\documentclass[reqno]{amsart} \usepackage[dvips]{psfrag} \usepackage{graphicx} %\pdfoutput=1\relax\pdfpagewidth=8.26in\pdfpageheight=11.69in\pdfcompresslevel=9 \usepackage{hyperref} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2004(2004), No. 98, pp. 1--28.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2004 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2004/98\hfil Structural Stability] {Structural stability of polynomial second order differential equations with periodic coefficients} \author[Adolfo W. Guzman\hfil EJDE-2004/98\hfilneg] {Adolfo W. Guzm\'an} \curraddr{Departamento de Matem\'atica, Universidade Federal de Vi\c cosa \\ Campus Universit\'ario CEP 36571-000. Vi\c cosa - MG. Brasil\\ \newline Departamento de Matem\'atica Aplicada, IME, Universidade de S\~ao Paulo \\ Rua do Mat\~ao, 1010 - Cidade Universit\'aria CEP 05508-090 S\~ao Paulo - SP - Brasil} \email{guzman@ime.usp.br, guzman@ufv.br} \date{} \thanks{Submitted April 29, 2004. Published August 9, 2004.} \thanks{Supported by Grant 02/13419-5 from FAPESP, Brazil} \subjclass[2000]{37C20} \keywords{Singularity at infinity; compactification; structural stability; \hfill\break\indent second order differential equation} \begin{abstract} This work characterizes the structurally stable second order differential equations of the form $x''= \sum_{i=0}^{n}a_{i}(x)(x')^{i}$ where $a_{i}:\Re \to \Re$ are $C^r$ periodic functions. These equations have naturally the cylinder $M= S^1\times \Re$ as the phase space and are associated to the vector fields $X(f) = y \frac{\partial}{\partial x} + f(x,y) \frac{\partial}{\partial y}$, where $f(x,y)=\sum_{i=0}^n a_i(x) y^i \frac{\partial}{\partial y}$. We apply a compactification to $M$ as well as to $X(f)$ to study the behavior at infinity. For $n\geq 1$, we define a set $\Sigma^{n}$ of $X(f)$ that is open and dense and characterizes the class of structural differential equations as above. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{definition}[theorem]{Definition} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{remark}[theorem]{Remark} \numberwithin{equation}{section} \section{Introduction} We denote by $\mathcal{E}^{n,r}$ the space of vector fields \[ X(f) = y \frac{\partial}{\partial x} + \sum_{i=0}^{n} a_{i}(x) y^{i} \frac{\partial}{\partial y} \] defined on $M=S^{1}\times\Re$ where $a_{i}(x)$ are $C^{r}$ periodic functions, $r\geq 1$ and $n\geq 1$. A vector field $X(f)$ is associated naturally, it is in fact equivalent, to the second order differential equation $$E_{f}:x''= f(x,x') \quad \text{where}\quad f(x,y)=\sum_{i=0}^{n}a_{i}(x)y^{i}. $$ We endow $\mathcal{E}^{n,r}$ with the structure in which $X(f)$ is identified with the $n+1$-tuple $(a_0(x), \dots, a_n(x))$ of its coefficient functions and the norm is defined by $$||X(f)||= \sup_{1 \leq k \leq r}\{ |\frac{d^k}{d x^k}a_i(x)| : x\in S^1, 0\leq i \leq n \}.