\documentclass[reqno]{amsart} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2004(2004), No. 85, pp. 1--20.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2004 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2004/85\hfil Asymptotic stability] {Asymptotic stability for second-order differential equations with complex coefficients} \author[G. R. Hovhannisyan\hfil EJDE-2004/85\hfilneg] {Gro R. Hovhannisyan} \address{Gro R. Hovhannisyan \hfill\break Kent State University, Stark Campus\\ 6000 Frank Ave. NW\\ Canton, OH 44720-7599, USA} \email{ghovhannisyan@stark.kent.edu} \date{} \thanks{Submitted April 19, 2004. Published June 18, 2004.} \subjclass[2000]{34D20, 34E05} \keywords{Asymptotic stability; asymptotic representation; WKB solution; \hfill\break\indent second order differential equation} \begin{abstract} We prove asymptotical stability and instability results for a general second-order differential equations with complex-valued functions as coefficients. To prove asymptotic stability of linear second-order differential equations, we use the technique of asymptotic representations of solutions and error estimates. For nonlinear second-order differential equations, we extend the asymptotic stability theorem of Pucci and Serrin to the case of complex-valued coefficients. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{example}{Example}[section] \allowdisplaybreaks \section{Main Results} Consider the linear second-order differential equation \begin{equation} L[x(t)]=x''(t)+2f(t)x'(t)+g(t)x(t)=0,\quad t>T>0,\label{e1.1} \end{equation} where the coefficients $2f(t)$ and $g(t)$ are complex-valued continuous functions of time $t$. The rest state $x(t)=x'(t)=0$ of (\ref{e1.1}) is called asymptotically stable if \begin{equation} \lim_{t\to\infty}x(t)=\lim_{t\to \infty}x'(t)=0\label{e1.2} \end{equation} for every solution of (\ref{e1.1}). The asymptotic stability for the classical equation \ref{e1.1} has been widely studied \cite{a1,b1,c1,h1,i1,l1,m1,y1}. However, most of the studies consider real-valued coefficients and are based on Lyapunov stability theorems. In this paper, we prove asymptotical stability and instability theorems for a general linear second-order equation (\ref{e1.1}) with complex-valued coefficients. For a linear case, we use the technique of asymptotic representations of solutions and error estimates \cite{l2,h2}. For a nonlinear second-order equations (\ref{e1.25}) with complex-valued variable coefficients, we generalize the asymptotic stability theorem of Pucci and Serrin (Theorem \ref{thm1.8}). Denote \begin{gather} g_0(t)\equiv g(t)-f^2(t)-f'(t),\quad k_0(t)\equiv{g_0'(t)\over 4g_0^{3/2}(t)},\label{e1.3} \\ G_0(t)\equiv-k_0'(t)-k_0^2(t)\sqrt{g_0(t)}={5g_0'(t)^2\over 16g_0^{5/2}(t)}-{g_0''(t)\over 4g_0^{3/2}(t)},\label{e1.4} \\ \mu_{1,2}(t)=-f(t)-{g_0'(t)\over 4g_0(t)}\pm\sqrt{f^2(t)+f'(t)-g(t)}.\label{e1.5} \end{gather} Denote by $L^1(T,\infty)$ the class of Lebesgue integrable in $(T,\infty)$ functions and by $C^1(T,\infty)$ the class of differentiable functions on $(T,\infty)$. \begin{theorem}\label{thm1.1} Let $f\in C^3(T,\infty),g\in C^2(T,\infty)$ be the complex-valued functions, and assume that there exists positive number $N$ such that \begin{equation} \int^{\infty}_T\left|k_0^2(t)\sqrt{g_0(t)}+k_0'(t)\right|e^{\pm 2\int^t_T\Re\sqrt{-g_0(s)}ds}dt\leq N. \label{e1.6} \end{equation} Then the rest state of (\ref{e1.1}) is asymptotically stable if and only if \begin{equation} \lim_{t\to \infty}\int^t_T\Re[\mu_j]dt=-\infty, \quad\lim_{t\to \infty}\int^t_T\Re\big[\mu_j+{\mu'_j\over\mu_j}\big]dt=-\infty,\quad j=1,2.\label{e1.7} \end{equation} \end{theorem} \noindent{\bf Remark.} When f(t) and g(t) are constant, $k_0(t)\equiv 0$, conditions (\ref{e1.6}) are satisfied, and conditions (\ref{e1.7}) becomes the Routh-Hurwitz criterion of asymptotical stability: $$ \Re\big(-f\mp\sqrt{f^2-g}\big)<0. $$ \noindent{\bf Remark.} Theorem \ref{thm1.1} shows that asymptotic stability of (\ref{e1.1}) depends on the behavior of $\Re(f)$ and $g_0(t)$ as $t\to \infty$. \begin{example} \rm Let $f(t)=t^{\alpha}(\ln t)^{\beta},g(t)=1$. From Theorem \ref{thm1.1}, equation (\ref{e1.1}) is asymptotically stable if $-1<\alpha<0$ or $\alpha=-1,\beta>-1$ (see section 3). \end{example} \begin{example} Let $f(t)=t^{\alpha}+it^{\beta},g(t)=1$. From Theorem \ref{thm1.1}, equation (\ref{e1.1}) is asymptotically stable if $\quad-1<\alpha<-\beta-1, \alpha<0$ (see section 3). \end{example} \noindent{\bf Remark.} For the small damping case: $g(t)=1$, $\lim_{t\to \infty}f(t)= 0$, we have $\Re\sqrt{-g_0(t)}=0$ and conditions (\ref{e1.6}) are not restrictive. For the large damping case: $\lim_{t\to \infty}f(t)=\infty $, we have $ \lim_{t\to \infty}\Re\sqrt{-g_0(t)}=\infty$. and conditions (\ref{e1.6}) are very restrictive. \noindent{\bf Remark.} If $g_0(t)=g(t)-f^2(t)-f'(t)\geq 0$ then $ \Re\sqrt{-g_0(t)}\equiv 0$ and (\ref{e1.6}) becomes \begin{equation} \int^{\infty}_T\big|k_0^2(t)\sqrt{g_0(t)}+k_0'(t)\big|dt\leq N. \label{e1.8} \end{equation} \noindent{\bf Remark.} Condition (\ref{e1.8}) is close to the main assumption of asymptotic stability theorems in Pucci and Serrin, that $k_0(t)$ is the function of bounded variation ($\int^{\infty}_T|k_0'(t)|dt<\infty$). See \cite{p1,p2} or Theorem \ref{thm1.8} in this paper. \begin{theorem}\label{thm1.2} Assume there exist the complex-valued functions $\varphi_{1,2}\in C^2(T,\infty)$ that satisfy the conditions \begin{gather} \lim_{t\to \infty}\exp \int_T^t\Re\big({\varphi_j'\over \varphi_j}\big)ds =0,\quad j=1,2,\label{e1.9} \\ \varphi_2(t)L\varphi_1(t)=\varphi_1(t)L\varphi_2(t),\label{e1.10} \\ \Re\big({\varphi_j'(t)\over\varphi_j(t)}\big)\leq 0,\quad j=1,2,\; t\geq b\, \hbox{ for some } b\geq T, \label{e1.11} \\ \int^{\infty}_T|B_{21}(s)|ds<\infty,\label{e1.12} \\ B_{21}(t)\equiv{\varphi_2(t)L\varphi_1(t)\over W[\varphi_1(t),\varphi_2(t)]},\quad W[\varphi_1(t),\varphi_2(t)]\equiv\varphi_1(t)\varphi'_2(t) -\varphi'_1(t)\varphi_2(t)\label{e1.13} \end{gather} then every solution of (\ref{e1.1}) satisfies $\lim_{t\to \infty} x(t)=0$. \end{theorem} \begin{theorem}\label{thm1.3} Assume there exist complex-valued functions $ \varphi_{1,2}\in C^2(T,\infty)$ that satisfy conditions (\ref{e1.9})-(\ref{e1.12}) and \begin{gather} \lim_{t\to \infty}\int^t_T\Re\big[{\varphi_j''(s)\over\varphi_j'(s)}\big]ds =-\infty,\quad j=1,2,\label{e1.14} \\ \big|{\varphi_j'(t)\over\varphi_j(t)}\big|\leq c\Big(\int^t_b|B_{21}(s)|ds\Big)^{-\delta},\quad j=1,2,\; t\geq b,\; 0<\delta< 1,\label{e1.15} \end{gather} for some positive constants c and $\delta$. Then the rest state of (\ref{e1.1}) is asymptotically stable and for $k=0,1$ we have \begin{equation} |x^{(k)}(t)|\leq \sum_{j=1}^2\big|C_j\varphi_j^{(k)}(t)\big| +C\Big(\int^t_b|B_{21}(s)|ds\Big)^{-k\delta} \Big(-1+\exp\big(\int^t_b|2B(s)|ds\big)\Big).