N). \label{3.24} \end{equation} To do this, let $\Phi =(\phi _{j})_{1\leq j\leq N},$\ $\phi _{j}\in L^{p'}(Q;A),$ with \begin{equation*} \phi _{j}(x,t,y,\tau )=\varphi (x,t)\psi _{j}(y)w(\tau ) \quad ((x,t)\in Q,\; y\in \mathbb{R}^{N},\; \tau \in \mathbb{R}), \end{equation*} where $\varphi \in \mathcal{D}(Q)$, $\Psi =(\psi _{j})\in \mathcal{V}_{div}$ and $w\in A_{\tau }^{\infty }$. Clearly \begin{equation*} \sum_{j=1}^{N}\int_{Q}\frac{\partial u_{\varepsilon }}{\partial x_{j}}\psi _{j}^{\varepsilon }w^{\varepsilon }\varphi dx\,dt=-\sum_{j=1}^{N}\int_{Q}u_{\varepsilon }\psi _{j}^{\varepsilon }w^{\varepsilon }\frac{\partial \varphi }{\partial x_{j}}dx\,dt. \end{equation*} Passing to the limit (as $E'\ni \varepsilon \to 0$) on both sides gives \begin{equation*} \sum_{j=1}^{N}\int \int_{Q\times \Delta (A)}z_{j}\widehat{\psi }_{j}\widehat{ w}\varphi \,dx\,dt\,d\beta =\sum_{j=1}^{N}\int \int_{Q\times \Delta (A)}\frac{ \partial u_{0}}{\partial x_{j}}\widehat{\psi }_{j}\widehat{w}\varphi \,dx\,dt\,d\beta \end{equation*} where, regarding the right-hand side, we have used the facts that $u_{\varepsilon }\to u_{0}$ in $L^{2}(Q)$ as $E'\ni \varepsilon \to 0$ (see the proof of Theorem \ref{3.1}) and $\psi_{j}^{\varepsilon }w^{\varepsilon }\to \int_{\Delta (A)}\widehat{ \psi }_{j}\widehat{w}d\beta $ in $L^{2}(Q)$-weak as $\varepsilon \to 0$. Using first the arbitrariness of $\varphi $ and then that of $w$, we quickly arrive at (\ref{3.23}) for all $\Psi \in \mathcal{V}_{div}$, where \begin{equation*} f_{j}(s)=z_{j}(x,t,s,s_{0})-\frac{\partial u_{0}}{\partial x_{j}} (x,t)\quad (s\in \Delta (A_{y})), \end{equation*} $(x,t)\in Q$ and $s_{0}\in \Delta (A_{\tau })$ being fixed. Thanks to the $p$-harmonicity of $\Sigma _{y}$, this yields a function $u_{1}\in L^{p}(Q; \mathcal{H})$ such that (\ref{3.24}) holds (to show this is an easy matter), as claimed. \end{proof} This is worth illustrating the results above. \begin{example} \label{exple 3.1} \rm Suppose $\Sigma _{y}$ is an almost periodic $H$-structure on $\mathbb{R}^{N}$ \cite[Example 3.3]{18}. Then $\Sigma =\Sigma _{y}\times \Sigma _{\tau }$ (where $\Sigma _{\tau }$ is any $H$-structure of class $\mathcal{C}^{\infty }$ on $\mathbb{R}$) is quasi-proper for $p=2$. Indeed, $\Sigma_{y}$ is $2$-harmonic (this is established in a preprint by the first author) and so the claimed property follows by Proposition \ref{prop 3.2}. \end{example} \begin{example} \label{exple 3.2} \rm Suppose $\Sigma _{y}$ is the periodic $H$-structure on $\mathbb{R}^{N}$ represented by a network $\mathcal{R}\subset \mathbb{R}^{N}$, say $\mathcal{R}=\mathbb{Z}^{N}$ (see \cite[Example 3.2]{18}). Then $\Sigma _{y}$\emph{\ is }$p$-harmonic for any real $p>1$ (see \cite[Subsection 3.3]{22}). Consequently, according to Proposition \ref{prop 3.2}, the $H$-structure $\Sigma =\Sigma _{y}\times \Sigma _{\tau }$ (where $\Sigma _{\tau }$ is an arbitrary $H$-structure of class $\mathcal{C}^{\infty }$ on $\mathbb{R}$) is quasi-proper for any real $p>1$. \end{example} \section{Concrete homogenization problems