$$ The aim of this paper is to characterize the vector fields $ X(f) \in \mathcal{E}^{n,r}$ (therefore, $E_f$) that are structurally stable under small perturbations in the space $\mathcal{E}^{n,r}$. See precise definition below. We establish the structural stability of $X(f) \in \mathcal{E}^{n,r} $ on the open surface $M$ using a compactification of the type $ u=x$ and $ v= \arctan(y)$ (cylindrical compactification). We denote the compactifications of $X(f)$ and $M$ by $\widetilde {X}(f)$ and $\widetilde{M}$ respectively. In section \ref{sec:compactification}, we find the following expressions: \\ For $n=1,2,3$, $\widetilde{X}(f)= \sin(v)\frac{\partial} {\partial u} + \sum_{i=0}^{n} a_{i}(u) \cos^{3-i}(v) \sin^{i}(v) \frac{\partial}{\partial v}$; \\ for $n\geq 4$, $\widetilde{X}(f) = \sin(v) \cos^{n-3}(v)\frac{\partial} {\partial u}+ \sum_{i=0}^{n} a_{i}(u) \sin^{i}(v) \cos^{n-i}(v) \frac{\partial}{\partial v}$. \\ This allows us to understand the behavior of $X(f)$ at infinity (i.e at the ends) of $M$ by studying $\widetilde{X}(f)$ near the boundary of $\widetilde{M}$. Thus we find that on $\partial \widetilde{M}$, $\widetilde{X}(f)$ has: periodic orbits when $n=1,2$; tangency points when $n=3$; hyperbolic singularities when $n=4$; and semi-hyperbolic or nilpotent singularities when $n>4$. See section \ref{sec:behavior}. The characterization of structurally stable vector fields $X(f)$ on $M$ is expressed in terms of $\widetilde{X}(f)$ on $\widetilde{M}$. For that, we give the following definition: \begin{definition} \label{def1} \rm A vector field $X(f)$ is structurally stable in $M$ if there is a neighborhood $\mathcal{U}$ in $\mathcal{E}^{n,r}$ such that $\forall X(g) \in \mathcal{U}$, there exists a homeomorphism $h_g : \widetilde{M} \to \widetilde{M}$ which maps trajectories of $\widetilde{X}(f)$ onto trajectories of $\widetilde{X}(g)$, preserving orientation and $\partial \widetilde{M}$. \end{definition} In section \ref{sec:definition}, we define for each $n\geq 1$ a subset $\Sigma^{n}$ of $\mathcal{E}^{n,r}$ such that if $X(f) \in \Sigma^{n}$, its compactification $\widetilde{X}(f)$ has generic properties with respect to singularities, to periodic orbits and to connections of singularity separatrix on $\widetilde{M}$. In this way, we extend the conditions of Peixoto M.M and Peixoto M.C (see \cite{peixoto-peixoto}, also \cite{Sotomayor2}) that characterize the $C^1$-structurally stable systems on closed surfaces, with singularities on the boundary. We recall that these conditions include tangencies at the boundary of a closed surface which insure the $C^1$ structural stability. The main results of this paper can be formulated as follows: \begin{theorem}[Genericity] \label{theo:genericity} $\Sigma^{n}$ is open and dense in $\mathcal{E}^{n,r}$ where $r \geq 2$ for $n =1$ or $n \geq 5$ and $r\geq 1$ for $n=2,3$ or $4$. \end{theorem} \begin{theorem}[Characterization] \label{theo:characterization} $X(f) \in \mathcal{E}^{n,r}$ is structurally stable if and only if $X(f)\in \Sigma^{n}$ where $r \geq 2$ for $n =1$ or $n \geq 5$ and $r\geq 1$ for $n=2,3$ or $4$. \end{theorem} We prove Theorems \ref{theo:genericity} and \ref{theo:characterization} in sections \ref{sec:genericity} and \ref{sec:characterization} respectively. In section \ref{sec:discussion}, we present a discussion of the sources that motivate this work. Our results make a link between the works of Sotomayor \cite{sotomayor} and Barreto \cite{barreto} and Shahshahani \cite{Shahshahani} dedicated to $C^{r}$-structurally stable second order differential equations. The first author considered $E_f$ with the uniform topology on compact regions of $\Re^2$ and $M$; the second two authors considered $E_f$ with the Whitney topology on the whole $M$. \section{Compactification}\label{sec:compactification} In this section, we define a vector field on the cylinder $\widetilde{M}= S^{1}\times [\frac{\pi}{2}, \frac{\pi}{2}]$ induced by $X(f) \in \mathcal{E}^{n,r}$, where $f(x,y) = \sum_{i=0}^n a_i(x) y^{i}$, and we describe $X(f)$ in coordinate neighborhoods of the infinity of $M$. We denote by $\widetilde{M}^{\circ} = S^1 \times (\frac{\pi}{2}, \frac{\pi}{2})$. Let $\mathcal{C}: M \to \widetilde{M}^{\circ}$ be a diffeomorphism defined by $$ \mathcal{C}(x,y)= (x, \arctan(y)).$$ The ends of $M$ are transformed into the circles $C_{\pm \frac{\pi} {2}} = S^1 \times \{\pm \frac{\pi} {2}\}$. Now, we induce the vector field $\mathcal{C}_{\ast}(X(f))$ on $\widetilde{M}^{\circ}= S^1 \times (\frac{\pi}{2}, \frac{\pi}{2}) $ by $X(f)$ as follows $$ \mathcal{C}_{\ast}(X(f))(u,v)= D\mathcal{C}(x,y) \cdot X(f)(x,y)$$ where $(u,v) = \mathcal{C}(x,y)$ and $D\mathcal{C}(x,y)$ is the derivative of $\mathcal{C}$ at $(x,y)$. Thus we obtain \[ \mathcal{C}_{\ast}(X(f))(u,v) = \frac{\sin(v)}{\cos(v)} \frac{\partial}{\partial u} + \sum \limits_{i=0}^{n} a_{i}(u) \sin^{i}(v) \cos^{-i+2}(v) \frac{\partial}{\partial v}. \] Then the following vector field $$ \widetilde{X}(f) = \begin{cases} \cos(v) \cdot \mathcal{C}_{\ast}(X(f)) & \text{for } n=1,2,3 \\ \cos(v)^{n-2} \cdot \mathcal{C}_{\ast}(X(f)) & \text{for } n \geq 4 \\ \end{cases} $$ can be extended to the whole $\widetilde{M}$. We call $\widetilde{X}(f)$ the cylindrical compactification of $X(f)$. The explicit expressions of $\widetilde{X}(f)$ are: \\ for $n=1,2,3$, \begin{equation} \widetilde{X}(f)= \sin(v)\frac{\partial} {\partial u} + \sum_{i=0}^{n} a_{i}(u) \cos^{3-i}(v) \sin^{i}(v) \frac{\partial}{\partial v}\label{eq:xfn123} \end{equation} and for $n\geq 4$, \begin{equation} \widetilde{X}(f) = \sin(v) \cos^{n-3}(v)\frac{\partial} {\partial u}+ \sum_{i=0}^{n} a_{i}(u) \sin^{i}(v) \cos^{n-i}(v) \frac{\partial}{\partial v}.