\label{e1.16} \end{equation} \end{theorem} \begin{theorem}\label{thm1.4} Let conditions (\ref{e1.8}) and \begin{gather} \lim_{t\to \infty}\int^t_T\Re\big[f(t)+{g_0'(t)\over 4g_0(t)}\pm\sqrt{f^2(t)+f'(t)-g(t)}\big]dt=\infty,\label{e1.17} \\ \Re\big[f(t)+{g_0'(t)\over 4g_0(t)}\pm\sqrt{f^2(t)+f'(t)-g(t)}\big]\geq 0,\quad t\geq b\, \label{e1.18} \end{gather} be satisfied for some number $b\ge T$. Then every solution $x(t)$ of (\ref{e1.1}) satisfies $ \lim_{t\to \infty} x(t)=0$. \end{theorem} \begin{example}\rm $f(t)=t^{\alpha}$, $g(t)=1$. From Theorem \ref{thm1.4} follows that if $-1\leq\alpha\leq1$ then all solutions of (\ref{e1.1}) approach to zero as $t\to \infty$. It is known that condition $-1\leq\alpha\leq1$ is necessary and sufficient condition of asymptotic stability in this case. \end{example} \noindent{\bf Remark.} Example 1.3 shows that Theorem \ref{thm1.4} covers small and large damping cases although example 1.1 shows that Theorem \ref{thm1.1} covers only the small damping case ($\alpha<0$). \begin{example} \rm $f(t)=t^{\alpha}+it^{\beta}$, $g(t)=1$. It can be checked that (\ref{e1.8}) is satisfied (see section 3). From Theorem \ref{thm1.4} follows that if $-1\leq\alpha< 1$, $\beta\leq(\alpha+1)/2$ then all solutions of (\ref{e1.1}) approach to zero as $t\to \infty $. \end{example} \begin{theorem}\label{thm1.5} Let conditions (\ref{e1.8}),(\ref{e1.17}), (\ref{e1.18}) and \begin{gather} \lim_{t\to \infty}\int^t_T\Re\big[\mu_j+{\mu'_j\over\mu_j}\big]dt =-\infty,\quad j=1,2.\label{e1.19} \\ |\mu_j(t)|\leq c\Big(\int^t_T\big|k_0^2(t)\sqrt{g_0(t)}+k_0'(t) \big|dt\Big)^{-\delta},\quad 0<\delta<1,\quad j=1,2 \label{e1.20} \end{gather} be satisfied for some positive numbers $c,\delta$. Then the rest state of (\ref{e1.1}) is asymptotically stable. \end{theorem} \begin{theorem}\label{thm1.6} Let the complex-valued functions $\varphi_{1,2}\in C^2(T,\infty)$ satisfy conditions (\ref{e1.10}), (\ref{e1.12}) and \begin{gather} |\varphi_{1,2}(t)|\quad \hbox{be decreasing},\label{e1.21} \\ |\varphi_1(\infty)|=\gamma>0 \label{e1.22} \end{gather} then the rest state of (\ref{e1.1}) is not asymptotically stable. \end{theorem} \begin{theorem}\label{thm1.7} Let $f\in C^3(T,\infty)$, $g\in C^2(T,\infty)$ satisfy conditions (\ref{e1.8}) and \begin{gather} \Re[f(t)+{g_0'(t)\over 4g_0(t)}\pm\sqrt{f^2(t)+f'(t)-g(t)}]dt\geq 0,\quad t\geq T, \label{e1.23} \\ \int^{\infty}_T\Re[f(t)+{g_0'(t)\over 4g_0(t)}-\sqrt{f^2(t)+f'(t)-g(t)}]dt<\infty \,.\label{e1.24} \end{gather} Then the rest state of equation (\ref{e1.1}) is not asymptotically stable. \end{theorem} Consider a nonlinear second order differential equation \begin{equation} x''(t)+h(t,x(t),x'(t))x'(t)+j(t,x(t))=0,\quad t\in J=[T,\infty).\label{e1.25} \end{equation} The following theorem is a generalization of the asymptotic stability theorem of Pucci and Serrin \cite[Theorem 3.1]{p1}, to the case of complex-valued coefficients. \begin{theorem}\label{thm1.8} If there exist a non-negative continuous function $k(t)$ of bounded variation on $(T,\infty)$, non-negative measurable functions $\sigma(t), \delta(t), \psi\in L^1(J)$ and positive numbers $\beta,\chi,M,c,m$ such that \begin{gather} 0\leq \sigma\leq Re[h(t,x,x')],\quad t\in J, \label{e1.26} \\ |h(t,x,x')|\leq\delta(t), \quad t\in J,\label{e1.27} \\ |h(t,x,x')|\leq \gamma Re[h(t,x,x')], \quad t\in J,\; \gamma\geq 1,\label{e1.28}\\ 0\leq k(t)\leq\beta\sigma(t), \quad t\in J,\label{e1.29} \\ \lim_{t\to \infty}\int^t_Tk(s)ds=\infty, \label{e1.30} \\ \int^t_T\delta(s)k(s)e^{\int_t^sk(z)dz}ds\leq M, \quad t\in J,\label{e1.31} \\ \bar{x}j(t,x,x')+x\bar{j}(t,x,x')\geq\chi>0,\quad \hbox{for }|x|>0,\; t\in J, \label{e1.32} \\ F(t,x)=\int j(t,x,x')d\bar{x}=\int\bar{j}(t,x,x')dx>0,\quad \hbox{for }|x|>0,\label{e1.33} \\ F(t,0)=0,\quad F(t,x)\geq c|x|^m,\quad \partial_tF(t,x)\leq\psi(t),\quad t\in J.\label{e1.34} \end{gather} Then the rest state of (\ref{e1.25}) is asymptotically stable. \end{theorem} \begin{example} \rm Let $j(t,x)=l(t)x|x|^{2q}$, $h(t,x,x')=t^{\alpha}+it^{\beta}$, $q>0$ then from Theorem \ref{thm1.8} it follows that the rest state of (\ref{e1.1}) is asymptotically stable if \begin{equation} 0\leq l_0\leq l(t)\leq l_1<\infty,\quad \int_T^{\infty}|l_1(t)|dt<\infty,\quad -1\leq\alpha<0,\quad \beta\le\alpha.\label{e1.35} \end{equation} \end{example} \section{Auxiliary theorems} Consider the system of ordinary differential equations \begin{equation} a'(t)=A(t)a(t),\quad t>T,\label{e36} \end{equation} where $a(t)$ is a $n$-vector function and $A(t)$ is a continuous on $(T,\infty)$ $n\times n$ matrix-function. Suppose we can find the exact solutions of the system \begin{equation} \psi'(t)=A_1(t)\psi(t),\quad t>T, \label{e37} \end{equation} with the matrix-function $A_1$ close to the matrix-function A. Let $\Psi(t)$ is the $n\times n$ fundamental matrix of the auxiliary system (\ref{e37}). Then the solutions of (\ref{e36}) can be represented in the form \begin{equation} a(t)=\Psi(t)(C+\varepsilon(t)), \label{e38} \end{equation} where $a(t),\varepsilon(t),C$ are the $n$-vector columns: $a(t)=\mathop{\rm colomn}(a_1(t),\dots,a_n(t))$, $\varepsilon(t)=\mathop{\rm colomn}(\varepsilon_1(t),\dots,\varepsilon_n(t))$, $C=\mathop{\rm colomn}(C_1,\dots,C_n), C_k$ are an arbitrary constants. We can consider (\ref{e38}) as definition of the error vector-function $\varepsilon(t)$. \begin{theorem}[\cite{h2}]\label{thm2.1} Assume there exist an invertible matrix function $\Psi(t)\in C^1[T,\infty)$ such that \begin{equation} H(t)\equiv \Psi^{-1}(t)(A(t)\Psi(t)-\Psi'(t))=\Psi^{-1}(t)(A(t)-A_1(t))\Psi(t)\in L^1(T,\infty). \label{e39} \end{equation} Then every solution of (\ref{e36}) can be represented in form (\ref{e38}) and the error vector-function $\varepsilon(t)$ can be estimated as \begin{equation} \|\varepsilon(t)\|\le\|C\|\Big( -1+\exp\Big[\int_T^t\|\Psi^{-1}(s)(A\Psi(s)-\Psi'(s))\|ds\Big]\Big),\label{e40} \end{equation} where $\|\cdot\|$ is the Euclidean vector (or matrix) norm: $\|C\|=\sqrt{C_1^2+\dots+C_n^2}$. \end{theorem} \noindent {\bf Remark.