\documentclass[reqno]{amsart} %\pdfoutput=1\relax\pdfpagewidth=8.26in\pdfpageheight=11.69in\pdfcompresslevel=9 \usepackage{hyperref} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2004(2004), No. 84, pp. 1--9.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2004 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2004/84\hfil First order impulsive differential inclusions] {On periodic boundary value problems of first-order perturbed impulsive differential inclusions} \author[B. C. Dhage, A. Boucherif, S. K. Ntouyas\hfil EJDE-2004/84\hfilneg] {Bapurao C. Dhage, Abdelkader Boucherif, Sotiris K. Ntouyas} \address{Bapurao C. Dhage \hfill\break Kasubai, Gurukul Colony, Ahmedpur-413 515, Dist: Latur, Maharashtra, India} \email{bcd20012001@yahoo.co.in} \address{Abdelkader Boucherif \hfill\break Department of Mathematical sciences, King Fahd University of Petroleum and Minerals, P. O. Box 5046, Dhahran 31261, Saudi Arabia} \email{aboucher@kfupm.edu.sa} \address{Sotiris K. Ntouyas \hfill\break Department of Mathematics, University of Ioannina, 451 10 Ioannina, Greece} \email{sntouyas@cc.uoi.gr} \date{} \thanks{Submitted April 19, 2004. Published June 13, 2004.} \subjclass[2000]{34A60, 34A37} \keywords{Impulsive differential inclusion, existence theorem} \begin{abstract} In this paper we present an existence result for a first order impulsive differential inclusion with periodic boundary conditions and impulses at the fixed times under the convex condition of multi-functions. \end{abstract} \maketitle \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}{Lemma}[section] \newtheorem{definition}{Definition}[section] \newtheorem{remark}{Remark}[section] \numberwithin{equation}{section} \section{Introduction} In this paper, we study the existence of solutions to a periodic nonlinear boundary value problems for first order Carath\'eodory impulsive ordinary differential inclusions with convex multi-functions. Given a closed and bounded interval $ J:=[0,T] $ in $\mathbb{R}$, the set of real numbers, and given the impulsive moments $t_1 , t_2 , \dots , t_p$ with $0 =t_0 < t_1 < t_2 < \dots < t_p < t_{p+1} = T$, $J'=J\setminus\{t_1 , t_2 , \dots , t_p\}$, $J_j =(t_j , t_{j+1})$, consider the following periodic boundary-value problem for impulsive differential inclusions (in short IDI): \begin{gather} \label{e11} x'(t) \in F(t, x(t))+G(t, x(t)) \mbox{ a.e. } t \in J', \\ \label{e12} x(t_j^+ ) = x(t_j^-) + I_j (x(t_j^-)), \\ \label{e13} x(0) = x(T), \end{gather} where $F, G : J \times \mathbb{R} \to P_{f}(\mathbb{R})$ are impulsive multi-functions, $I_j : \mathbb{R}\to \mathbb{R}$, $j=1,2, \dots, p $ are the impulse functions and $x(t_j^+ )$ and $x(t_j^- )$ are respectively the right and the left limit of $x$ at $t = t_j$. Let $C(J, \mathbb{R})$ and $L^1(J, \mathbb{R})$ denote the space of continuous and Lebesgue integrable real-valued functions on $J$. Consider the Banach space \[%\begin{align*} X := \bigl\{ x: J \to \mathbb{R} : x \in C(J', \mathbb{R}), x(t_j^+ ) , x(t_j^- ) \mbox{ exist}, \; x(t_j^- ) = x(t_j),\; j=1,2,\dots, p \bigr\} \]%\end{align*} equipped with the norm $\| x \| = \max\{|x(t)|: t \in J\}$, and the space \[ Y := \{ x \in X : x \mbox{ is differentiable a.e. on } (0,T) , x' \in L^1(J , \mathbb{R}) \} \,. \] By