\label{eq:xfn4} \end{equation} In the sequel, we write $X(f)$ in coordinate neighborhoods of the ends of $M$. Under the map $\Upsilon: U^{\pm} \to \widetilde{U}^{\pm}$ defined by $\Upsilon(x,y) = (x,\frac{1}{y})$ for $y\neq 0$, the sets \begin{gather*} U^{+}=\{(x,y)\in M: x\in S^{1},y > y_0 \},\\ U^{-}=\{(x,y)\in M: x\in S^{1},y < -y_0 \} \end{gather*} (where $y_0 \in \Re^{+}$) are transformed into \begin{gather*} \widetilde{U}^{+} = \{ (x,y) \in M: x\in S^{1}, 0 \leq y < y_0^{-1} \},\\ \widetilde{U}^{-} = \{ (x,y) \in M: x\in S^{1}, - y_0^{-1} < y \leq 0 \} \end{gather*} respectively. The ends of $M$ are represented by the circle $\widetilde{C}_{0} = S^{1}\times\{0\} \subset \widetilde{U}^{\pm}$. Now, we induce the vector field $ \Upsilon_{\ast}(X(f))$ on $\widetilde{U}^{\pm} \setminus \widetilde{C}_{0}$ by $X(f)$ as follows $$ \Upsilon_{\ast}(X(f))(u,v)= D\Upsilon(x,y) \cdot X(f)(x,y)$$ where $(u,v) = \Upsilon(x,y)$. Then the vector field $$ \widetilde{X}_1(f)= \begin{cases} v \cdot \Upsilon_{\ast}(X(f)) & \text{for } n=1,2,3 \\ v^{n-2} \cdot \Upsilon_{\ast}(X(f)) & \text{for } n \geq 4 \\ \end{cases} $$ can be extended to the whole $\widetilde{U}^{\pm}$. The explicit expressions of $\widetilde{X}_1(f)$ are \begin{gather} \text{for } n=1,2,3, \quad \widetilde{X}_1(f)= \frac{\partial}{\partial u}- \sum_{i=0}^{n} a_{i}(u) v^{3-i}\frac{\partial} {\partial v} \label{eq:xf1n123}\\ \text{for } n\geq 4, \quad\widetilde{X}_1(f)= v^{n-3}\frac{\partial}{\partial u}-\sum_{i=0}^{n} a_{i}(u)v^{n-i}\frac{\partial}{\partial v}.\label{eq:xf1n4} \end{gather} \section{Behavior of $X(f)$ at infinity}\label{sec:behavior} In this section, we study the behavior of $X(f)$ near infinity by means of its cylindrical compactification $\widetilde{X}(f)$. \begin{proposition}\label{pro:PeriodicOrbit} Let $X(f) \in \mathcal{E}^{n,r}(M)$, where $f(x,y)= \sum_{i=0}^{n} a_{i} (x)y^{i}$, $r\geq 2$ and $n=1,2$. Then \begin{enumerate} \item[(a)] For $n=1$, $C_{\pm\frac{\pi}{2}}$ are periodic orbits of $\widetilde{X}(f)$ with the first and second derivatives of the Poincar\'e map equal to $1$ and $\pm 2\int_{0}^{\tau} a_{1}(s)ds$ respectively. \item[(b)] For $n=2$, $C_{\pm\frac{\pi}{2}}$ are periodic orbits of $\widetilde{X}(f)$ with the first derivative of the Poincar\'e map equal to $\exp(\mp \int_{0}^{\tau} a_{2}(s) ds)$. \end{enumerate} \end{proposition} \begin{proof} (a) Let $\gamma_{\pm}(u)= (\pm u, \pm \frac{\pi}{2})$ be the periodic orbits of $\widetilde{X}(f)$ on $C_{\pm\frac{\pi}{2}}$ where $u \in [0,\tau]$ and $\tau$ is the period of $a_i(u)$. Taking the change of variables $u = s$ and $v = \pm \frac{\pi}{2} - \eta$, $\widetilde{X}(f)$ is associated to the differential equations \begin{equation} \begin{gathered} \frac{d s}{dt} = \pm \cos(\eta) \\ \frac{d \eta}{dt} = a_{0}(s) \sin^3(\eta) \pm a_{1}(s) \sin^2(\eta) \cos(\eta) \end{gathered} \end{equation} Dividing the last equation by the first, we obtain \begin{equation} \label{eq:Rseta} \frac{d \eta}{d s} = R(s, \eta) \end{equation} where $R(s,\eta) = \pm a_0(s) \frac{\sin^3(\eta)}{\cos(\eta)} + a_1(s) \sin^2(\eta)$ and $R(s, 0) = 0$. Let $\eta = f(s; s_0 , \eta_0)$ be a solution of (\ref{eq:Rseta}) with the initial condition $f(s_0; s_0, \eta_0) = \eta_0.