} From (\ref{e40}) the error $\varepsilon(t)$ is small when $\int_T^t\|\Psi^{-1}(A-A_1)\Psi\|ds$ is small. \begin{proof}[Proof of Theorem \ref{thm2.1}] Let $a(t)$ be a solution of (\ref{e36}). The substitution $a(t)=\Psi(t)u(t)$ transforms (\ref{e36}) into \begin{equation} u'(t)=H(t)u(t),\quad t>T,\label{e41} \end{equation} where $H$ is defined by (\ref{e39}). By integration we obtain \begin{equation} u(t)=C+\int_T^tH(s)u(s)ds,\quad t>T, \label{e42} \end{equation} where the constant vector $C$ is chosen as in (\ref{e38}). Estimating $u(t)$, \begin{equation} \|u(t)\|\le\|C\|+\int_T^t\|H(s)\|\cdot\|u(s)\|ds, \label{e43} \end{equation} and by Gronwall's lemma we have \begin{equation} \|u(t)\|\le\|C\|\exp\Big(\int_T^t\|H(s)\|ds\Big).\label{e44} \end{equation} From representation (\ref{e38}) and expression (\ref{e42}), we have $$\varepsilon(t)=\Psi^{-1}a-C=u-C=\int_T^tH(s)u(s)ds. $$ Then using (\ref{e44}) we obtain the estimate (\ref{e40}): \begin{align*} \|\varepsilon(t)\|&\le \int_T^t\|Hu\|ds\\ &\le\|C\|\int_T^t\|H(s)\| \exp\Big(\int_T^s\|H\|dy\Big)ds\\ &=\|C\|\Big(-1+\exp\big(\int_T^t\|H\|ds\big)\Big). \end{align*} \end{proof} \begin{theorem}\label{thm2.2} Let $\varphi_{1,2}(t)\in C^2(T,\infty)$ be complex-valued functions such that \begin{equation} \int_T^{\infty}|B_{kj}(t)|dt<\infty,\quad k,j=1,2, \label{e45} \end{equation} where \begin{equation} B_{kj}(t)\equiv{\varphi_{k}(t)L\varphi_{j}(t)\over W(\varphi_1,\varphi_2)}, \quad L\equiv {d^2\over dt^2}+2f(t){d\over dt}+g(t),\quad j=1,2. \label{e46} \end{equation} Then for arbitrary constants $C_1$,$C_2$ there exist solution of (\ref{e1.1}) that can be written in the form \begin{gather} x(t)=\left[C_1+\varepsilon_1(t)\right]\varphi_1(t)+\left[C_2+\varepsilon_2(t)\right] \varphi_2(t), \label{e47} \\ x'(t)=\left[C_1+\varepsilon_1(t)\right]\varphi_1'(t)+\left[C_2 +\varepsilon_2(t)\right]\varphi_2'(t), \label{e48} \end{gather} where the error function is estimated as \begin{equation} \|\varepsilon(t)\|\le \|C\|\big(-1 +\exp\int_T^t\|B(s)\|ds\big), \label{e49} \end{equation} the matrix $B$ has entries $B_{kj}$ and has norm $\|B\|$. \end{theorem} \begin{proof} Equation (\ref{e1.1}) we can rewrite in the form \begin{equation} v'(t)=A(t)v(t), \label{e50} \end{equation} where $$v(t)=\begin{pmatrix}x \\ x'(t)\end{pmatrix},\quad A(t)=\begin{pmatrix} 0 & 1 \\ -g(t)& -2f(t) \end{pmatrix}. $$ By substitution \begin{equation} v(t)=\Psi w(t),\quad \Psi =\begin{pmatrix} \varphi_1(t) & \varphi_2(t)\\ \varphi_1'(t) & \varphi_2'(t)\end{pmatrix}. \label{e51} \end{equation} in (\ref{e50}), we get \begin{equation} w'(t)=H(t)w(t),\quad H(t)=\begin{pmatrix} B_{21}(t) & B_{22}(t)\\ -B_{11}(t) & -B_{12}(t)\end{pmatrix}.\label{e52} \end{equation} To apply Theorem \ref{thm2.1} to the system (\ref{e52}), we choose $A(t)=H(t)$ in (\ref{e36}) and $A_1(t)\equiv 0$ in (\ref{e37}). Then the identity matrix $\Psi=I$ is the fundamental solution of (\ref{e37}) with $A_1(t)\equiv 0$. By direct calculations we get $\|H\|=\|\Psi^{-1}(A\Psi-\Psi')\|=\|B\|$, so condition (\ref{e39}) of Theorem \ref{thm2.1} follows from (\ref{e45}). From Theorem \ref{thm2.1} we have \begin{equation} w(t)=(C+\varepsilon(t)),\quad \hbox{or}\quad v(t)=\Psi(t)w(t)=\Psi(t)(C+\varepsilon(t)).\label{e53} \end{equation} Representations (\ref{e47}), (\ref{e48}) and estimates (\ref{e49}) follow from Theorem \ref{thm2.1}. \end{proof} Denote \begin{equation} x_j(t)=\exp\big(\int_T^t\mu_j(s)ds),\quad j=1,2,\quad \mu_{1,2}=-f(t)-{g_0'(t)\over 4g_0(t)}\pm i\sqrt{g_0(t)}. \label{e54} \end{equation} \begin{theorem}\label{thm2.3} Let $g\in C^2(T,\infty)$, $f\in C^3(T,\infty)$ and \begin{equation} \int^{\infty}_T\left|G_0(t)\right|e^{\pm 2\int^t_T\Im\sqrt{g_0(s)}ds}dt=\int_T^{\infty}\big|G_0(t)e^{\pm 2\int_T^t\Re[\sqrt{-g_0(s)}]ds}\big|dt<\infty,\label{e55} \end{equation} where $G_0(t)$ is defined by (\ref{e1.4}). Then for any constants $C_1,C_2$ there exist solution of (\ref{e1.1}) that can be written in the form \begin{gather} x(t)=\left[C_1+\varepsilon_1(t)\right]x_1(t)+\left[C_2+\varepsilon_2(t)\right]x_2(t), \label{e56} \\ x'(t)=\left[C_1+\varepsilon_1(t)\right]x_1'(t)+\left[C_2+\varepsilon_2(t)\right]x_2'(t), \label{e57} \end{gather} and for the error vector-function $\varepsilon(t)=\begin{pmatrix} \varepsilon_1(t) \\ \varepsilon_2(t) \end{pmatrix}$ we have the estimate \begin{gather} \|\varepsilon(t)\|\le \|C\|\big(-1 +\exp\int_T^t|G(t)|dt\big),\label{e58} \\ G(t)\equiv \max\Big(\big|G_0(s)e^{2\int_T^t\Im\sqrt{g_0}dz}\big|, \big|G_0(s)e^{-2\int_T^t\Im\sqrt{g_0}dz}\big|\Big). \label{e59} \end{gather} \end{theorem} \begin{proof} We apply Theorem \ref{thm2.2} with $\varphi_j(t)=x_j(t)$. By direct calculations, we have \begin{equation} \begin{gathered} {x_1(t)Lx_1(t)\over W[x_1,x_2]}={iG_0(t)\over 2}e^{2i\int_T^t\sqrt{g_0(s)}ds},\\ {x_2(t)Lx_2(t)\over W[x_1,x_2]}={G_0(t)\over 2i}e^{-2i\int_T^t\sqrt{g_0(s)}ds},\\ {x_1(t)Lx_2(t)\over W[x_1,x_2]}={x_2(t)Lx_1(t)\over W[x_1,x_2]}={G_0\over 2i}. \end{gathered}\label{e60} \end{equation} From (\ref{e55}) and Cauchy-Schwarz inequality follows $\int_T^{\infty}|G_0|dt<\infty$. So conditions (\ref{e45}) of Theorem \ref{thm2.2} follow from (\ref{e55}). Theorem \ref{thm2.3} follows from Theorem \ref{thm2.2}. \end{proof} \begin{theorem}\label{thm2.4} Let $\varphi_{1,2}\in C^2(T,\infty)$ satisfied (\ref{e1.10})-(\ref{e1.12}). Then for any constants $C_1,C_2$ there exist solution $x(t)$ of (\ref{e1.1}) that can be written in the form (\ref{e47}),(\ref{e48}) and the error functions $\varepsilon_j(t)$ are estimated as \begin{equation} |\varepsilon_j(t)|\le {C\big(-1 +\exp\int_b^t|B_{21}|ds\big)\over |\varphi_j(t)|},\quad j=1,2\label{e61} \end{equation} with some positive constant $C$ not depending on $b$. \end{theorem} \noindent{\bf Remark.