a solution of (\ref{e11})--(\ref{e13}), we mean a function $x$ in $Y_T := \{ v \in Y : v(0) = v(T)\}$ that satisfies the differential inclusion (\ref{e11}), and the impulsive conditions (\ref{e12}). Several papers have been devoted to the study of initial and boundary value problems for impulsive differential inclusions (see for example \cite{BB,BBN}). Some basic results in the theory of periodic boundary value problems for first order impulsive differential equations may be found in \cite{N1,N2,N3} and the references therein. Also, for a general theory on impulsive differential equations we refer the interested reader to \cite{R} and the monographs \cite{LBS} and \cite{SP}. Our aim is to provide sufficient conditions on the multifunctions $F$, $G$ and the impulsive functions $I_{j}$, that insure the existence of solutions of problem IDI (\ref{e11})--(\ref{e13}). \section{Preliminaries} Let $(E, \| \cdot \|)$ be a Banach space and let $P_{f}(E)$ denote the class of all non-empty subsets of $E$ with the property $f$. Thus $P_{cl}(E), P_{bd}(E), P_{cv}(E)$ and $P_{cp}(E)$ denote respectively the classes of all closed, bounded, convex and compact subsets of $E$. Similarly $P_{cl, cv, bd}(E)$ and $P_{cp, cv}(E)$ denote the classes of all closed, convex and bounded and compact and convex subsets of $E$. For $x\in E$ and $Y,Z\in P_{bd,cl}(E)$ we denote by $D(x,Y)=\inf\{\|x-y\|: y\in Y\}$, and $\rho(Y,Z)=\sup_{a\in Y}D(a,Z)$. Define a function $H: P_{bd,cl}(E)\times P_{bd,cl}(E)\to \mathbb{R}^+$ by $$ H(A,B)= \max \{\rho(A,B,\rho(B,A)\}. $$ The function $H$ is called a Hausdorff metric on $E$. Note that $\|Y\|=H(Y,\{0\})$. A map $F:E\to P(E)$ is called a {\em multi-valued mapping} on $E$. A point $u\in E$ is called a {\em fixed point} of the multi-valued operator $F:E\to P(E)$ if $u\in F(u)$. The fixed points set of $F$ will be denoted by $\mathop{\rm Fix}(F)$. A multivalued map $F: [a,b] \subset \mathbb{R} \to P_{cl,bd}(E)$ is said to be {\em measurable} if for each $x \in X$, the distance between $x$ and $F(t)$ is a measurable function on $[a,b]$. A function $f : [a,b]\to E$ is called {\em measurable selector} of the multi-function $F$ if $f$ is measurable and $f(t)\in F(t)$ for almost everywhere $t\in [a,b]$. \begin{definition} \label{def2.1} \rm Let $F:E\to P_{bd,cl}(E)$ be a multi-valued operator. Then $F$ is called a multi-valued contraction if there exists a constant $\alpha\in (0,1)$ such that for each $x,y\in E$ we have $$ H(F(x),F(y))\le \alpha \|x-y\|. $$ The constant $\alpha$ is called a contraction constant of $F$. \end{definition} A multifunction $F$ is called {\em upper semi-continuous (u.s.c.)} if for each $x_0 \in E$, the set $F(x_0)$ is a nonempty and closed subset of $E$, and for each open set $N \subset E$ containing $F(x_0)$, there exists an open neighborhood $M$ of $x_0$ such that $F(M) \subset N$. If $F$ is nonempty and compact-valued, then $F$ is u.s.c. if and only if $F$ has a closed graph, i.e., given sequences $\{ x_n {\}}_{n=1}^{\infty}\to x_0 , \{ y_n {\}}_{n=1}^{\infty} \to y_0 \,, y_n \in F(x_n)$ for every $n=1,2,\dots $ imply $y_0 \in F(x_0).