$ Without loss of generality we can consider $s_0 = 0$. Now, we consider the function $d(\eta_0)= \phi(\eta_0) - \eta_0$ where $\phi(\eta_0) = f(\tau; 0, \eta_0)$ is the first return map, which is defined on an arc normal to $\gamma_{\pm}$. The integral expressions for $d'(\eta_0)$ and $d^{\prime \prime}(\eta_0)$ can be found in \cite{Andronov} page 252. Their calculation is included here for the sake of completeness. From the relation $ \frac{d \eta}{d s} = R(s, f(s; 0,\eta_0)) = \frac{d}{d s} f(s; 0, \eta_0)$, we obtain \begin{gather} \label{eq:deriva1feta0} \frac{d}{d s}(\frac{\partial f}{\partial \eta_0}) = \frac{\partial} {\partial \eta} R(s, f(s; 0, \eta_0)) \cdot \frac{\partial f}{\partial \eta_0}(s; 0, \eta_0) \\ \label{eq:deriva2feta0}\begin{aligned} \frac{d}{d s}(\frac{\partial^2 f}{\partial \eta^{2}_{0}}) &= \frac{\partial^2} {\partial \eta^2} R(s, f(s; 0, \eta_0)) \cdot (\frac{\partial f}{\partial \eta_0}(s; 0, \eta_0))^2 \\ &\quad + \frac{\partial}{\partial \eta} R(s, f(s; 0, \eta_0)) \frac{\partial^2 f}{\partial \eta_0^2}(s; 0, \eta_0) \end{aligned} \end{gather} The solutions of (\ref{eq:deriva1feta0}) and (\ref{eq:deriva2feta0}) are given by \begin{gather} \label{eq:solderiva1feta0} \frac{\partial f}{\partial \eta_0}(s; 0, \eta_0) = \exp(\int_{0}^{s} \frac{\partial} {\partial \eta} R(t, f(t; 0, \eta_0)) dt)\\ \label{eq:solderiva2feta0} \begin{aligned} \frac{\partial^2 f}{\partial \eta^{2}_{0}}(s;0,\eta_0) & = \exp(\int_{0}^{s} \frac{\partial} {\partial \eta} R(t, f(t; 0, \eta_0)) dt) \cdot \int_{0}^{s} \frac{\partial^2}{\partial \eta^2} R(t, f(t; 0, \eta_0))\\ &\quad\cdot (\frac{\partial f}{\partial \eta_0}(t; 0, \eta_0))^2 \cdot \exp(-\int_{0}^{t} \frac{\partial}{\partial \eta} R(\tilde{t}, f(t; 0, \eta_0)) d \tilde{t}) dt \end{aligned} \end{gather} The partial derivatives of $R(s, \eta)$ with respect to $\eta$ are: \begin{gather} \label{eq:derivaReta} \frac{\partial R}{\partial \eta}(s, \eta) = \pm a_{0}(s)(3\sin^2(\eta) + \frac{\sin^4(\eta)}{\cos^2(\eta)}) + 2 a_1(s) \sin(\eta) \cos(\eta) \\ \label{eq:deriva2Reta} \begin{aligned} \frac{\partial^2 R}{\partial \eta^2}(s, \eta) & = \pm a_{0}(s)(6 \frac{\sin(\eta)}{ \cos^3(\eta)} + 4 \frac{\sin^3(\eta)}{\cos(\eta)} + 2 \frac{\sin^5(\eta)}{\cos^3(\eta)}) \\ &\quad + 2 a_1(s)(\cos^2(\eta)- \sin(\eta)). \end{aligned} \end{gather} Since $\eta_{0} = 0$ and $f(s; 0, \eta_0) = \eta_0$, it follows from (\ref{eq:solderiva1feta0})-(\ref{eq:deriva2Reta}), \begin{gather*} d(\eta_0) = f(\tau;0,\eta_0) - \eta = 0\\ d'(\eta_0) = 0 \\ d''(\eta_0) = \pm 2 \int_{0}^{\tau} a_1(s) ds \end{gather*} (b) It follows from a straightforward computation of the divergence of \begin{align*} \widetilde{X}(f) &= \sin(v)\frac{\partial}{\partial u}+(a_{0}(u)\cos^{3} (v)+a_{1}(u)\sin(v)\cos^{2}(v)\\ &\quad + a_{2}(u)\sin^{2}(v)\cos(v))\frac{\partial}{\partial v} \end{align*} i.e. for a periodic orbit $\gamma_{\pm} = (\pm u , \pm \frac{\pi}{2}))$, $\mathop{\rm div}D\widetilde{X}(\gamma_{\pm}) = \mp a_2(u)$. \end{proof} We say that $\widetilde{X}(f)$ is \emph{transversal to} $\partial \widetilde{M}$ at $(u,v)$ if $$\widetilde{X}(f)\cdot b(u,v) \doteq \langle \widetilde{X}(f)(u,v), \nabla