} For the given functions $\varphi_1(t)$, $W(t)$ we can construct $$\varphi_2(t)=\varphi_1(t)\int_T^t{W(s)ds\over \varphi_1^2(s)} $$ such that (\ref{e1.10}) and (\ref{e1.13}) are satisfied. \begin{proof}[Proof of Theorem \ref{thm2.4}] From (\ref{e1.11}) we have $$ {d\over dt}|\varphi_j(t)|=|\varphi_j(b)|{d\over dt} \Big|\exp{\int_b^t{\varphi_j'\over\varphi_j}ds}\Big| =|\varphi_j(t)|Re\big({\varphi_j'(t)\over\varphi_j(t)}\big)\leq 0, \quad j=1,2, \; t\geq b, $$ which means that the functions $|\varphi_j(t)|$ are decreasing. When (\ref{e1.10}) is satisfied then the functions $\varphi_{1,2}(t)$ are solutions of the homogeneous equation $$ u''(t)+2f(t)u'(t)+\big(g(t)-{L\varphi_1\over \varphi_1}\big)u(t)=0 $$ and any solution of (also of (\ref{e1.1})) $$ x''(t)+2f(t)x'(t)+\big(g(t)-{L\varphi_1\over \varphi_1}\big)x(t) =-{L\varphi_1\over \varphi_1}x(t) $$ can be written in the form: \begin{gather} x(t)=\varphi_1(t)C_1+\varphi_2(t)C_2+\varphi_1(t)\int_b^t{x(s)L\varphi_2ds\over W[\varphi_1,\varphi_2]}-\varphi_2(t)\int_b^t{x(s)L\varphi_1ds\over W[\varphi_1,\varphi_2]},\label{e62} \\ x(t)=\varphi_1(t)C_1+\varphi_2(t)C_2+\int_b^t\big({\varphi_1(t)\over\varphi_1(s)}-{\varphi_2(t) \over\varphi_2(s)}\big){\varphi_1(s)L\varphi_2(s)\over W[\varphi_1(s),\varphi_2(s)]}x(s)ds,\label{e63} \\ x'(t)=\varphi_1'(t)C_1+\varphi_2'(t)C_2+\int_b^t\big({\varphi_1'(t)\over\varphi_1(s)} -{\varphi_2'(t)\over\varphi_2(s)}\big){\varphi_1(s)L\varphi_2(s)\over W[\varphi_1(s),\varphi_2(s)]}x(s)ds,\label{e64} \end{gather} or (\ref{e47}), (\ref{e48}) where \begin{equation} \varepsilon_1(t)=\int_b^t{x(s)L\varphi_2(s)ds\over W[\varphi_1(s),\varphi_2(s)]},\quad \varepsilon_2(t)=-\int_b^t{x(s)L\varphi_1(s)ds\over W[\varphi_1(s),\varphi_2(s)]}.\label{e65} \end{equation} Here $C_1,C_2 $ and $b$ are arbitrary constants and $C_1,C_2 $ do not depend on b. Because the functions $|\varphi_j(t)|$ are decreasing they are bounded: \begin{equation} |\varphi_j(t)|\leq N_j(T), \quad j=1,2,\quad t\geq T. \label{e66} \end{equation} From representation (\ref{e63}) we have the estimates: \begin{gather*} |x(t)|\le\left|\varphi_1(t)C_1|+|\varphi_2(t)C_2\right|+2\int_b^t \big|{x(s)\varphi_1(s)L\varphi_2(s)\over W(s)}\big|ds,\\ |x(t)|\leq|N_1C_1|+|N_2C_2|+2\int_b^t|B_{21}x(s)|ds. \end{gather*} Applying Gronwall's lemma we have \begin{equation} |x(t)|\leq C\exp\Big(\int_b^t2|B_{21}(s)|ds\Big),\quad C=|N_1C_1|+|N_2C_2|. \label{e67} \end{equation} From (\ref{e65}) and (\ref{e67}), because $\varphi_{1,2}(t)$ are decreasing, we obtain estimates (\ref{e61}): $$\left|\varphi_j\varepsilon_j(t)\right|\leq C\int_b^t|B_{21}(s)|e^{\int_b^s|B_{21}dz}ds =C\Big(-1+\exp {\int_b^t|2B_{21}|dz}\Big), \quad j=1,2. $$ \end{proof} \section{Proofs of the main statements} \begin{proof}[Proof of Theorem \ref{thm1.1}] Let us choose $x_j(t)$ as in (\ref{e54}) and apply Theorem \ref{thm2.3}. From conditions (\ref{e55}) (which coincide with conditions (\ref{e1.6})) of Theorem \ref{thm1.1}, by Theorem \ref{thm2.3} we have representations (\ref{e56}), (\ref{e57}) and estimates (\ref{e58}). From \begin{equation} \begin{gathered} |x_j(t)|= \exp\int_T^tRe(\mu_j)ds,\\ |x_j'(t)|=|\mu_j(T)|exp\int_T^t \Re\big(\mu_j(s)+{\mu_j'(s)\over\mu_j(s)}\big)ds, \quad j=1,2, \end{gathered} \label{e3.1} %\label{e68} \end{equation} and (\ref{e1.7}) we have $$ \lim_{t\to \infty}|x_j(t)|=\lim_{t\to \infty}|x_j'(t)|=0,\quad j=1,2. $$ From (\ref{e56})-(\ref{e58}) and (\ref{e1.6}) we have $|\varepsilon_j(t)|\le\mbox{const}$, $t>T$, $j=1,2$ and the asymptotic stability. Now prove that if one of the conditions in (\ref{e1.7}) is not satisfied, then there exist an asymptotically unstable solution $x(t)$. By contradiction assume that (\ref{e1.2}) is satisfied, and, for example, the first condition of (\ref{e1.7}) is not satisfied. Then there exist the sequence $t_n \to \infty $ such that \begin{equation} \lim_{t_n\to \infty}|x_1(t_n)|=\lambda_1\neq 0.\label{e69} \end{equation} There exist the subsequence $t_{n_j}\equiv t_m$ of the sequence $t_n$ such that \begin{equation} \lim_{t_m\to \infty}|x_2(t_m)|=\lambda_2.\label{e70} \end{equation} From Theorem \ref{thm2.3} for any constants $C_1,C_2$ there exists the solution $x(t)$ of (\ref{e1.1}) that can be represented in form (\ref{e56}), or \begin{equation} x(t_m)=\left[C_1+\varepsilon_1(t_m)\right]x_1(t_m)+\left[C_2+\varepsilon_2(t_m)\right]x_2(t_m), \label{e71} \end{equation} where $|\varepsilon_j(t)|\le const,\quad t>T,\quad j=1,2$. From representation (\ref{e69}),(\ref{e71}) $\lambda_{1,2}$ must be finite numbers, otherwise left side of (\ref{e71}) vanished and right side approaches to infinity when $t_m\to \infty$ by appropriate choice of $C_j$. Let choose $C_1=1,\quad C_2=0$ and denote $N=\exp\big(\int_T^{\infty}|G|ds\big)$ then from (\ref{e58}) we get \begin{equation} |\varepsilon_j(t)|\le\|\varepsilon\|\le e^N-1.\label{e72} \end{equation} There exist the subsequence $t_k$ of sequence $t_m$ such that exist $\lim_{t_k\to \infty}\varepsilon_j(t_k).$ So from (\ref{e71}) we obtain \begin{gather*} 0=\lambda_1+\lambda_1\lim_{t_k\to \infty}\varepsilon_1(t_k) +\lambda_2\lim_{t_k\to \infty}\varepsilon_2(t_k),\\ -1=\lim_{t_k\to \infty}\varepsilon_1(t_k)+{\lambda_2\over\lambda_1} \lim_{t_k\to \infty}\varepsilon_2(t_k), \end{gather*} which is impossible because the right side can be made small in view of estimate (\ref{e72}) by choosing T big, which makes $N$ and $\varepsilon_j$ small. \end{proof} To prove the statement of Example 1.1 let us show that if $-1<\alpha<0$, or $\alpha=-1$, $\beta>-1$, then conditions (\ref{e1.6}), (\ref{e1.7}) of Theorem \ref{thm1.1} are satisfied. From the estimates \begin{gather*} f(t)=o(1),\quad g_0\equiv 1-f^2(t)-f'(t)=1+o(1),\quad t\to\infty,\\ g_0\ge 0.5,\quad \Im\sqrt{g_0}=0,\quad t>T,\\ |g_0'(t)|\le C|f'(t)|,\quad |g_0''(t)|\le C|f'(t)|\in L_1(T,\infty), \end{gather*} conditions (\ref{e1.6}) follows: \begin{align*} \int_T^{\infty}\big|G_0(s)e^{\pm 2\int_T^s\Im\sqrt{g_0(y)}dy}ds\big| &\le \int_T^{\infty}\left(|g_0'(s)|^2+|g_0''(s)|\right)ds\\ &\le C\int_T^{\infty}|f'(s)|ds<\infty. \end{align*} Further from the estimates \begin{gather*} \mu_{1,2}=-f-{g_0'\over 4g_0}\pm i\sqrt{g_0}=-f+O(f'f)\pm i\sqrt{g_0}=\pm i+o(1),\\ |\mu_j'|=\Big|-f'(t)\pm {ig_0'(t)\over 2g_0^{3/2}}-\big({g_0'\over 4g_0}\big)'\Big| \le|f'|+c_1|g_0'|+c_2|g_0'|^2+c_3|g_0''|\le C|f'|,\\ Re({\mu_j'\over \mu_j})\le|{\mu_j'\over \mu_j}|\le c_4|\mu_j'(t)|\le C |f'|,\quad f'\in L_1(T,\infty),\\ \int_T^{\infty}fdt=\int_T^{\infty}t^{\alpha}\ln^{\beta}tdt=\infty,\quad \alpha>-1,\hbox{ or } \alpha=-1, \beta>-1,\\ \int_T^{\infty}\Re(\mu_j)dt=\int_T^{\infty}\left(-f+O(f'f)dt\right)=-\infty \end{gather*} conditions (\ref{e1.7}) follows. To prove the statement of example 1.2 let us show that if $-1<\alpha<-1-\beta$, $\alpha<0$ then conditions (\ref{e1.6}), (\ref{e1.7}) of Theorem \ref{thm1.1} are satisfied. From the estimates \begin{gather*} f(t)=o(1),\quad g_0=1-f^2(t)-f'(t)=1+o(1),\quad t\to\infty, \\ |f'(t)|\le {\sqrt{\alpha^2 t^{2\alpha} +\beta^2 t^{2\beta}}\over t}\in L_1(0,\infty),\\ |g_0|\ge 0.5,\quad |g_0'(t)|\le C|f'(t)|,\quad |g_0''(t)|\le C|f'(t)|,\\ P\equiv\Re(-g_0)=-1+t^{2\alpha}-t^{2\beta}+\alpha