$\vskip0.3cm $F$ is {\em bounded on bounded sets} if $\bigcup F(S)$ is bounded in $E$ for every bounded set $S \subset E$, i.e., $\sup_{ x \in S} \{ \sup\{|y| : y\in F(x)\}\}<+ \infty$. Again the operator $F$ is called {\em compact} if $\overline{\bigcup F(E)}$ is a compact subset of $E$. $F$ is said to be {\em completely continuous} if it is u.s.c. and $\bigcup F(S)$ is relatively compact set in $E$ for every bounded subset $S$ of $E$. Finally a multi-valued operator $F$ is called {\em convex (resp. compact) valued} if $F(x)$ is a convex (resp. compact) set in $E$ for each $x\in E$.\vskip0.3cm The following form of a fixed point theorem of Dhage \cite{D} will be used while proving our main existence result. \begin{theorem}[Dhage \cite{D}] \label{t21} Let $B(0,r)$ and $B[0,r]$ denote respectively the open and closed balls in a Banach space $E$ centered at origin and of radius $r$ and let $A:E\to P_{cl,cv,bd}(E)$ and $B:B[0,r]\to P_{cp,cv}(E)$ be two multi-valued operators satisfying \begin{itemize} \item[(i)] $A$ is multi-valued contraction , and \item[(ii)] $B$ is completely continuous. \end{itemize} Then either \begin{itemize} \item[(a)] the operator inclusion $x\in Ax+Bx$ has a solution in $B[0,r]$, or \item[(b)] there exists an $u\in E$ with $\|u\|=r$ such that $\lambda u\in Au+Bu$ for some $\lambda>1$. \end{itemize} \end{theorem} In the following section we prove the main existence results of this paper. \section{Main Results} Consider the following linear periodic problem with some given impulses ${\theta}_j \in \mathbb{R}$, $j=1,2,\dots, p $: \begin{gather} \label{e31} x'(t) + k x(t) = \sigma (t), \mbox{a.e. } t \in J', \\ \label{e32} x(t_j^+ ) - x(t_j^-) = {\theta}_j , j=1,2,\dots, p, \\ \label{e33} x(0) = x(T), \end{gather} where $k > 0$, and $\sigma \in L^1(J)$. The solution of (\ref{e31})--(\ref{e33}) is given by (see \cite[Lemma 2.1]{N1}) \begin{equation} \label{e34} x(t) = \int_{0}^{T}{g_k(t,s) \sigma (s) \,ds} +\sum_{j=1}^{p}{g_k(t,t_j) {\theta}_j}, \end{equation} where \[ g_k (t,s)=\begin{cases} \dfrac{e^{-k(t-s)}}{1-e^{-kT}}, & 0\leq s \leq t\leq T \\[5pt] \dfrac{e^{-k(T+t-s)}}{1-e^{-kT}},& 0\leq t < s\leq T \,. \end{cases} \] Clearly the function $g_k(t, s)$ is discontinuous and nonnegative on $J\times J$ and has a jump at $t=s$. Let $$ M_k := \max{\{ |g_k(t,s)| : t,s \in [0,T] \} }= \frac{1} {1-e^{-kT}}. $$ Now $x \in Y_T$ is a solution of(\ref{e11})--(\ref{e13}) if and only if \begin{equation}\label{e35} x(t)\in B_k^1 x(t) + B_k^2 x(t),\quad t\in J \end{equation} where the multi-valued operators $B_k^1 $ and $B_k^2 $ are defined by \begin{gather}\label{e36} \mathcal{B}_k^1 x(t)=\int_{0}^{T} g_k(t,s) F(s, x(s))\,ds, \\ \label{e37} \mathcal{B}_k^2 x(t)=\int_{0}^{T} g_k(t,s) [k x(s) + G(s, x(s))] \,ds + \sum_{j=1}^{p} g(t,t_j)I_j(x(t_j^-)). \end{gather} \begin{definition} \rm A multi-function $\beta:J \times \mathbb{R} \to P_{f}(\mathbb{R})$ is called an impulsive Carath\'eodory if \begin{itemize} \item [(i)] $\beta(\cdot, x)$ is measurable for every $x \in \mathbb{R}$ and \item [(ii)] $\beta(t, \cdot)$ is upper semi-continuous a.e. on $J$. \end{itemize} Further the impulsive Carath\'eodory multifunction $\beta$ is called impulsive $L^{1}$-Carath\'eodory if \begin{itemize} \item [(iii)] for every $r>0$ there exists a function $h_r \in L^1(J)$ such that $$ \|\beta(t,x)\|=\sup \{|u| : u\in \beta(t,x)\} \leq h_r(t) \mbox{a.e.