for \eqref{1.4}} This section provides concrete examples of homogenization problems for (\ref{1.4}). More precisely, we study here the limiting behaviour, as $\varepsilon \to 0$, of $u_{\varepsilon }$ (the solution of (\ref{1.4})) under various \textit{concrete }structure hypotheses. It should be noted that in practice the statement of a homogenization problem makes no mention of the concept of a homogenization structure, still less of that of a quasi-proper $H$-structure. The term \textit{concrete} used above is precisely intended to stress this fact, as opposed to the abstract nature of (\ref{3.1}). In fact, in view of the fundamental results achieved in the preceding section, our only concern in each example under consideration below will be to show that the concrete structure hypothesis supplementing (\ref{1.4}) (so as to yield a solvable homogenization problem) can be reduced to (\ref{3.1}) for a suitable quasi-proper $H$-structure $\Sigma $. This is the general point of view. We will see that the particular case where the diffusion term in (\ref{1.4}) is linear entails considerable simplifications with regard to practice. \subsection{General case} Just as in the preceding subsections, it is not specified here whether the diffusion term in (\ref{1.4}) is linear or nonlinear. \subsubsection*{Problem I} (Periodic setting) As we mentioned in Section 1, the homogenization of (\ref{1.4}) under the periodicity hypothesis has been sufficiently investigated. We will only draw attention to the fact that the present study includes the periodic setting. Indeed, suppose for each fixed $\lambda \in \mathbb{R}^{N}$, the function $(y,\tau )\to a(y,\tau ,\lambda )$ is $Y$-periodic in $y\in \mathbb{R} ^{N}$ and $Z$-periodic in $\tau \in \mathbb{R}$ with, e.g., $Y=(0,1)^{N}$ and $Z=(0,1)$. It amounts to saying that for any $k\in \mathcal{R}=\mathbb{Z}^{N}$ and any $l\in \mathcal{S}=\mathbb{Z}$, we have $a(y+k,\tau +l,\lambda )=a(y,\tau ,\lambda )$ \ a.e. in $(y,\tau )\in \mathbb{R}^{N}\mathbb{\times R}$. Immediately we see that the appropriate homogenization structures are the periodic $H$-structures $\Sigma _{y}=\Sigma _{\mathcal{R}}$ and $\Sigma _{\tau }=\Sigma _{\mathcal{S}}$ represented by $\mathcal{R}=\mathbb{Z}^{N}$ and $\mathcal{S}=\mathbb{Z}$, respectively (see \cite[Example 3.2]{18}). In other words, in the present case we have $A_{y}=\mathcal{C}_{\rm per}(Y),\;A_{\tau }= \mathcal{C}_{\rm per}(Z)$, and hence $A=\mathcal{C}_{\rm per}(Y\times Z)$. Then, as pointed out in Example \ref{exple 3.2}, the product homogenization structure $\Sigma =\Sigma _{y}\times \Sigma _{\tau }$ is quasi-proper for any $10$. By the continuity of $\varphi $ and the density of $D$ in $X$, we may consider some $\zeta \in D$ such that $\left\| \varphi_{i}(x)-\varphi _{i}(\zeta )\right\| _{p,\infty } \leq \frac{\eta }{c}$ where $c$ is a positive constant such that $\left| M(u)\right| \leq c\left\|u\right\| _{p,\infty }$ ($u\in L_{AP}^{p}(\mathbb{R}^{d})$). It follows that $\left| M(\varphi _{i}(x)\overline{\gamma }_{k})-M(\varphi _{i}(\zeta ) \overline{\gamma }_{k})\right| \leq \eta $ for all $k\in \mathbb{R}^{d}$. But $M(\varphi _{i}(\zeta )\overline{\gamma }_{k})=0$ for all $k\in \mathbb{R}^{d}\backslash \mathcal{R}$. By the arbitrariness of $\eta $ we deduce that $M(\varphi _{i}(x)\overline{\gamma }_{k})=0$ for all $k\in \mathbb{R}^{d}\backslash \mathcal{R}$. Hence $\varphi _{i}(x)\in L_{AP,\mathcal{R}}^{p}(\mathbb{R}^{d})$. This completes the proof. \end{proof} We are now in a position to study the almost periodic homogenization of (\ref{1.4}). \begin{example} \label{exple 4.1} \rm Our goal here is to investigate the limiting behaviour, as $\varepsilon \to 0$, of $u_{\varepsilon }$, the solution of (\ref{1.4}) for $p=2$, under the structure hypothesis \begin{equation} a_{i}(\cdot ,\cdot ,\lambda )\in L_{AP}^{2}(\mathbb{R}^{N+1})\quad \text{ for fixed }\lambda \in \mathbb{R}^{N}\quad (1\leq i\leq N). \label{4.2} \end{equation} \end{example} According to Theorem \ref{th 3.1}, this homogenization problem is quite solvable and the results are available in Subsection 3.4 if we can find a suitable quasi-proper $H$-structure $\Sigma =\Sigma _{y}\times \Sigma _{\tau}$ for $p=2$ such that (\ref{3.1}) holds for $p=2$. To achieve this, we shall require the following property: For $\Psi \in AP(\mathbb{R}^{N+1};\mathbb{R})^{N}$, we have \begin{equation} \sup_{k\in \mathbb{Z}^{N+1}} \int_{k+Z}\left| a(y-r,\tau -\sigma ,\Psi (y,\tau ))-a(y,\tau ,\Psi (y,\tau ))\right| ^{2}dyd\tau \to 0 \label{4.3} \end{equation} as $\left| r\right| \to 0$ and $\sigma \to 0$, where $Z=(0,1)^{N+1}$. \begin{remark} \label{rm 4.1} \rm Condition (\ref{4.3}) is satisfied if the following condition holds: For each bounded set $\Lambda \subset \mathbb{R}^{N}$ and each real $\eta >0$, there exists a real $\rho >0$ such that \begin{equation} \left| a(y-r,\tau -\sigma ,\lambda )-a(y,\tau ,\lambda )\right| \leq \eta \label{4.4} \end{equation} for all $\lambda \in \Lambda$ and for almost all $(y,\tau )\in \mathbb{R}^{N+1}$ provided $\left| r\right| +\left| \sigma \right| \leq \rho$. Indeed, if (\ref{4.4}) holds and if $\Psi $ is given in $AP(\mathbb{R}^{N+1};\mathbb{R})^{N}$, then by choosing $\Lambda =\Psi (\mathbb{R}^{N+1})$ (range of $\Psi $) we get at once (\ref{4.3}). \end{remark} This being so, let $(\theta _{n})_{n\geq 1}$ be a sequence with $\theta _{n}\in \mathcal{D}_{\mathbb{R}}(\mathbb{R}^{N+1}),\theta _{n}\geq 0$, $\mathop{\rm Supp}\theta _{n}\subset \frac{1}{n}\overline{B}_{N+1}$ ($B_{N+1}$ the open unit ball of $\mathbb{R}^{N+1}$, $\overline{B}_{N+1}$ its closure) and $\int \theta _{n}(y,\tau )dyd\tau =1$. Let \begin{equation*} \zeta _{n}^{i}(y,\tau ,\lambda )=\int \theta _{n}(r,\sigma )a_{i}(y-r,\tau -\sigma ,\lambda )drd\sigma \quad (1\leq i\leq N) \end{equation*} for $\lambda ,y\in \mathbb{R}^{N}$ and $\tau \in \mathbb{R}$, which defines a function $(y,\tau ,\lambda )\to \zeta _{n}^{i}(y,\tau ,\lambda )$ of $\mathbb{R}^{N}\times \mathbb{R}\times \mathbb{R}^{N}$ into $\mathbb{R}$. Clearly $\zeta _{n}^{i}(\cdot ,\cdot ,\lambda )\in AP(\mathbb{R}^{N+1})$ for