t^{\alpha-1},\quad Q\equiv\Im(-g_0)=2t^{\alpha+\beta}+\beta t^{\beta-1},\\ P=-1+o(1),\quad Q=2t^{\alpha+\beta}(1+o(1)),\quad R\equiv\sqrt{P^2+Q^2}=1+o(1), \quad t\to\infty,\\ \Re\sqrt{-g_0}=\sqrt{{P+R\over 2}}=\sqrt{{R^2-P^2\over 2(R-P)}}={|Q|\over 2(1+o(1))},\\ \int_T^t\Re\sqrt{-g_0}dt=\int_T^t {|Q|\over 2(1+o(1))} \le C\int_T^t s^{\alpha+\beta}ds <\mathrm{const},\quad t\to\infty \end{gather*} conditions (\ref{e1.6}) follow: \begin{align*} \int_T^{\infty}\Big|G_0(s)e^{\pm\int_T^t\Re\sqrt{-g_0}dy}ds\Big| &\le C\int_T^{\infty}|G_0(s)|ds\le C\int_T^{\infty}(|g'_0|^2+|g_0''|)ds\\ &\le C\int_T^{\infty}|f'(t)|dt <\infty. \end{align*} Further from the estimates \begin{gather*} \Re(\mu_j)=Re\big(-f-{g_0'\over 4g_0}\pm i\sqrt{g_0}\big) =-Re(f)+O(g_0')\pm O(|Q|/2),\;\; j=1,2,\; t\to\infty,\\ \Re(\mu_j)=-t^{\alpha}+O(g_0')\pm O(t^{\alpha+\beta}),\quad j=1,2,\; t\to\infty,\\ \int_T^{t}\Re(\mu_j)dt\to -\infty,\quad \alpha>-1,\; t\to\infty,\\ \mu_{j}=-f-{g_0'\over 4g_0}\pm i\sqrt{g_0}=\pm i+o(1),\quad j=1,2,\quad t\to\infty,\\ |\mu_j'|=\big|f'+({g_0'\over 4g_0})'\pm {ig_0'\over g_0^{3/2}}\big| \le C|f'(t)|\quad f'\in L_1(T,\infty),\\ {\mu_j'\over\mu_j}\in L_1(T,\infty),\quad j=1,2 \end{gather*} conditions (\ref{e1.7}) follow. %\end{proof} \begin{proof}[Proof of Theorem \ref{thm1.2}] From representation (\ref{e63}) of the solutions of (\ref{e1.1}) we have the estimates: \begin{equation} |x(t)|\leq\sum_{j=1}^2|C_j\varphi_j(t)| +\int_b^t\big|{\varphi_1(t)\over\varphi_1(s)}-{\varphi_2(t) \over\varphi_2(s)}\big| \big|{x(s)\varphi_2(s)L\varphi_1(s)\over W[\varphi_1(s),\varphi_2(s)]}\big|ds\label{e73} \end{equation} or because the functions $|\varphi_j(t)|$ are decreasing: \begin{equation} |x(t)|\leq\sum_{j=1}^2|C_j\varphi_j(t)|+2\int_b^t \big|{x(s)\varphi_2(s)L\varphi_1(s)\over W[\varphi_1(s),\varphi_2(s)]}\big|ds.\label{e74} \end{equation} From (\ref{e66}), \begin{equation} |x(t)|\leq C+2\int_b^t|x(s)B_{21}(s)|ds,\label{e75} \end{equation} where $C=|N_1C_1|+|N_2C_2|$ depends on T and does not depend on b. From (\ref{e1.10}) we have $B_{21}=B_{12}.$ Applying Gronwall's lemma we have \begin{equation} |x(t)|\leq C\exp\int_b^t2|B_{21}(s)|ds.\label{e76} \end{equation} From (\ref{e74}), (\ref{e76}) we have \begin{equation} |x(t)|\leq\sum_{j=1}^2|C_j\varphi_j(t)|+C\int_b^t|B_{21}| \exp\big(2\int_b^s|B_{21}(y)|dy\big)ds. \label{e77} \end{equation} From (\ref{e1.9}), $$ \lim_{t\to \infty}|\varphi_j(t)|=|\varphi_j(T)|\lim_{t\to \infty}\exp {\int_T^t\Re({\varphi_j'\over \varphi_j})ds}=0,\quad j=1,2. $$ In view of (\ref{e1.12}) $$ |x(t)|\leq\sum_{j=1}^2|C_j\varphi_j(t)| +C\Big(-1+\exp\int_b^t|2B_{21}(s)|ds\Big)\to 0, $$ when $ t\to \infty$ and $ b\to\infty$, because $C_j,C$ do not depend on $b$. \end{proof} \begin{proof}[Proof of Theorem \ref{thm1.3}] From \begin{equation} |\varphi_j^{(k-1)}(t)|=|\varphi_j^{(k-1)}(T)| \exp\int_T^tRe\Big({\varphi_j^{(k)}(s)\over\varphi_j^{(k-1)}(s)}\Big)ds, \quad k=1,2\label{e78} \end{equation} and conditions (\ref{e1.9}), (\ref{e1.14}) we have \begin{equation} \lim_{t\to\infty}|\varphi_j^{(k-1)}(t)|=0,\quad j,k=1,2. \label{e79} \end{equation} From (\ref{e79}) we have \begin{equation} |\varphi_j^{(k-1)}(t)\le S<\infty,\quad j,k=1,2,\; t\ge T,\label{e80} \end{equation} where $S$ depend on $T$ and does not depend on $b$. From representations (\ref{e63}),(\ref{e64}) we have the estimates: \begin{equation} |x^{(k)}(t)|\le \sum_{j=1}^2|\varphi_j^{(k)}(t)C_j|+\int_b^t \Big|{\varphi_1^{(k)}(t)\over\varphi_1(s)} -{\varphi_2^{(k)}(t)\over\varphi_2(s)}\Big|\cdot|B_{21}(s)x(s)|ds,\quad k=0,1\label{e81} \end{equation} or because the functions $|\varphi_j(t)|$ are decreasing we get for $k=0,1$ \begin{equation} |x^{(k)}(t)|\le \sum_{j=1}^2|\varphi_j^{(k)}(t)C_j|+\Big(\Big|{\varphi_1^{(k)}(t)\over\varphi_1(t)}\Big| +\Big|{\varphi_2^{(k)}(t)\over\varphi_2(t)}\Big|\Big)\int_b^t|B_{21}(s)x(s)|ds.\label{e82} \end{equation} In view of (\ref{e1.15}) and (\ref{e76}) we obtain for $k=0,1$ the estimates $$ |x^{(k)}(t)|\le \sum_{j=1}^2|\varphi_j^{(k)}(t)C_j| +cC\Big(\int_b^t|B_{21}(s)|ds\Big)^{-k\delta} \int_b^t|B_{21}(s)|e^{\int_b^s|B_{21}|dz}ds, $$ from which follow estimates (\ref{e1.16}): $$ |x^{(k)}(t)|\leq \sum_{j=1}^2\big|C_j\varphi_j^{(k)}(t)\big| +cC\Big(\int^t_b|B(s)|ds\Big)^{-k\delta}\Big(-1+e^{\int^t_b|2B(s)|ds}\Big)\to 0, $$ when $t\to \infty$ and $b\to \infty,$ and $C_1,C_2,c,C$ do not depend on $b$. \end{proof} \begin{proof}[Proof of Theorem \ref{thm1.4}] Let us choose $\varphi_j(t)=x_j(t)$ as in (\ref{e54}). From (\ref{e1.17}), (\ref{e1.18}), (\ref{e60}) and (\ref{e1.8}), conditions (\ref{e1.9})-(\ref{e1.12}) of Theorem \ref{thm1.2} follow. Theorem \ref{thm1.4} follows from Theorem \ref{thm1.2}. \end{proof} Note that Theorem \ref{thm1.5} follows from Theorem \ref{thm1.3} by choosing $\varphi_j(t)=x_j(t)$ as in (\ref{e54}). The statement in the example 1.3. follows from example 1.4 when $\beta\to -\infty$. To prove the statement in example 1.4 let us show that if $$ -1\le\alpha<1,\quad \beta\le{\alpha+1\over 2} $$ then conditions (\ref{e1.8}),(\ref{e1.17}), (\ref{e1.18}) of Theorem \ref{thm1.4} are satisfied. From conditions (\ref{e1.17}) or \begin{equation} \exp\Big(\int_T^t\Re\big(f+{g_0'\over 4g_0}\pm \sqrt{-g_0}\big)dt\Big)=C|g_0|^{1/4} \exp\Big(\int^t_T \Re\left(f\pm\sqrt{-g_0}\right)dt\Big)\to\infty \label{e83} \end{equation} it follows that for the product of these expressions we have $$ |g_0|^{1/2}\exp\Big(\int^t_T Re(f)dt\Big)=|g_0|^{1/2}\exp\Big(\int^t_Tt^{\alpha}dt\Big) \to\infty $$ from which, because $g_0$ has polynomial growth or decay, we get the necessary condition $\alpha\ge-1$. Denote \begin{gather*} U(t)\equiv Re(f-\sqrt{-g_0})=t^{\alpha}-\sqrt{(R+P)/2}, \\ P\equiv\Re(-g_0),\quad Q\equiv\Im(-g_0),\quad R\equiv\sqrt{P^2+Q^2}. \end{gather*} Then one of conditions (\ref{e83}) turns $$ R^{1/4}\exp(\int_T^tU(s)ds) \to\infty. $$ Because $R(t)$ has polynomial growth or decay in most of the cases to prove (\ref{e1.17}) it is sufficient to prove that $$ \int_T^tU(s)ds=O(t^{\lambda})\to\infty,\quad t\to\infty,\quad \lambda>0. $$ By direct calculations \begin{align*} U&={t^{2\alpha}-(P+R)/2\over t^{\alpha}+\sqrt{(P+R)/2}} ={2t^{2\alpha}-P-R\over 2t^{\alpha}+\sqrt{2P+2R}}\\ &={K\over (2t^{\alpha}+\sqrt{2P+2R})(2t^{2\alpha}+R-P)}, \end{align*} $K=4t^{2\alpha}-4\alpha t^{3\alpha-1}-4\beta t^{\alpha+2\beta-1}-\beta^2 t^{2\beta-2}$. Dividing the plane $(\alpha,\beta)$ on 6 regions $\{\alpha\ge\beta, \alpha>0\}$, $\{\alpha\le\beta, \beta>0\}$, $\{\alpha< 0,\beta< 0\}$, $\{\alpha<0,\beta=0\},\{\alpha= 0,\beta< 0\}$ and $\{\alpha= 0,\beta= 0\}$ we check conditions of Theorem 1.4 in each region separately. \noindent{\bf Case 1:} $\alpha\ge\beta,\; \alpha>0$.