\ } t\in J $$ for all $x \in \mathbb{R}$ with $|x | \leq r$. \end{itemize} \end{definition} Denote $$ S^{1}_{\beta}(x)= \{v\in L^1(J, \mathbb{R}) : v(t)\in \beta(t, x) \mbox{ a.e. $t\in J$}\}. $$ \begin{lemma}[Lasota and Opial \cite{LO}] \label{l31} Let $E$ be a Banach space. Further if $\mathop{\rm dim} (E) < \infty$ and $\beta: J\times E\to P_{bd,cl}(E)$ is $L^{1}$-Carath\'eodory, then $S^{1}_{\beta}(x) \ne \emptyset$ for each $x \in E$. \end{lemma} \begin{definition} \rm A measurable multi-valued function $F: J\to P_{cp}(\mathbb{R})$ is said to be integrably bounded if there exists a function $h\in L^1(J,\mathbb{R})$ such that $|v|\le h(t)$ a.e. $t\in J$ for all $v\in F(t)$. \end{definition} \begin{remark}\label{r31} \rm It is known that if $F:J\to \mathbb{R}$ is an integrably bounded multi-function, then the set $S_F^1$ of all Lebesgue integrable selections of $F$ is closed and non-empty. See Covitz and Nadler \cite{CN}. \end{remark} We now introduce the following assumptions: \begin{itemize} \item[(H1)] The functions $I_j: \mathbb{R} \to \mathbb{R}$, $j=1,2,\dots, p$ are continuous, and there exist $c_j \in \mathbb{R}$, $j=1,2,\dots, p$ such that $| I_j (x)| \leq c_j$, $j=1,2,\dots, p$ for every $x \in \mathbb{R}$. \item[(H2)] $G:J \times \mathbb{R} \to P_{cp,cv}(\mathbb{R})$ is an impulsive Carath\'eodory multi-function. \item[(H3)] There exist a real number $k>0$ and a Carath\'eodory function $\omega: J \times \mathbb{R}_+ \to \mathbb{R}_+$ which is nondecreasing with respect to its second argument such that $$ \|G(t,x) + k x \|=\sup\{|v| : v\in G(t,x)+k x\}\leq \omega(t, |x|) $$ a.e. $t \in J',x \in \mathbb{R}$. \item[(H4)] The multi-function $t\mapsto F(t,x)$ is measurable and integrally bounded for each $x\in \mathbb{R}$. \item[(H5)] The multi-function $F(t,x)$ is $F:J\times \mathbb{R} \to P_{cl, cv, bd}(\mathbb{R})$ and there exists a function $\ell\in L^1(J,\mathbb{R})$ such that \[ H(F(t,x),F(t,y)) \le \ell(t)|x-y|\quad \mbox{a.e. }t\in J \] for all $x,y\in \mathbb{R}$. \end{itemize} Note that the hypotheses (H1)--(H5) are not new, they have been used extensively in the literature on differential inclusions. Also (H3) in the special case $\omega(t,r)= \phi(t)\psi(r)$ has been used by several authors. See Dhage \cite{D} and the references therein. \begin{lemma}\label{l32} Assume that (H2)--(H3) hold. Then the operator $S_{k+G}^1:Y_T \to P_{f}(L^1(J,\mathbb{R}))$ defined by \begin{equation}\label{e38} S_{k+G}^1(x) := \big\{ v\in L^1(J, \mathbb{R}) : v(t) \in k x(t)+G(t,x(t)) \mbox{ a.e. } t \in J \big\} \end{equation} is well defined, u.s.c., closed and convex valued, and sends bounded subsets of $Y_T$ into bounded subsets of $L^1(J,\mathbb{R})$. \end{lemma} \begin{proof} Since (H2) holds, by Lemma \ref{l31} $S_{k+G}^1(x)\ne\emptyset$ for each $x\in Y_T$. Below we show that $S_{k+G}^1$ has the desired properties on $Y_T$. \noindent {\bf Step I:} First we show that $S_{k+G}^1$ has closed values on $Y_T$. Let $x\in Y_T$ be arbitrary and let $\{\omega_{n}\}$ be a sequence in $S_{k+G}^1(x)\subset L^{1}(J,\mathbb{R}) $ such that $\omega_{n} \to \omega$. Then $\omega_{n} \to \omega$ in measure. So there exists a subset $S$ of positive integers such that $\omega_{n} \to \omega$ a.e. $n\to \infty$ through $S$. Since the hypothesis (H2) holds, we have $\omega\in S_{k+G}^1 (x)$. Therefore, $S_{k+G}^1(x)$ is a closed set in $L^{1}(J,\mathbb{R})$. Thus for each $x\in Y_T$, $S_{k+G}^1 (x)$ is a non-empty, closed subset of $L^{1}(J,\mathbb{R})$ and consequently $S_{k+G}^1$ has non-empty and closed values on $Y_T$. \noindent {\bf Step II:} Next we show that $S_{k+G}^1(x)$ is convex subset of $L^{1}(J,\mathbb{R})$ for each $x\in Y_T$. Let $v_1, v_2 \in S_{k+G}^1(x)$ and let $\lambda\in [0, 1]$. Then there exist functions $f_1, f_2\in S_{k+G}^1(x)$ such that $$ v_1(t)= k x(t)+f_1(t)\quad\mbox{and}\quad v_2(t)= k x(t)+f_2(t) $$ for $t\in J$. Therefore we have \begin{align*} \lambda v_1(t)+(1-\lambda)v_2(t)&= \lambda\bigl[k x(t)+f_1(t)\big]+(1-\lambda)\bigl[ k x(t)+f_2(t)\bigr]\\ &=\lambda k x(t)+(1-\lambda) k x(t)+\lambda f_1(t)+(1-\lambda) f_2(t)\\ &= k x(t)+f_3(t) \end{align*} where $f_3(t)= \lambda f_1(t)+(1-\lambda) f_2(t)$ for all $t\in J$. Since $G(t, x)$ is convex for each $x\in \mathbb{R}$, one has $f_3(t)\in G(t, x(t))$ for all $t\in J$. Therefore, $$ \lambda v_1(t)+(1-\lambda)v_2(t)\in k x(t)+G(t, x(t)) $$ for all $t\in J$ and consequently $\lambda v_1+(1-\lambda) v_2 \in S_{k+G}^1(x)$. As a result $S_{k+G}^1(x)$ is a convex subset of $L^1(J, \mathbb{R})$. \noindent {\bf Step III:} Next we show that $S_{k+G}^1$ is an u.s.c. multi-valued operator on $Y_T$. Let $\{x_n\}$ be a sequence in $Y_T$ such that $x_n\to x_*$ and let $\{y_n\}$ be a sequence such that $y_n\in S_{k+G}^1(x_n)$ and $y_n\to y_*$. To finish, it suffices to show that $y_*\in S_{k+G}^1(x_*)$. Since $y_n\in S_{k+G}^1(x_n)$, there is a function $f_n\in S_{k+G}^1(x_n)$ such that $y_n(t)= k x_n(t)+ f_n(t)$ for all $t\in J$ and that $y_*(t)= k x_*(t)+ f_*(t)$, where $f_n\to f_*$ as $n\to\infty$. Now the multi-function $G(t,x)$ is an upper semi-continuous in $x$ for all $t\in J$, one has $f_*(t)\in G(t, x_*(t))$ for all $t\in J$. Hence it follows that $y_*\in S_{k+G}^1(x_*)$. \noindent {\bf Step IV:} Finally we show that $S_{k+G}^1$ maps bounded sets of $Y_T$ into bounded sets of $L^1(J , \mathbb{R})$. Let $M$ be a bounded subset of $Y_T$. Then there is a real number $r>0$ such that $\|x\|\le r$ for all $x\in M$. Let $y\in S_{k+G}^1(S)$ be arbitrary. Then there is an $x\in M$ such that $y\in S_{k+G}^1(x)$ and therefore $y(t)\in k x(t)+ G(t , x(t))$ a.e. $t\in J$. Now by (H3), \begin{align*} \|y\|_{L^1}&=\int_0^T |y(t)|\,dt\\ &\le \int_0^T\|k x(t) + G(t, x(t))\|\,dt\\ &\le \int_0^T \omega(t, |x(t|)\,dt\\ &\le \int_0^T \omega(t, r)\,dt. \end{align*} Hence $S_{k+G}^1(S)$ is a bounded set in $L^1(J , \mathbb{R})$.\par Thus the multi-valued operator $S_{k+G}^1$ is an upper semi-continuous and has closed, convex values on $Y_T$. The proof is complete.\end{proof} \begin{lemma}\label{l33} Assume $(H_1)-(H_3)$. The multivalued operator $\mathcal{B}_k^2$ defined by (\ref{e37}) is completely continuous and has convex, compact values on $Y_T$. \end{lemma} \begin{proof} Since $S_{k+G}^1$ is as upper semi-continuous and has closed and convex values and since (H1) holds, $\mathcal{B}_k^2$ is u.s.c. and has closed-convex values on $Y_T$. To show $\mathcal{B}_k^2$ is relatively compact, we use the Arzel\'a-Ascoli theorem. Let $M\subset B[0,r]$ be any set. Then $\|x\|\le r$ for all $x\in M$. First we show that $\mathcal{B}_k^2(M)$ is uniformly bounded. Now for any $x\in M$ and for any $y\in \mathcal{B}_k^2(x)$ one has \begin{align*} |y(t)|&\le \int_0^T |g_k(t,s)| \|[kx(s)+G(s,x(s))]\|\,ds +\sum_{j=1}^{p} |g_k(t,t_j)| |I_j(x(t_j^{-}))|\\ &\le \int_0^T M_k \omega(s,|x(s)|)\,ds +M_k\sum_{j=1}^{p} c_j\\ &\le M_k \int_0^T \omega(s, r)\,ds +M_k\sum_{j=1}^{p} c_j, \end{align*} where $M_k$ is the bound of $g_k$ on $[0,T]\times [0,T]$. Taking the supremum over $t$, \[ \|\mathcal{B}_k^2 x\|\le M_k \Big[ \int_0^T \omega(s, r)\,ds +\sum_{j=1}^{p} c_j\Big]\]for all $x\in M$. Hence $\mathcal{B}_k^2(M)$ is a uniformly bounded set in $Y_T$. Next we prove the equi-continuity of the set $\mathcal{B}_k^2(M)$ in $Y_T$. Let $y\in B_k^2(M)$ be arbitrary. Then there is a $v\in S_{k+G}(x)$ such that $$ y(t)= \int_{0}^{T} g_k(t,s) v(s) \,ds + \sum_{j=1}^{p}g_k(t,t_j) I_j(x(t_j^-)), \quad t\in J,$$ for some $x\in M$. To finish, it is sufficient to show that $y'$ is bounded on $[0,T]$. Now for any $t\in [0,T]$, \begin{align*} |y'(t)|&\le \Bigl|\int_0^T \frac{\partial}{\partial t} g_k(t,s) v(s)\,ds +\sum_{j=1}^{p} \frac{\partial}{\partial t} g_k(t,t_k)I_j(y_j(t_j^-))\Bigr|\\ &= \Bigl|\int_0^T (-k) g_k(t,s) v(s)\,ds +\sum_{j=1}^{p} (-k) g_k(t,t_k)I_j(y_j(t_j^-))\Bigr|\\ &\le k M_k \int_0^T \omega(s,r)\,ds + k M_k \sum_{j=1}^p c_j = c. \end{align*} Hence for any $t, \tau \in [0, T]$ and for all $y\in B_k^2(M)$ one has $$ |y(t)- y(\tau)|\le c |t-\tau |\to 0\quad \mbox{as}\quad t\to \tau. $$ This shows that $\mathcal{B}_k^2(M)$ is a equi-continuous set and consequently relatively compact in view of Arzel\'a-Ascoli theorem. Obviously $\mathcal{B}_k^2 (x)\subset \mathcal{B}_k^2(B[0, r])$ for each $x\in B[0, r]$. Since $\mathcal{B}_k^2(B[0, r])$ is relatively compact, $\mathcal{B}_k^2 (x)$ is relatively compact and which is compact in view of hypothesis (H2). Hence $\mathcal{B}_k^2$ is a completely continuous multi-valued operator on $Y_T$. The proof of the lemma is complete.\end{proof} \begin{lemma}\label{l34} Assume that the hypotheses (H4)--(H5) hold. Then the operator $B_k^1$ defined by \eqref{e36} is a multi-valued contraction operator on $Y_T$, provided $M_k\|\ell\|_{L^1}<1$. \end{lemma} \begin{proof} Define a mapping $\mathcal{B}_k^1 : Y_T\to Y_T$ by \eqref{e36}. We show that $\mathcal{B}_k^1$ is a multi-valued contraction on $Y_T$. Let $x,y\in Y_T$ be arbitrary and let $u_1\in \mathcal{B}_k^1(x)$. Then $u_1\in Y_T$ and \[ u_1(t)=\int_{0}^{T}g_k(t,s) v_1(s) \,ds \] for some $v_1\in S_F^1(x)$. Since $H(F(t,x(t)),F(t,y(t))\le\ell(t)|x(t)-y(t)|$, one obtains that there exists a $w\in F(t,y(t))$ such that $$|v_1(t)-w|\le \ell(t)|x(t)-y(t)|.$$ Thus the multi-valued operator $U$ defined by $U(t)=S_F^1(y)(t)\cap K(t)$,where $$K(t)=\{w\mid |v_1(t)-w|\le\ell(t)|x(t)-y(t)|\}$$ has nonempty values and is measurable. Let $v_2$ be a measurable selection for $U$ (which exists by Kuratowski-Ryll-Nardzewski's selection theorem. See [3]). Then $v_2\in F(t,y(t))$ and $$|v_1(t)-v_2(t)|\le\ell(t)|x(t)-y(t)| \quad \mbox{a.e. } t\in J.