each $\lambda \in \mathbb{R}^{N}$, and further $\left| \mathbf{\zeta }_{n}(y,\tau ,\lambda )-\mathbf{\zeta }_{n}(y,\tau ,\mu )\right| \leq \alpha _{1}\left| \lambda -\mu \right| $ for all $\lambda ,\mu ,y\in \mathbb{R}^{N}$ and all $\tau \in \mathbb{R}$, where $\mathbf{\zeta }_{n}=(\zeta _{n}^{i})_{1\leq i\leq N}$. Now, thanks to Corollary \ref{corol 4.1}, there exists a countable subgroup $R$ of $\mathbb{R}^{N+1}$ such that $\zeta _{n}^{i}(\cdot ,\cdot ,\lambda )\in AP_{R}(\mathbb{R}^{N+1})\;(1\leq i\leq N)$ for all $\lambda \in \mathbb{R}^{N}$ and all integers $n\geq 1$. Let $\mathcal{R}_{y}=pr_{y}(R)$ and $\mathcal{R} _{\tau }=pr_{\tau }(R)$, where $pr_{y}$ (resp. $pr_{\tau }$) stands for the natural projection of $\mathbb{R}^{N+1}=\mathbb{R}_{y}^{N}\times \mathbb{R}_{\tau }$ onto $\mathbb{R}_{y}^{N}$ (resp. $\mathbb{R}_{\tau }$). The set $\mathcal{R}_{y}$ (resp. $\mathcal{R}_{\tau }$) is a countable subgroup of $\mathbb{R}^{N}$ (resp. $\mathbb{R}$). Therefore $\mathcal{R=R}_{y}\times \mathcal{R}_{\tau }$ is a countable subgroup of $\mathbb{R}^{N+1}$ with moreover $R\subset \mathcal{R}$. Hence \begin{equation} \zeta _{n}^{i}(\cdot ,\cdot ,\lambda )\in A=AP_{\mathcal{R}}(\mathbb{R} ^{N+1})\quad (\lambda \in \mathbb{R}^{N},\; n\in \mathbb{N}^{*},\;1\leq i\leq N) \label{4.5} \end{equation} and \begin{equation} \Sigma _{\mathcal{R}}=\Sigma _{\mathcal{R}_{y}}\times \Sigma _{\mathcal{R} _{\tau }}\quad \text{(see \cite[Example 3.6]{18})} \label{4.6} \end{equation} where $\Sigma _{\mathcal{R}}$ (resp. $\Sigma _{\mathcal{R}_{y}},\Sigma _{ \mathcal{R}_{\tau }}$) is the almost periodic $H$-structure on $\mathbb{R} ^{N+1} $ (resp. $\mathbb{R}^{N},\;\mathbb{R}$) represented by $\mathcal{R}$ (resp. $\mathcal{R}_{y},\;\mathcal{R}_{\tau }$). Recalling that $\Sigma _{\mathcal{R }}$ is quasi-proper for $p=2$ (see Example \ref{exple 3.1}), we see that the problem under consideration is completely solved if we show that (\ref{3.1}) holds with $\Sigma =\Sigma _{\mathcal{R}}$ and $p=2$. To this end, starting from (\ref{4.5}) and following the same line of reasoning as in \cite[Subsection 5.5]{22} leads to $\zeta _{n}^{i}(\cdot ,\cdot ,\Psi )\in A$ for all $\Psi \in (A_{\mathbb{R}})^{N}\;(n\in \mathbb{N}^{*},\;1\leq i\leq N)$. On the other hand, by an obvious adaptation of the procedure in \cite[Subsection 5.6]{22} one quickly arrives at the following result : \begin{itemize} \item[] Given $\Psi \in (A_{\mathbb{R}})^{N}$ and $1\leq i\leq N$, to each $\eta >0$ there is assigned some integer $\nu \geq 1$ such that $\left\| \zeta _{n}^{i}(\cdot ,\cdot ,\Psi )-a_{i}(\cdot ,\cdot ,\Psi )\right\| _{2,\infty }\leq \eta$ for all $n\geq \nu$. \end{itemize} Since $(L^{2},l^{\infty })(\mathbb{R}^{N+1})$ is continuously embedded in $\Xi ^{2}(\mathbb{R}^{N+1})$ (this follows immediately by (\ref{4.1})), the desired result follows from all that. \begin{remark} \label{rm 4.2}\rm If instead of (\ref{4.2}) we consider the structure hypothesis: \begin{equation*} a_{i}(\cdot ,\cdot ,\lambda )\in AP(\mathbb{R}^{N+1})\quad \text{for fixed } \lambda \in \mathbb{R}^{N}\quad (1\leq i\leq N), \end{equation*} then (\ref{4.3}) may be disregarded. Indeed, proceeding directly as in \cite[Subsection 5.5]{22} we arrive at $a_{i}(\cdot ,\cdot ,\Psi )\in A$ for all $\Psi \in (A_{\mathbb{R}})^{N}\;\;(1\leq i\leq N)$, which leads at once to (\ref{3.1}) with $\Sigma _{\mathcal{R}}$ as in (\ref{4.6}), and with $p=2$, of course. \end{remark} \subsubsection*{Problem III} The present problem deals with two closely connected examples. \begin{example} \label{exple 4.2} \rm We assume here that the family $\{a(\cdot ,\cdot ,\lambda )\}_{\lambda \in \mathbb{R}^{N}}$ satisfies the condition \begin{itemize} \item[(BUE)] For each bounded set $\Lambda \subset \mathbb{R}^{N}$ and each real $\eta >0$, there exists a real $\rho >0$ such that $\left|a(y-r,\tau -\sigma ,\lambda )-a(y,\tau ,\lambda )\right| \leq \eta$ for all $\lambda \in \Lambda$ and all $(y,\tau )\in \mathbb{R}^{N}\times \mathbb{R}$ provided $\left|r\right| +\left| \sigma \right| \leq \rho$. \end{itemize} \end{example} \begin{remark} \label{rm 4.3} \rm Condition (BUE) is more practical than its analog (UE) in \cite[Subsection 5.4]{22}. In fact, \cite[Proposition 5.2]{22} and its proof remain unchanged if the sole points $\lambda $ considered in (UE) are those lying in an arbitrarily fixed bounded set $\Lambda \subset \mathbb{R}^{N}$. This remark carries over \textit{mutatis mutandis} to \cite[Subsection 5.7]{22}. \end{remark} Assuming (BUE), we want to study the homogenization of (\ref{1.4}) (for any given real $p\geq 2$) under the structure hypothesis \begin{equation} a_{i}(\cdot ,\cdot ,\lambda )\in \mathcal{B}_{\infty }(\mathbb{R};\mathcal{C} _{\rm per}(Y))\text{ for any }\lambda \in \mathbb{R}^{N}\quad (1\leq i\leq N) \label{4.7} \end{equation} where $Y=(0,1)^{N}$. We recall that $\mathcal{C}_{\rm per}(Y)$ denotes the space of continuous complex functions on $\mathbb{R}^{N}$ that are $Y$-periodic (i.e., that satisfy \ $f(y+k)=f(y)$ \ for all $y\in \mathbb{R}^{N}$and all $k\in \mathbb{Z}^{N}$),\ and $\mathcal{B}_{\infty }(\mathbb{R};\mathcal{C} _{\rm per}(Y)) $ denotes the space of those $f\in \mathcal{C}(\mathbb{R};\mathcal{C} _{\rm per}(Y))$ such that $f(\tau )$ has a limit in $\mathcal{B}(\mathbb{R}^{N})$ when $\left| \tau \right| \to \infty $. Now, let $\Sigma _{\mathbb{Z}^{N}}$ be the periodic $H$-structure on $\mathbb{R} ^{N}$ represented by the network $\mathbb{Z}^{N}$, and $\Sigma _{\mathbb{\infty }}$ be the $H$-structure on $\mathbb{R}$\ of which $\mathcal{B}_{\infty }(\mathbb{R})$ is the image (see \cite[Example 3.4]{18}). The product $H$-structure $\Sigma =\Sigma _{\mathbb{Z}^{N}}\times \Sigma _{\mathbb{\infty }}$ on $\mathbb{R}^{N}\times \mathbb{R}$ is quasi-proper for any $10$. \end{itemize} Then this leads us to Problem IV. Indeed, it is not hard to check that the preceding structure hypothesis implies that $a_{ij}$ belongs to $\mathcal{B}_{\infty }(\mathbb{R};L_{AP}^{2}(\mathbb{R}^{N}))$ (Example \ref{exple 4.4}). \end{example} Our last problem states as follows. \subsubsection*{Problem