b(u,v)\rangle \neq 0, $$ where $b(u,v)$ is a $C^2$ function such that $b(u,v) =0$ on $\partial \widetilde{M}$, $b(u,v) > 0$ on $\widetilde{M}^{\circ}$ (interior of $\widetilde{M}$) and $\nabla b(u,v) \neq 0$ at $(u,v) \in \partial \widetilde{M}$. When $ \widetilde{X}(f)\cdot b(u,v) =0$, we say that $\widetilde{X}(f)$ is tangent to $\partial \widetilde{M}$. Moreover, we say that the tangency is \emph{parabolic} if $$\widetilde{X}^2(f) \cdot b(u,v) \doteq \widetilde{X}(f) \cdot (\widetilde{X}(f) \cdot b(u,v)) \neq 0.$$ \begin{proposition} \label{pro:Tangencia} Let $\widetilde{X}(f) \in \mathcal{E}^{3,r} (\widetilde{M})$, where $f(x,y)=\sum_{i=0}^{3}a_{i}(x)y^{i}$ and $r \geq 1$. Then the trajectories of $\widetilde{X}(f)$ are transversal to the circles $C_{\pm\frac{\pi}{2}}$, except at points $(u_{\ast},\pm\frac{\pi}{2})$ in which they are tangent, with $a_3(u_{\ast})=0$. The tangency is parabolic if $a_{3}'(u_{\ast})\neq 0$. The tangency is external (resp. internal) in $C_{+\frac{\pi}{2}}$ and internal (resp. external) in $C_{-\frac{\pi}{2}}$ when $a_{3}'(u_{\ast})>0$ (resp. $a_{3}'(u_{\ast})< 0$). \end{proposition} \begin{proof} We consider the function $b:\widetilde{M} \to\Re$ defined by $b(u,v)=\cos(v).$ It satisfies $b(u,v)>0$ on $\widetilde{M}^{\circ}$ and $b(u,v)=0$ for $(u,v)\in C_{\pm\frac{\pi}{2}}$. Here, the condition of the transversality of $\widetilde{X}(f)$ to $C_{\pm\frac{\pi}{2}}$ is given by $$ \widetilde{X}(f) \cdot b(u,v)= -\sum_{i=0}^{3} a_{i}(u) \sin^{i+1}(v) \cos^{3-i}(v) = - a_{3}(u) \neq 0 $$ for $(u,v)\in C_{\pm\frac{\pi}{2}}$. The condition of parabolic tangency is given by $\widetilde{X}(f)\cdot b(u,v) = 0$ and $\widetilde{X}^{2}(f) \cdot b(u,\pm\frac{\pi}{2}) = \mp a_{3}'(u) \mp a_{3}(u) a_{2}(u) \neq 0$. Hence we have a parabolic tangency if $a_{3}(u_{\ast})=0$ and $a_{3}^{\prime }(u_{\ast})\neq 0$, where $u_{\ast}$ is a root of $a_3(u)$. \end{proof} We say that a singularity, $(u,v)$, of $\widetilde{X}(f)$ is \emph{semi-hyperbolic} if $D\widetilde{X}(f)(u,v)$ has exactly one zero eigenvalue. Also we say that a singularity, $(u,v)$ of $\widetilde{X}(f)$ is \emph{nilpotent} if $D\widetilde{X}(f)(u,v)$ is nilpotent. \begin{proposition} \label{zerosdeXTf}Let $X(f) \in \mathcal{E}^{n,r}(M)$, where $f(x,y)=\sum_{i=0}^{n} a_{i}(x)y^{i}$, $r\geq 1$ and $n \geq 4$. Then \begin{enumerate} \item For $n=4$, $\widetilde{X}(f)$ has singularities, $(u_{\ast},\pm\frac{\pi}{2})$, on $C_{\pm \frac{\pi}{2}}$ where $u_{\ast}$ is root of $a_{4}(u)$. The singularities are hyperbolic if $a_{4}'(u_{\ast}) \neq 0$ and $a_{3}(u_{\ast})\neq 0$, semi-hyperbolic if $a_{4}'(u_{\ast}) = 0$ and $a_{3}(u_{\ast}) \neq 0$, and nilpotent if $a_{4}'(u_{\ast}) = 0$ and $a_{3}(u_{\ast}) = 0$. \item For $n>4$, $\widetilde{X}(f)$ has singularities, $(u_{\ast},\pm\frac{\pi}{2})$, on $C_{\pm \frac{\pi}{2}}$ where $u_{\ast}$ is a root of $a_{n}(u)$. The singularities are semi-hyperbolic if $a_{n-1}(u_{\ast}) \neq 0$, and nilpotent if $a_{n-1}(u_{\ast}) = 0$ and $a_{n}'(u_{\ast}) \neq 0$. \end{enumerate} \end{proposition} \begin{proof} (1) For $n=4$, the Jacobian matrix of $$ \widetilde{X}(f) =\sin(v) \cos(v) \frac{\partial}{\partial u} + \sum \limits_{i=0}^{4} a_{i}(u) \sin^{i}(v) \cos^{4-i}(v) \frac{\partial}{\partial v} $$ at a singularity $(u_{\ast},\pm\frac{\pi}{2})$ is \[ D\widetilde{X}(f)(u_{\ast},\pm\frac{\pi}{2})= \begin{pmatrix} 0 & -1\\ a_{4}'(u_{\ast}) & -a_{3}(u_{\ast}) \end{pmatrix} \] The proof is finished by analyzing $det(D\widetilde{X}(f))=a_{4}'(u_{\ast})$ and $\text{trace}(D\widetilde {X}(f))=-a_{3}(u_{\ast})$. \noindent (2). For $n>4$, $ \widetilde{X}(f) = \sin(v) \cos^{n-3}(v) \frac{\partial} {\partial u} + \sum \limits_{i=0}^{n} a_{i}(u) \sin^{i}(v) \cos^{n-i}(v) \frac{\partial}{\partial v}$ has the Jacobian matrix at $(u_{\ast},\pm\frac{\pi}{2})$ \[ D\widetilde{X}(f)(u_{\ast},\pm\frac{\pi}{2})= \begin{pmatrix} 0 & 0\\ (\pm1)^{n}a_{n}'(u_{\ast}) & (\pm1)^{n}a_{n-1}(u_{\ast}) \end{pmatrix} \] Hence this singularity is semi-hyperbolic when $a_{n-1}(u_{\ast})\neq0$ and nilpotent when $a_{n-1}(u_{\ast}) = 0$ and $a_{n}'(u_{\ast}) \neq 0$. \end{proof} \begin{remark} \label{rmk1} \rm The Propositions \ref{pro:PeriodicOrbit}-\ref{zerosdeXTf} also hold if we consider $\widetilde{X}_1(f)$ given by (\ref{eq:xf1n123}) and (\ref{eq:xf1n4}) instead of $\widetilde{X}(f)$. In this case, the singularities or periodic orbits of $\widetilde{X}_1(f)$ lie on $\widetilde{C}_0$. \end{remark} For simplicity, in the following propositions, we use $\widetilde{X}_{1}(f)$ as $(\ref{eq:xf1n4})$ to describe the phase portrait of the semi-hyperbolic singularities of $X(f)$ at infinity when $n \geq 4$. \begin{proposition}\label{pro:SemiHiper4} Let $X(f) \in \mathcal{E}^{4,r}$, where $f(x,y)=\sum_{i=0}^{4}a_{i}(x)y^{i}$, $r \geq 2$. Let $(u_{\ast},0)$ be a semi-hyperbolic singularity of $\widetilde{X}_1(f)$ in $\widetilde{C}_{0}$ and let $k \in N$, $k \geq 2$, such that $$a_{4}^{(k)}(u_{\ast}) \neq 0 \, \text{ and } \, a_{4}^{(j)}(u_{\ast}) = 0, \, \text{ for } j < k.$$ Then $(u_{\ast}, 0)$ is one of the following topological types: \begin{enumerate} \item[(a)] a node, if $k$ is odd and $a_4^{(k)}(u_{\ast}) > 0$, figure \ref{fig:SeNsemihiperbolica} (a); \item[(b)] a saddle, if $k$ is odd and $a_4^{(k)}(u_{\ast}) < 0$, figure \ref{fig:SeNsemihiperbolica} (b); \item[(c)] a saddle-node, if $k$ is even, figure \ref{fig:SNsemihiperbolica}. \end{enumerate} \end{proposition} \begin{figure}[htbp] \begin{center} \psfrag{u}[h][B]{$u$} \psfrag{v}[h][B]{$v$} \psfrag{Wu}[h][B]{$W_u$} \psfrag{Ws}[h][B]{$W_s$} \psfrag{Wc}[h][B]{$W_c$} \includegraphics[height=1.8in, width=3.5in]{fig1.eps} %{Sela-No-Semihip4.eps} \caption{Phase portraits of semi-hyperbolic singularities in $\widetilde{C}_0$ for $n =4$. (a) Node , (b) Saddle.} \label{fig:SeNsemihiperbolica} \end{center} \begin{center} \psfrag{x}[h][B]{$u$} \psfrag{y}[h][B]{$v$} \psfrag{Wu}[h][B]{$W_u$} \psfrag{Ws}[h][B]{$W_s$} \psfrag{Wc}[h][B]{$W_c$} \includegraphics[height=1.7in,width=3.5in]{fig2.eps}%{SelaNo-Semihip4.eps} \caption{Phase portraits of semi-hyperbolic singularities saddle-node in $\widetilde{C}_0$ for $n = 4$: (a) $a_3(u_{\ast}) > 0$, (b) $a_3(u_{\ast}) < 0$.