$$ Define \[ u_2(t) =\int_{0}^{T}{g_k(t,s) v_2(s) \,ds}. \] It follows that $u_2\in \mathcal{B}_k^1(y)$ and \begin{align*} |u_1(t)-u_2(t)|&\le\Big|\int_0^{T}g_k(t,s) v_1(s)\,ds-\int_0^{T} g_k(t,s) v_2(s)\,ds\Big|\\ &\le\int_0^{T}M_k |v_1(s)-v_2(s)|\,ds\\ &\le\int_0^{T}M_k\ell(s)|x(s)-y(s)|\,ds\\ &\le M_k\|\ell\|_{L^1}\|x-y\|. \end{align*} Taking the supremum over $t$, we obtain $$ \|u_1-u_2\|\le M_k \|\ell\|_{L^1}\|x-y\|. $$ From this and the analogous inequality obtained by interchanging the roles of $x$ and $y$ we get that $$ H(\mathcal{B}_k^1(x),\mathcal{B}_k^1(y))\le\mu \|x-y\|, $$ for all $x,y\in Y_T$. This shows that $\mathcal{B}_k^1$ is a multi-valued contraction, since $\mu = M_k\|\ell\|_{L^1}<1$. \end{proof} \begin{theorem}\label{t31} Assume (H1)--(H5) are satisfied. Further if there exists a real number $r>0$ such that \begin{equation}\label{e39} r > \frac{M_k \int_0^T \omega(s, r)\,ds+ M_k F_0+M_k\sum_{j=1}^{p}c_j}{1- M_k \|\ell\|_{L^1} } \end{equation} where $M_k \|\ell\|_{L^1} < 1 $ and $F_0= \int_0^T \|F(s , 0)\|\,ds$, then the problem IDI (\ref{e11})--(\ref{e13}) has at least one solution on $J$. \end{theorem} \begin{proof} Define an open ball $B(0,r)$ in $Y_T$, where the real number $r$ satisfies the inequality given in condition (\ref{e39}). Define the multi-valued operators $\mathcal{B}_k^1$ and $\mathcal{B}_k^2$ on $Y_T$ by \eqref{e36} and \eqref{e37}. We shall show that the operators $\mathcal{B}_k^1$ and $\mathcal{B}_k^2$ satisfy all the conditions of Theorem \ref{t21}. \noindent {\bf Step I:} The assumptions (H2)--(H3) imply by Lemma \ref{l33} that \, $\mathcal{B}_k^2$ is completely continuous multi-valued operator on $B[0, r]$. Again since (H4)--(H5) hold, by Lemma \ref{l34}, $\mathcal{B}_k^1$ is a multi-valued contraction on $Y_T$ with a contraction constant $\mu = M_k\|\ell\|_{L^1}$. % $\mu=M_k \sum_{j=1}^{p}{c_j}$. Now an application of Theorem \ref{t21} yields that either the operator inclusion $x\in\mathcal{B}_k^1 x+\mathcal{B}_k^2 x$ has a solution in $B[0,r]$, or, there exists an $u\in Y_T$ with $\|u\|=r$ satisfying $\lambda u\in B_k^1 u+B_k^2 u $ for some $\lambda >1$. \noindent {\bf Step II: } Now we show that the second assertion of Theorem \ref{t21} is not true. Let $u \in Y_T$ be a possible solution of $\lambda u\in B_k^1 u+ B_k^2 u $ for some real number $\lambda >1$ with $\|u\|= r$. Then we have, \begin{align*}u(t) &\in \lambda^{-1}\int_{0}^{T}{g_k(t,s) F(s,u(s))\,ds} +\lambda^{-1}\int_{0}^{T}{g_k(t,s)[k u(s) + G(s,u(s))]\,ds} \\ &+\lambda^{-1}\sum_{j=1}^{p}{g_k(t,t_j)I_j(u(t_j^-))}\,. \end{align*} Hence by (H3)-(H5), \begin{align*} |u(t)|&\le \int_0^T |g_k(t,s)| \omega(s,|u(s)|)\,ds+\int_0^T |g_k(t,s)| |\ell(s)| |u(s)|\,ds\\ &\quad +\int_0^T |g_k(t,s)| \|F(s,0)\|\,ds+ \sum_{j=1}^{p} |g_k(t,s)| |I_j(u(t_j^{-})|\\ &\le M_k \int_0^T \omega(s, \|u\|)\,ds+M_k \int_0^T |\ell(s)| \|u\|\,ds +M_k F_0+M_k \sum_{j=1}^{p}c_j\\&\le M_k \int_0^T \omega(s,\|u\|)\,ds +M_k \|\ell\|_{L^1}\|u\| +M_k F_0 +M_k \sum_{j=1}^{p}c_j. \end{align*} Taking the supremum over $t$ we get \[ \|u\|\le M_k\int_0^T \omega(s, \|u\|)\,ds+M_k \|\ell\|_{L^1}\|u\| +M_k F_0 +M_k \sum_{j=1}^{p}c_j. \] Substituting $\|u\|= r$ in the above inequality yields $$ r \le \frac{M_k \int_0^T \omega(s, r)\,ds+ M_k F_0+M_k\sum_{j=1}^{p}c_j}{1- M_k \|\ell\|_{L^1} } $$ which is a contradiction to (\ref{e39}). Hence the operator inclusion $x\in\mathcal{B}_k^1 x+\mathcal{B}_k^2 x$ has a solution in $B[0,r]$. This further implies that the IDI (\ref{e11})--(\ref{e13}) has