V} Let $A_{\tau }$ be an $H$-algebra on $\mathbb{R}$ with the property that $A_{\tau }^{\infty }$ is dense in $A_{\tau }$. The matter in hand here is to study the homogenization of (\ref{1.4}) under the hypothesis that \begin{equation} a_{ij}\text{ lies in the closure of }AP(\mathbb{R}^{N})\otimes A_{\tau }\text{ in }(L^{2},l^{\infty })(\mathbb{R}^{N+1})\;(1\leq i,j\leq N). \label{4.11} \end{equation} To begin with, let $\zeta _{nij}\in AP(\mathbb{R}^{N})\otimes A_{\tau }\;\;(n\in \mathbb{N},\;1\leq i,j\leq N)$ be such that $\zeta _{nij}\to a_{ij}$ in $(L^{2},l^{\infty })(\mathbb{R}^{N+1})\;\;(1\leq i,j\leq N)$ as $n\to \infty $. By Proposition \ref{prop 4.1} one is easily led to some countable subgroup $\mathcal{R}$ of $\mathbb{R}^{N}$ such that $\zeta _{nij}\in AP_{\mathcal{R}}(\mathbb{R}^{N})\otimes A_{\tau }$ for all $n\in \mathbb{ N}$ and all indices $1\leq i,j\leq N$. Let $\Sigma =\Sigma _{\mathcal{R} }\times \Sigma _{\mathbb{\tau }}$, where $\Sigma _{\mathcal{R}}$ is as in Problem IV and $\Sigma _{\mathbb{\tau }}$ is the $H$-structure of class $\mathcal{C}^{\infty }$ on $\mathbb{R}$ of which $A_{\tau }$ is the image. The $H $-structure $\Sigma $ on $\mathbb{R}^{N}\times \mathbb{R}$ is quasi-proper for $p=2 $ and its image is the closure, $A$, of $AP_{\mathcal{R}}(\mathbb{R} ^{N})\otimes A_{\tau }$ in $\mathcal{B}(\mathbb{R}^{N}\times \mathbb{R)}$ (see \cite[Proposition 3.2]{18}). Thus, we will be through if we have shown that ( \ref{4.9}) holds. But this is a direct consequence of the fact that $(L^{2},l^{\infty })(\mathbb{R}^{N+1})$ is continuously embedded in $\Xi ^{2}( \mathbb{R}^{N+1})$. Therefore, the homogenization problem under consideration lies within the scope of Theorem \ref{th 3.1} and so we are led to the results of Subsection 3.4. \begin{remark} \label{rm 4.4} \rm According to (\ref{4.11}), the function $(y,\tau)\to a_{ij}(y,\tau )$ is almost periodic in $y\in \mathbb{R}^{N} $ whereas in the variable $\tau \in \mathbb{R}$ it admits a great variety of behaviours. This is illustrated below. \end{remark} \begin{example} \label{exple 4.7} \rm Property (\ref{4.11}) includes (\ref{4.10}) as a particular case. Indeed, this follows by choosing $A_{\tau }=\mathcal{B}_{\infty }(\mathbb{R})$ in (\ref{4.11}) and observing that $AP(\mathbb{R}^{N})\otimes \mathcal{B}_{\infty }(\mathbb{R})$ is a dense subspace of $\mathcal{B}_{\infty }(\mathbb{R};AP(\mathbb{R}^{N}))$. \end{example} \begin{example} \label{exple 4.8} \rm Our purpose in the present example is to study the homogenization of (\ref{1.4}) under the following assumptions, where the pair of indices $1\leq i,j\leq N$ is arbitrarily fixed: \begin{itemize} \item[(SH1)] $a_{ij}(\cdot ,\tau )\in L_{AP}^{2}(\mathbb{R}^{N})$ a.e. in $\tau \in \mathbb{R}$ \item[(SH2)] The function $\tau \to a_{ij}(\cdot ,\tau) $ from $\mathbb{R}$ to $L_{AP}^{2}(\mathbb{R}^{N})$ is piecewise constant in the sense that there exists a mapping $q_{ij}:\mathbb{Z}\to L_{AP}^{2}(\mathbb{R}^{N})$ such that \begin{equation} a_{ij}(\cdot ,\tau )=q_{ij}(k)\quad \text{a.e. in } k\leq \tau 0$ is arbitrarily given and if $\varphi \in \mathcal{K}(Z)$ is such that $\left\| \chi _{Z}-\varphi \right\| _{L^{2}(\mathbb{R})}=\left\| 1-\varphi \right\| _{L^{2}(Z)}\leq \frac{\eta }{c}$, where $c>0$ with $\left| \zeta _{nij}^{l}(k)\right| \leq c\;(k\in \mathbb{Z})$, then $\left\| f_{nij}^{l}-\psi _{nij}^{l}\right\| _{2,\infty }\leq \eta $ \thinspace \thinspace \thinspace with $\psi _{nij}^{l}=\underset{k\in \mathbb{Z}}{\sum } \zeta _{nij}^{l}(k)\tau _{k}\varphi $ (see (\ref{4.13})). Finally, let \begin{equation*} \Phi _{nij}(y,\tau )=\sum_{l\in I}u_{nij}^{l}(y)\psi _{nij}^{l}(\tau )\quad (y\in \mathbb{R}^{N},\;\tau \in \mathbb{R}), \end{equation*} which defines a function in $AP(\mathbb{R}^{N})\otimes A_{\tau }$. It is an elementary exercise to deduce from the preceding development that for any $\eta >0$, there is some integer $n\in \mathbb{N}$ such that $\left\|a_{ij}-\Phi _{nij}\right\| _{2,\infty }\leq \eta $. This completes the proof. \end{proof} \begin{example} \label{exple 4.9} \rm The case to be examined here states as in Example \ref{exple 4.8} except that in (SH3), $\mathcal{B}_{\infty }(\mathbb{Z};L_{AP}^{2}(\mathbb{R}^{N}))$ is substituted by the space $\ell ^{1}(\mathbb{Z};L_{AP}^{2}(\mathbb{R}^{N}))$ of mappings $q:\mathbb{Z}\to L_{AP}^{2}(\mathbb{R}^{N})$ such that $\sum_{k\in \mathbb{Z}}\left\| q(k)\right\| _{2,\infty}<\infty $. Without going too deeply into details let us verify that the present case leads to the same conclusion as in the preceding example. First, let $\ell _{0}^{1}(\mathbb{Z})$ denote the closure in $\ell^{\infty }(\mathbb{Z})$ of the set of functions $r\in \ell ^{\infty }(\mathbb{Z})$ of the form $r=c+r_{0}$ with $c\in \mathbb{C}$ and $r_{0}\in \ell ^{1}(\mathbb{Z})$. We claim that the statement of Proposition \ref{prop 4.2} is still valid when $\mathcal{B}_{\infty }(\mathbb{Z})$, in (\ref{4.13}), is replaced by $\ell _{0}^{1}(\mathbb{Z})$. Indeed, there is no real difficulty in verifying that the proof of the said proposition holds when the symbol $\mathcal{B}_{\infty }$ is replaced by $\ell ^{1}$ (not $\ell _{0}^{1}!$). The details are left to the reader. \end{example} \begin{remark} \rm The coefficient $q_{ij}$ in Example \ref{exple 4.8} is $q_{ij}(k)=\int_{k}^{k+1}a_{ij}(\cdot ,\tau )d\tau $ $(k\in \mathbb{Z})$. \end{remark} \begin{thebibliography}{99} \bibitem{1} H.\ W.\ Alt and S. Luckhaus, \emph{Quasilinear elliptic-parabolic differential equations}, Math. Z., \textbf{183}(1983), 311-341. \bibitem{2} N.\ S.\ Bakhvalov and G.\ P.\ Panasenko, \emph{Homogenization: averaging process in periodic media}, Kluwer, Dordrecht, 1989. \bibitem{3} A.\ Bensoussan, J.\ L.\ Lions and G.\ Papanicolaou, \emph{Asymptotic analysis for periodic structures}, North-Holland, Amsterdam, 1978. \bibitem{4} A.\ S.\ Besicovitch, \emph{Almost periodic functions}, Cambridge Univ. Press, 1932. \bibitem{5} H.\ Bohr, \emph{Almost periodic functions}, Chelsea, New York, 1951. \bibitem{6} N.\ Bourbaki, \emph{Int\'{e}gration, Chap. 1-4}, Hermann, Paris, 1966. \bibitem{7} N.