\quad From \begin{gather*} g_0=O(t^{2\alpha}),\quad g_0'(t)=O(t^{2\alpha-1}),\quad t\to\infty, \\ |G_0(t)|\le C\left(|g_0'(t)|^2/|g_0(t)|^{5/2}+|g_0''(t)|/|g_0(t)|^{3/2}\right) \le Ct^{-\alpha-2} \end{gather*} condition (\ref{e1.8}) follows. To prove (\ref{e1.17}) note that \begin{gather*} P=-1+t^{2\alpha}-t^{2\beta}+\alpha t^{\alpha-1}=t^{2\alpha}(1+o(1)), \quad t\to\infty,\\ Q=2t^{\alpha+\beta}(1+o(1)),\quad R=\sqrt{P^2+Q^2}=t^{2\alpha}(1+o(1)),\quad t\to\infty,\\ (2t^{\alpha}+\sqrt{2P+2R})(2t^{2\alpha}+2R-P)=12t^{3\alpha}(1+o(1)),\quad t\to\infty,\\ U(t)={4t^{2\alpha}-4\alpha t^{3\alpha-1}-4\beta t^{\alpha+2\beta-1}-\beta^2 t^{2\beta-2} \over 12t^{3\alpha}(1+o(1))} \end{gather*} When $\alpha<1$, $$ \int_T^tU(s)ds={t^{1-\alpha}(1+o(1))\over 3}\to\infty,\quad t\to\infty. $$ Conditions (\ref{e1.17}),(\ref{e1.18}) are satisfied. \noindent{\bf Case 2:} $-1<\alpha\le\beta,\; \beta>0$.\quad From \begin{gather*} g_0=O(t^{2\beta}),\quad g_0'(t)=O(t^{2\beta-1}),\quad t\to\infty, \\ |G_0(t)|\le C\left(|g_0'(t)|^2/|g_0(t)|^{5/2}+|g_0''(t)|/|g_0(t)|^{3/2}\right) \le Ct^{-\beta-2} \end{gather*} condition (\ref{e1.8}) follows. Further \begin{gather*} P=t^{2\beta}(-1+o(1)),\quad Q=O(t^{\alpha+\beta}),\quad t\to\infty,\\ R=\sqrt{P^2+Q^2}=t^{2\beta}(1+o(1))\quad R-P=2t^{2\beta}(1+o(1)),\quad t\to\infty,\\ \begin{aligned} (2t^{\alpha}+\sqrt{2P+2R})(2t^{2\alpha}+2R-P) &=(2t^{\alpha}+{|Q|\sqrt{2}\over\sqrt{R-P}})(2t^{2\alpha}+2R-P)\\ &=6t^{\alpha+2\beta}(1+o(1)),\quad t\to\infty, \end{aligned} \\ U(t)={4t^{2\alpha}-4\alpha t^{3\alpha-1}-4\beta t^{\alpha+2\beta-1}-\beta^2 t^{2\beta-2} \over 6t^{\alpha+2\beta}(1+o(1))}. \end{gather*} If $\beta<{\alpha +1\over 2}$ then (\ref{e1.17}) is satisfied: $$ \int_T^tU(s)ds={4t^{1+\alpha-2\beta}\over \alpha-2\beta+1}(1+o(1))\to\infty, \quad t\to\infty. $$ If $\beta={\alpha +1\over 2}<1$, we have \begin{gather*} U(t)={2\over 3}(1-\beta)t^{-1}-{2\over 3}(2\beta-1)t^{2\beta-3} -{\beta^2 \over 6t^{2\beta+1}},\\ \int_T^tU(s)ds={2\over 3}(1-\beta)\ln t-{4\beta-2\over 3t^{2(1-\beta)}} -{t^{-2\beta}\over 6} \to \infty\\ R^{1/4}\exp(\int_T^tU(s)ds) \to\infty,\quad t\to\infty. \end{gather*} Then conditions (\ref{e1.17}),(\ref{e1.18}) are satisfied. \noindent {\bf Case 3:} $\beta< 0,\; -1<\alpha<0$. \quad From \begin{gather*} g_0=O(1),\quad |g_0'(t)|\le {C\over t},\quad |g_0''(t)|\le {C\over t^2}, \quad t\to\infty, \\ |G_0(t)|\le C|g_0'(t)|^2/|g_0(t)|^{5/2}+|g_0''(t)|/|g_0(t)|^{3/2}\le Ct^{-2} \end{gather*} condition (\ref{e1.8}) follows. Then \begin{gather*} P=-1+o(1),\quad t\to\infty,\\ Q=2t^{\alpha+\beta}(1+o(1)),\quad R=\sqrt{P^2+Q^2}=1+o(1),\quad t\to\infty,\\ (2t^{\alpha}+\sqrt{2P+2R})(2t^{2\alpha}+2R-P)=6t^{\alpha}(1+o(1)),\quad t\to\infty,\\ U(t)={4t^{2\alpha}-4\alpha t^{3\alpha-1}-4\beta t^{\alpha+2\beta-1}-\beta^2 t^{2\beta-2} \over 6t^{\alpha}(1+o(1))},\\ \int_T^tU(s)ds={2t^{1+\alpha}\over 3(1+\alpha)}(1+o(1))\to\infty,\quad t\to\infty. \end{gather*} Conditions (\ref{e1.17}), (\ref{e1.18}) are satisfied. \noindent{\bf Case 4:} $\beta=0,\; -1<\alpha<0$. \quad From $$ g_0=O(2),\quad |g_0'(t)|\le {C\over t},\quad |g_0''(t)|\le {C\over t^2},\quad t\to\infty, $$ condition (\ref{e1.8}) follows. Then \begin{gather*} P=-2+o(1),\quad t\to\infty, \\ Q=2t^{\alpha}(1+o(1)),\quad R=2+o(1),\quad t\to\infty,\\ (2t^{\alpha}+\sqrt{2P+2R})(2t^{2\alpha}+2R-P)= \Big(2t^{\alpha}+{|Q|\sqrt{2}\over\sqrt{R-P}}\Big) (2t^{2\alpha}+2R-P)=O(t^{\alpha}),\\ U(t)=O\Big({4t^{2\alpha}-4\alpha t^{3\alpha-1}\over t^{\alpha}}\Big),\\ \int_T^tU(s)ds=O\left(t^{1+\alpha}\right)\to\infty,\quad t\to\infty. \end{gather*} Conditions (\ref{e1.17}), (\ref{e1.18}) are satisfied. \noindent{\bf Case 5:} $\beta<0,\; \alpha=0$. \quad From $$ g_0=O(t^{2\beta}-2it^{\beta})=O(-2it^{\beta}),\quad |g_0'(t)|\le {C\over t}, \quad |g_0''(t)|\le {C\over t^2},\quad t\to\infty, $$ condition (\ref{e1.8}) follows. Then \begin{gather*} P=-t^{2\beta},\quad Q=O(2t^{\beta}),\quad R=O(2t^{\beta}),\quad t\to\infty\\ (2t^{\alpha}+\sqrt{2P+2R})(2t^{2\alpha}+2R-P)=(2+\sqrt{4t^{\beta}-2t^{2\beta}}) (2+4t^{\beta}+t^{2\beta})=O(4), \\ U(t)=O(1-\beta t^{2\beta-1}-{\beta^2\over 4} t^{2\beta-2}),\quad t\to\infty, \\ R^{1/4}\int_T^tU(s)ds=O\Big(t^{\beta/4}\exp(4t-2t^{2\beta}-{\beta^2\over 2\beta-1} t^{2\beta-1})\Big)\to\infty,\quad t\to\infty. \end{gather*} Conditions (\ref{e1.17}), (\ref{e1.18}) are satisfied. \noindent{\bf Case 6:} $\beta=0,\; \alpha=0$. \quad From $$P=-1,\quad Q=2,\quad R=\sqrt{5}, \quad U=O(1) $$ conditions (\ref{e1.8}), (\ref{e1.17}), (\ref{e1.18}) follow. %\end{proof} \begin{proof}[Proof of Theorem \ref{thm1.6}] From representation (\ref{e62}) we have the estimate: \begin{equation} |x(t)|\le\sum_{j=1}^2|\varphi_j(t)C_j|+|\varphi_1(t)|\int_b^t \Big|{x(s)L\varphi_2(s)\over W[\varphi_1,\varphi_2]}\Big|ds+|\varphi_2(t)|\int_b^t \Big|{x(s)L\varphi_1(s)\over W[\varphi_1,\varphi_2]}\Big|ds\label{e84} \end{equation} or because the functions $|\varphi_j|$ are decreasing and bounded: \begin{equation} |x(t)|\le\sum_{j=1}^2|\varphi_j(t)C_j| +2\int_b^t\Big|{x(s)\varphi_1L\varphi_2(s)\over W[\varphi_1,\varphi_2]}\Big|ds \le C+2\int_b^t|x(s)B_{21}(s)|ds.\label{e85} \end{equation} Applying Gronwall's lemma we have \begin{equation} |x(t)|\le C\exp\int_b^t|2B_{21}(s)|ds\le C\exp\int_T^\infty|2B_{21}|ds\equiv C_0. \label{e86} \end{equation} By choosing $C_2=0$ from representation (\ref{e62}) we have the estimates: $$ |x(t)|\ge|\varphi_1(t)C_1|-|\varphi_1(t)|\int_b^t \Big|{x(s)L\varphi_2(s)\over W[\varphi_1,\varphi_2]}\Big|ds -|\varphi_2(t)|\int_b^t\Big|{x(s)L\varphi_1(s)\over W[\varphi_1,\varphi_2]}\Big|ds $$ or \begin{equation} |x(t)|\ge|\varphi_1(t)C_1|-2\int_b^t\Big|{x\varphi_2L\varphi_1\over W[\varphi_1,\varphi_2]}\Big|ds.