a solution on $J$. The proof is complete. \end{proof} \begin{remark} \rm On taking $F(t, x)\equiv 0$ on $J'\times \mathbb{R}$ in Theorem \ref{t31} we obtain as a special case the existence result in \cite{D2} for the impulsive differential inclusion (\ref{e11})--(\ref{e13}) with $F(t,x)\equiv 0$. \end{remark} \begin{remark} In this paper we have dealt with the perturbed impulsive differential inclusions involving convex multi-functions. Note that the continuity of the multi-function is important here, however in a forthcoming paper we will relax the continuity condition of one of the multi-functions and discuss the existence results for mild discontinuous perturbed impulsive differential inclusions. \end{remark} \subsection*{Acknowledgement} A. Boucherif is grateful to KFUPM for its constant support. \begin{thebibliography}{99} \bibitem{AC} J. P. Aubin and A. Cellina, {\em Differential Inclusions,} Springer-Verlag, Berlin, 1984. \bibitem{BB} M. Benchohra and A. Boucherif, \emph{On first order initial value problems for impulsive differential inclusions in Banach spaces}, Dynamic Syst. Appl. {\bf 8} (1999), 119--126. \bibitem{BBN} M. Benchohra, A. Boucherif and J. J. Nieto, \emph{On initial value problems for a class of first order impulsive differential inclusions}, Discuss. Math. Differ. Incl. Control Optim. {\bf 21} (2001), 159--171. \bibitem {CN} H. Covitz and S. B. Nadler Jr., \emph{Multivalued contraction mappings in generalized metric spaces}, Israel J. Math. {\bf 8} (1970), 5--11. \bibitem{KD} K. Deimling, {\em Multivalued Differential Equations,} Walter de Gruyter \& Co., Berlin, 1992. \bibitem{D} B. C. Dhage, \emph{Multi-valued mappings and fixed points II}, preprint. %{\em Tamkang J. Math.} (to appear). \bibitem{D2} B. C. Dhage, \emph{On periodic boundary value problems of first order impulsive differential inclusions}, Publ. Math. Debrecen (to appear). \bibitem{DG} A. Granas and J. Dugundji, {\em Fixed Point Theory,} Springer Verlag, Berlin, 2003. \bibitem{HP} S. Hu and N. Papageorgiou, {\em Handbook of Multivalued Analysis, Volume I: Theory}, Kluwer Academic Publishers, Dordrecht, 1997. \bibitem{LBS} V. Lakshmikantham, D. D. Bainov and P. S. Simeonov, {\em Theory of Impulsive Differential Equations,} World Scientific Pub.Co., Singapore, 1989. \bibitem{LO} A. Lasota and Z. Opial, \emph{An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations}, Bull. Acad.Pol. Sci. Ser. Sci. Math. Astronom. Phys. {\bf 13} (1965), 781--786. \bibitem{N1} J. J. Nieto, \emph{Basic theory for nonresonance impulsive periodic problems of first order}, J. Math. Anal. Appl. {\bf 205} (1997), 423--433. \bibitem{N2} J. J. Nieto, \emph{Impulsive resonance periodic problems of first order}, Appl. Math. Lett. {\bf 15} (2002), 489--493. \bibitem{N3} J. J. Nieto, \emph{Periodic boundary value problems for first-order impulsive ordinary differential equations}, Nonlinear Anal. {\bf 51} (2002), 1223--1232. \bibitem{R} Y. V. Rogovchenko, \emph{Impulsive evolution systems: Main results and new trends}, Dynam. Contin. Discrete Impuls. Systems {\bf 3} (1997), 57--88. \bibitem{SP} A. M. Samoilenko and N. A. Perestyuk, {\em Impulsive Differential Equations}, World Scientific Pub. Co., River Edge, NJ, 1995. \end{thebibliography} \end{document}