\ Bourbaki, \emph{Int\'{e}gration, Chap. 5}, Hermann, Paris, 1967. \bibitem{8} A.\ Dall'aglio and F.\ Murat, \emph{A corrector result for H-converging parabolic problems with time dependent coefficients}, Ann. Scu. Norm. Super. Pisa, \textbf{25}(1997), 329-373. \bibitem{9} R.\ D.\ Edwards, \emph{Functional analysis}, Holt-Rinehart-Winston, New York et al., 1965. \bibitem{10} J.\ J.\ F.\ Fournier and J.\ Stewart, \emph{Amalgams of L$^{\text{p} } $and $\ell ^{\text{q}}$} , Bull.\ Amer.\ Math.\ Soc., \textbf{13}(1985), 1-21. \bibitem{11} A.\ Guichardet, \emph{Analyse harmonique commutative}, Dunod, Paris, 1968. \bibitem{12} A.\ Holmbom, \emph{Homogenization of parabolic equations: an alternative approach and some corrector type results}, Appl. of Math., \textbf{42}(1997), 321-343. \bibitem{13} V.\ V.\ Jikov(Zhikov), S.\ M.\ Kozlov and O.\ A.\ Oleinik, \emph{Homogenization of differential operators and integral functionals}, Springer-Verlag, Berlin, 1994. \bibitem{14} D.\ Kinderlehrer and G.\ Stampacchia, \emph{An introduction to variational inequalities and their applications}, Acad. Press, New York, 1980. \bibitem{15} R.\ Larsen, \emph{Banach algebras}, Marcel Dekker, New York, 1973. \bibitem{16} J.\ L.\ Lions, \emph{Quelques m\'{e}thodes de r\'{e}solution des probl\`{e}mes aux limites non lin\'{e}aires}, Dunod, Paris, 1969. \bibitem{17} A.\ K.\ Nandakumaran and M.\ Rajesh, \emph{Homogenization of nonlinear degenerate parabolic differential equations}, Electr. J. of Diff. Eqns, \textbf{2001}(2001), No. 17, 1-19. \bibitem{18} G.\ Nguetseng, \emph{Homogenization structures and applications I}, Zeit. Anal. Anwend., \textbf{22}(2003), 73-107. \bibitem{21} G.\ Nguetseng, \emph{Mean value on locally compact abelian groups}, Acta Sci. Math., \textbf{69}(2003), 203-221. \bibitem{ngu1} G.\ Nguetseng, \emph{Homogenization structures and applications II}, Zeit. Anal. Anwend., (to appear). \bibitem{22} G.\ Nguetseng and H.\ Nnang, \emph{Homogenization of nonlinear monotone operators beyond the periodic setting}, Electr. J. of Diff. Eqns, \textbf{2003}(2003), No. 36, 1-24. \bibitem{23} A.\ Pankov, \emph{G-convergence and homogenization of nonlinear partial differential operators}, Kluwer, Dordrecht, 1997. \bibitem{par} E. Pardoux and A. Piatnitski, \emph{Homogenization of a nonlinear Random parabolic partial differential equation}, Stochastic Proc.Appl., \textbf{104}(2000), 1-27. \bibitem{svan} N.\ Svanstedt, \emph{G-convergence of parabolic operators}, Nonlinear Analysis TMA, \textbf{36}(1999), 807-843. \bibitem{24} N.\ Svanstedt, \emph{Correctors for the homogenization of monotone parabolic operators}, J.\ of Nonlin. Math. Phys., \textbf{7}(2000), 268-283. \bibitem{25} E.\ Zeidler, \emph{Nonlinear Functional Analysis and its Applications}, Vol.II.A and II.B, Springer-Verlag, 1990. \bibitem{26} V.\ V.\ Zhikov, S.\ M.\ Kozlov and O.\ A.\ Oleinik, \emph{Homogenization of parabolic operators with almost periodic coefficients}, Matem. Sborn., \textbf{117}(1982), 69-85 (in Russian). \end{thebibliography} \end{document}