\label{e87} \end{equation} From (\ref{e1.12}) \begin{equation} \alpha(b)\equiv\int_b^{\infty}\Big|{\varphi_2L\varphi_1\over W[\varphi_1,\varphi_2]}\Big|ds\to 0\label{e88} \end{equation} when $b\to\infty$. Because positive constants $|C_1|,C_0,\gamma$ do not depend on $b$ by choosing $b$ big enough we can make $$ \alpha(b)<{|C_1|\gamma\over 2 C_0}. $$ Thus from (\ref{e87}) and $|\varphi_1(t)|\ge |\varphi_1(\infty)|=\gamma>0$ for $t>b$ we have $$ |x(t)|\ge|C_1|\gamma-2\alpha(b) C_0>0 $$ and Theorem \ref{thm1.6} is proved. \end{proof} \begin{proof}[Proof of Theorem \ref{thm1.7}] By choosing $\varphi_j(t)=x_j(t)$ as in (\ref{e54}) from (\ref{e60}), (\ref{e1.23}), (\ref{e1.8}) it follows (\ref{e1.10}), (\ref{e1.12}) and that the functions $|\varphi_j|$ are decreasing. From (\ref{e1.24}) follows $|\varphi_1(\infty)|=\gamma>0$. So Theorem \ref{thm1.7} follows from Theorem \ref{thm1.6}. \end{proof} \begin{proof}[Proof of Theorem \ref{thm1.8}] We prove this theorem by the method of Pucci and Serrin. First we prove the theorem in the case the function of bounded variation $k(t)$ is of class $C^1(J)$. Multiplying equation (\ref{e1.25}) by $\bar{x}'(t)$ we get \begin{equation} \bar{x}'(t)x''(t)+h(t,x,x')|x'(t)|^2+\bar{x}'(t)j(t,x)=0.\label{e89} \end{equation} Adding the conjugate equation $$ \bar{x}''(t)x'(t)+\bar{h}(t,x,x')|x'(t)|^2+x'(t)\bar{j}(t,x)=0 $$ we get \begin{gather} {d\over dt}(|x'(t)|^2+F(t,x))+2Re[h(t,x,x')]|x'(t)|^2=F_t(t,x),\label{e90} \\ |x'(t)|^2+F(t,x)+2\int_T^tRe[h(s,x,x')]|x'(s)|^2ds=C+\int_T^tF_s(s,x)ds.\label{e91} \end{gather} From $F(t,x)\geq 0$ and $\int_T^{\infty}F_t(t,x)dt<\infty$ we have \begin{equation} \int_T^{\infty}|x'(t)|^2Re[h(t,x,x')]dt<\infty.\label{e92} \end{equation} Indeed otherwise the right side of (\ref{e91}) is finite when $t\to\infty$ and the left side approaches to positive infinity and we get contradiction. So when $t\to\infty$ from (\ref{e91}) we get \begin{equation} |x'(t)|^2+F(t,x)=l+\varepsilon(t),\quad l\geq 0,\quad \lim_{t\to\infty}\varepsilon(t)=0.\label{e93} \end{equation} From this expression and (\ref{e1.34}) we see that $x(t)$ and $x'(t)$ are bounded: \begin{equation} |x(t)|\le L,\quad |x'(t)|\le C,\quad \hbox{ for } t\in J.\label{e94} \end{equation} To prove that $l=0$ assume for contradiction $l>0$. Multiplying (\ref{e90}) by the positive non decreasing function \begin{equation} \omega(t)=\exp{\int_T^tk(s)ds}\label{e95} \end{equation} we get \begin{align*} &{d\over dt}(\omega|x'(t)|^2+\omega F(t,x))\\ &=\omega F_t(t,x)+\omega'(t)(|x'(t)|^2+ F(t,x)) -2\omega Re[h(t,x,x')]|x'(t)|^2, \end{align*} or \begin{equation} \begin{aligned} &{d\over dt}\left(\omega|x'|^2+\omega F+\alpha\omega'\bar{x}'x +\alpha\omega'\bar{x}x'\right)\\ &=\alpha\omega'' (\bar{x}'x+x'\bar{x})-\alpha\omega'\bar{x}(x'h+j) -\alpha\omega'x(\bar{x}'\bar{h}+\bar{j})\\ &\quad +2\alpha\omega'|x'|^2+\omega F_t+\omega'(|x'|^2+ F)-2\omega Re[h)]|x'|^2, \end{aligned}\label{e96} \end{equation} where $\alpha$ is a positive number. Denote \begin{equation} R(t)\equiv {d\over dt}\left(\omega|x'|^2+\omega F+\alpha k\omega(\bar{x}'x+x'\bar{x})\right),\label{e97} \end{equation} then from $\omega'=k\omega$, $\omega''=(k'+k^2)\omega$ and \begin{equation} \begin{aligned} {R\over\omega}&=F_t+k\left(|x'|^2+F-\alpha\bar{x}j-\alpha x\bar{j}\right) -2Re(h)|x'|^2\\ &\quad +\alpha(k'+k^2)(x\bar{x})'+2k\alpha|x'|^2-\alpha k(x'\bar{x}h+x\bar{x'}\bar{h}). \end{aligned}\label{e98} \end{equation} We take $T_1$ large so that \begin{equation} |x'|^2+F\geq {3l\over 4} \hbox{ on } J_1=(T_1,\infty)\quad \hbox{ and } \int_{T_1}^{\infty}|\psi(t)|dt\leq {l \over 4}.\label{e99} \end{equation} Let us estimate $R$ when $t\in J_1$ and $\alpha$ is suitably small. Suppose that $k=k'\equiv 0$ on $ t\in J\setminus I,\quad J=[T,\infty)$. Then from (\ref{e1.26}),(\ref{e1.34}), (\ref{e98}): \begin{equation} {R\over\omega}\leq \psi(t),\quad t\in J_1\setminus I. \label{e100} \end{equation} On the remaining set $I'=I\bigcap J_1$, we partition $R$ in the form \begin{equation} {R\over\omega}=F_t+k(|x'|^2+F)+\sum_{k=1}^5R_k, \label{e101} \end{equation} where \begin{gather*} R_1=-{2Re(h)\over 5}|x'|^2-k\alpha(\bar{x}j+x\bar{j}),\\ R_2=-{2Re(h)\over 5}|x'|^2+2k\alpha|x'|^2,\\ R_3=-{2Re(h)\over 5}|x'|^2+k^2\alpha(x\bar{x}'+\bar{x}x'),\\ R_4=-{2Re(h)\over 5}|x'|^2+k'\alpha(x\bar{x}'+\bar{x}x'),\\ R_5=-{2Re(h)\over 5}|x'|^2-k\alpha(\bar{x}x'h+\bar{x'}x\bar{h}). \end{gather*} To prove the estimate \begin{equation} R_1\le -k\alpha\chi,\quad \hbox{ for } t\in I' \hbox{ and small }\alpha\label{e102} \end{equation} let us fix $p_1=\sqrt{l/4}$ so that $|x'|^2=|p|^2\leq {l\over 4}$when $|x|\le L$ and $|p|\le|p_1|$. From (\ref{e99}) $$ F(t,x)\ge {l\over 2}\quad \hbox{ on } I_1=\{t\in I':|x'(t)|\le p_1\}. $$ On other hand $$ F(t,x)=F(T_1,x)+\int_{T_1}^tF_s(s,x)ds\le F(T_1,x)+\int_{T_1}^t\psi(s)ds \le F(T_1,x)+{l\over 4} $$ for $t\in J_1$. Thus $F(t,x)\ge l/4$ in $I_1$. Since $F(T,0)=0$ it follows that there exist a number $u_0>0$ such that $|x(t)|>u_0$ for $t\in I_1$. From (\ref{e1.26}), (\ref{e1.32}) we get (\ref{e102}) for $t\in I_1$. In the remaining set $I'\setminus I_1$ we have $|x'(t)>p_1$ and if \begin{equation} \alpha\le {2p_1^2\over 5\beta\chi}.\label{e103} \end{equation} then \begin{gather*} 2Re(h)|x'(t)|^2\ge 2\sigma p_1^2\ge{2kp_1^2\over \beta}\ge5\alpha k\chi.\\ R_1=-{2\over 5}Re(h) |x'(t)|^2-\alpha k(\bar{x}j+x\bar{j})\le-\alpha k\chi \end{gather*} and (\ref{e102}) is valid for all $t\in I'$. We claim that \begin{equation} R_2\le{\alpha k\chi\over 8},\quad \hbox{ for } t\in I' \hbox{ and small }\alpha. \label{e104} \end{equation} Indeed \begin{gather*} |x'(t)|^2\le {\chi\over 16} \quad \hbox{ if }\quad |x'(t)| \le p_2\equiv{\chi\over 16}, \\ R_2=\big(2\alpha k-{2Re(h)\over 5}\big)|x'(t)|^2\le 2\alpha k |x'(t)|^2 \le {\alpha k\chi\over 8}. \end{gather*} Otherwise, if $|x'(t)|>p_2$, then from \begin{equation} \alpha\le{1\over 5\beta} \label{e105} \end{equation} we have $$ 2\alpha k\le 2\alpha\beta\sigma\le {2\sigma\over 5}\le {2Re(h)\over 5} \quad \hbox{ and } R_2\le 0. $$ Let us prove that \begin{equation} R_3\le{\alpha k\chi\over 8},\quad \hbox{ for } t\in I' \hbox{ and small } \alpha . \label{e106} \end{equation} Indeed for $p_3\equiv{\chi\over 16L\sup(k)}$, we have $$ 2\alpha k^2|x'(t)\bar{x}|\le 2\alpha k^2Lp_3 \le {\alpha k\chi\over 8}\quad \hbox{ if }\quad |x'(t)|\le p_3. $$ Otherwise if $|x'(t)|>p_3$ then from $|x'(t)|\le C$ and \begin{equation} \alpha \le {p_3\over 5\beta L\sup(k)}\label{e107} \end{equation} we have $$ 2\alpha k^2|x'\bar{x}|\le {2\alpha k^2L\over p_3}|x'|^2 \le {2k\over 5\beta}|x'|^2\le {2\sigma\over 5}|x'|^2 \le {2Re(h)\over 5}|x'|^2, \quad R_3\le 0 . $$ So (\ref{e106}) is proved. From (\ref{e94}) we have \begin{equation} R_4=-{2\over 5} Re(h)|x'|^2+\alpha k'(\bar{x}'x+\bar{x}(t)x')\le 2 \alpha|k'|CL,\quad\hbox{ for } \quad t\in I'.\label{e108} \end{equation} To prove the estimate \begin{equation} R_5\le 10\alpha^2 L^2\gamma\delta k\sup(k)\label{e109} \end{equation} define the set $$ I_5=\{t\in I':|x'(t)|\ge\alpha\Lambda,\quad\Lambda=5L\gamma \sup(k)\}. $$ In this set $$ -\alpha k(\bar{x}x'h+\bar{x}'x\bar{h})\le 2\alpha k|x'xh| \le 2\alpha kL{|x'|^2\gamma \Re(h)\over 5\alpha L\gamma \sup(k)} \le {2Re(h)\over 5}|x'|^2 $$ and we have $R_5\le 0$. In $I'\setminus I_5$ we have $|x'(t)|\le \alpha L$ and estimate (\ref{e109}): $$ R_5\le2\alpha k|\bar{x}x'(t)h|\le 10\alpha^2 L^2\gamma\delta k\sup(k) =2\alpha^2\delta kL\Lambda . $$ Thus we have the estimates $$ {R\over\omega}\le \psi+k\big(|x'(t)|^2+F-\alpha\chi+{2\alpha\chi\over 8}\big) +2\alpha CL|k'(t)|+10\alpha^2 L^2\gamma\delta k\sup(k), $$ \begin{equation} R\le \omega\left(\psi+2\alpha CL|k'|+10\alpha^2 L^2\gamma\delta k\sup(k)\right)+\omega'\big(l+\varepsilon-\alpha\chi+{2\alpha\chi\over 8}\big),\label{e110} \end{equation} where $\delta k\equiv 0$ on $J\setminus I.$ Let us fix $\alpha$ so small that (\ref{e103}), (\ref{e105}), (\ref{e107}) and \begin{equation} \alpha \le{\chi\over 80ML^2\gamma \sup(k)}\label{e111} \end{equation} are satisfied. Moreover in view of (\ref{e93}) and $k\in BV(J),k'\in L_1(J)$ we can take $T_2>T_1$ such that \begin{gather} |\varepsilon(t)|\le {\alpha\chi\over 8}\quad \hbox{ for } t>T_2,\label{e112} \\ \int_{T_2}^\infty\psi(s)ds\le {\alpha\chi\over 8},\quad \int_{T_2}^\infty|k'(s)ds\le{\chi\over 16CL}.\label{e113} \end{gather} Then from (\ref{e97}) and (\ref{e110}), \begin{align*} &{d\over dt}\left(\omega|x'|^2+\omega F+\alpha k\omega(\bar{x}'x+x'\bar{x})\right)\\ &\equiv R\le \omega\left(\psi+2\alpha CL|k'|+10\alpha^2L^2\gamma\delta k\sup(k)\right) +\omega'(l+\alpha\chi/8-3\alpha\chi/4) \end{align*} which integrating yields \begin{align*} &\omega(|x'(t)|^2+F+\alpha k(\bar{x}'x+x'\bar{x}))\\ &\le \int_{T_2}^\infty\omega\psi ds+2\alpha CL\int_{T_2}^t\omega|k'|ds +10\alpha^2L^2\gamma \sup(k)\int_{T_2}^t\omega\delta k\,ds +\omega(l-5\alpha\chi/8)+c. \end{align*} So the function \begin{equation} \begin{aligned} \Psi&=\omega\left(|x'(t)|^2+F+ \alpha k(\bar{x}'x+x'\bar{x})-l+5\alpha\chi/8 \right)\\ &\quad -\int_{T_2}^t\omega\psi ds-2\alpha CL\int_{T_2}^t\omega|k'|ds-10\alpha^2L^2\gamma \sup(k)\int_{T_2}^t\omega\delta k\,ds \end{aligned} \label{e114} \end{equation} is decreasing. Now we claim that there exist a sequence $t_n$ such that $t_n\uparrow\infty$ and \begin{equation} k(t_n)|x'(t_n)|^2\to 0,\quad n\to\infty. \label{e115} \end{equation} Otherwise, because of boundedness of $k(t),|x'(t)|$ there exist numbers $k_0>0$, $p_0>0$, $\bar{t}$ such that $$ k(t)\ge k_0>0 \quad\hbox{and}\quad |x'(t)|\ge p_0>0\quad\hbox{for } t>\bar{t}. $$ In turn, since $k(t)\equiv 0$ on $J\setminus I$, we must have $I\supset[\bar{t},\infty)$, $$ \sigma(t)\ge {k_0\over\beta}\quad\hbox{and}\quad |x'(t)|\ge p_0>0\quad\hbox{for } t>\bar{t}. $$ So $\mathop{\rm Re}(h)|x'(t)|^2>0$ for $ t>\bar{t}$, which contradicts (\ref{e92}). From (\ref{e111})-(\ref{e114}) we have \begin{align*} {\Psi(t_n)\over\omega(t_n)} &\ge \varepsilon-2\alpha Lk|x'|+5\alpha\chi/8-3\alpha\chi/8\\ &\ge -\alpha\chi/8-2\alpha Lk|x'|+2\alpha\chi/8\\ &\ge \alpha\chi/8-2\alpha Lk|x'|. \end{align*} From (\ref{e115}), $Lk(t_n)|x'(t_n)|\le\chi/32$ for $n>n_0$ and $$ {\Psi(t_n)\over\omega(t_n)}\ge \alpha\chi/16. $$ Hence $\Psi(t_n)\to\infty$ as $\to\infty$. This contradicts the fact that $\Psi(t)$ is decreasing. So $l=0$ or $\lim_{t\to\infty}(|x'|^2+F)=l=0$ from which follows (\ref{e1.2}). The proof of the general case $k\in BV(J)$ follows from the lemma below. \end{proof} \begin{lemma}[\cite{p1}] Let $k(t)$ be a non-negative continuous function of bounded variation on $J$ $(k\in BV(J))$. Then for every constant $\theta>1$ there exists a function $\bar{k}\in C^1(J)$ and an open set $E\subset J$ such that \begin{itemize} \item[(i)] $\theta k\ge \bar{k}\ge \begin{cases} k, & \mbox{in } J\setminus E\\ 0, &\mbox{in } E \end{cases}$ \item[(ii)] $\mathop{\rm Var}(\bar{k})\le \theta \mathop{\rm Var}(k)$ \item[(iii)] $\int_E kdt\le 1$. \end{itemize} \end{lemma} \subsection*{Acknowledgment} The author wants to thank the anonymous referee for his/her comments that helped improving the original manuscript. \begin{thebibliography}{00} \bibitem{a1} Z. Arstein and E. F. Infante; \emph{On asymptotic stability of oscillators with unbounded damping}, Quart. Appl. Mech. 34 (1976), 195-198. \bibitem{b1} R. J. Ballieu and K. Peiffer; \emph{Asymptotic stability of the origin for the equation, $x''(t)+f(t,x,x'(t))|x'(t)|^{\alpha}+g(x)=0$} J.Math Anal. Appl 34 (1978) 321-332 \bibitem{c1} L. Cesary \emph{Asymptotic behavior and stability problems in ordinary differential}, 3rd ed., Springer Verlag, Berlin, 1970. \bibitem{h1} L. Hatvani \emph{Integral conditions on asymptotic stability for the damped linear oscillator with small damping}, Procedings of the American Mathematical Society. 1996, Vol. 124 No.2, p.415-422. \bibitem{h2} G. R. Hovhannisyan \emph{Estimates for error functions of asymptotic solutions of ordinary linear differential equations}, Izv. NAN Armenii, Matematika, [English translation: Journal of Contemporary Math. Analysis -- (Armenian Academy of Sciences) 1996, Vol.31, no.1, p.9-28. \bibitem{i1} A. O. Ignatyev \emph{Stability of a linear oscillator with variable parameters}, Electronic Journal of Differential Equations Vol.1997(1997), No. 17, p.1-6. \bibitem{l1} J. J. Levin and J. A. Nobel \emph{Global asymptotic stability of nonlinear systems of differential equations to reactor dynamics}, Arch. Rational Mech. Anal. 5(1960), 104-211. \bibitem{l2} N. Levinson \emph{The asymptotic nature of solutions of linear systems of differential equations}, Duke Math. J. 15,111-126, (1948). \bibitem{m1} N. N. Moiseev \emph{Asymptotic Methods of Nonlinear Mechanics} Nauka, 1969. (Russian) \bibitem{p1} P. Pucci and J. Serrin \emph{Precise damping conditions for global asymptotic stability for nonlinear second order systems}, Acta Math. 170(1993), 275-307. \bibitem{p2} P. Pucci and J. Serrin \emph{Asymptotic stability for ordinary differential systems with time dependent restoring potentials}, Archive Rat. Math. Anal. 113(1995), 1-32. \bibitem{s1} V. M. Starzhinsky \emph{Sufficient conditions of stability of the mechanical system with one degree of freedom}, J. Appl. Math. And Mech. 16(1952), 369-374. (Russian). \bibitem{y1} V. A. Yakubovich and V. M. Starzhinsky \emph{ Linear differential equations with periodic coefficients and their applications}, Nauka, Moscow,1972. (Russian). \end{thebibliography} \end{document}