} \label{fig:SNsemihiperbolica} \end{center} \end{figure} \begin{proof} We can suppose that $u_{\ast} = 0$. We calculate the restriction of $$\widetilde{X}_1(f)= v \frac{\partial}{\partial u}- \sum_{i=0}^{4} a_{i}(u) v^{4-i}\frac{\partial} {\partial v}$$ to the center manifold $W_c$ in $(u_{\ast},0)$ when $a_{4}'(u_{\ast}) = 0$ and $a_{3}(u_{\ast}) \neq 0$. The center manifold of $\widetilde{X}_1(f)$ is tangent to eigenspace $T_c$ associated to null eigenvalue and is spanned by the vector $(1,0)$. Then $W_c$ is the graph of a $C^{r}$-function $h: \Re \to \Re$, $$W_c =\{(u,v) \in \Re^2 : v = h(u) \}.$$ By the condition of tangency of $W_c$, $h(u_{\ast})= h'(u_{\ast})=0$. The restriction of $\widetilde{X}_1(f)$ to the center manifold is of the form \begin{equation} u' = h(u) \label{eq:uprime} \end{equation} Replacing $v= h(u)$ in the second component of $\widetilde{X}_1(f)$, we obtain $ \phi(u) = h'(u) h(u) + \sum_{i=0}^{4} a_{i}(u) h^{4-i}(u) =0$ for all $u$. Let $k \in \mathcal{N}$, $k \geq 2$ such that $a_{4}^{(k)}(u_{\ast}) \neq 0$ and $a_{4}^{(j)}(u_{\ast}) = 0$ as $j < k$. Writing $h(u)= h_{2} u^2 + \cdots + h_{k} u^k+ \cdots$, we have \begin{gather*} \phi(u_{\ast}) = 0, \quad \phi'(u_{\ast}) = 0, \quad \phi''(u_{\ast}) = 2 a_3(u_{\ast}) h_2 = 0, \\ \phi '''(u_{\ast}) = 3! (2 h_2^{2} + a_3(u_{\ast}) h_3) = 0, \, \dots, \\ \begin{aligned} \phi^{(k)}(u_{\ast}) &= k! (a^{(k)}_4(u_{\ast} + a_3(u_{\ast}) h_{k}) + a'_3(u_{\ast}) h_{k-1} + \cdots + a^{(k-2)}_3(u_{\ast}) h_2) \\ &\quad + A_{3k}(h_2, \cdots, h_{k-1}) + A_{2k}(h_2, \cdots, h_{k-2}) + A_{1k}(h_2, \cdots, h_{k-3}) \\ &\quad + A_{0k}(h_2, \dots, h_{k-4}) = 0\end{aligned} \end{gather*} where $A_{ik}(h_2,\dots) = \frac{d^k}{d u^k}(a_i \cdot h^{4-i})(u_{\ast})$ as $i= 0,\dots, 3$. We solve these equations with respect to $h_i$ as follows $$h_2 = h_3 = \cdots = h_{k-1} = 0 \, \, \text{ and } \, \, h_k = - \frac{a_4^{(k)}}{a_3(u_{\ast})}.$$ Then $ h(u) \equiv \alpha u^k + O(u^{k+1})$, where $\alpha = - \frac{a_4^{(k)}(u_{\ast})}{a_3(u_\ast)}$. Hence, (\ref{eq:uprime}) is of the form $$u' = \alpha u^k + O(u^{k+1}).$$ The proposition follows by analyzing the sign of $\alpha$ and the orientation of the hyperbolic manifold (unstable $W_u$ or stable $W_s$) which is tangent to $v= -a_{3}(u_{\ast}) u$.\end{proof} \begin{proposition}\label{pro:SemiHiper5} Let $X(f) \in \mathcal{E}^{n,r}$, where $f(x,y)=\sum_{i=0}^{n}a_{i}(x)y^{i}$, $r \geq 2$ and $n > 4$. Let $(u_{\ast},0)$ be a semi-hyperbolic singularity of $\widetilde{X}_1(f)$ and let $k \in N$, $k \geq 1$, such that $$a_{n}^{(k)}(u_{\ast}) \neq 0 \,\text{ and } a_{n}^{(j)}(u_{\ast}) = 0 \, \text{ for } j < k.$$ Then $(u_{\ast},0)$ is one of the following topological types: \begin{enumerate} \item[(a)] a node, if $n$ is even, $k$ is odd and $a_n^{(k)}(u_{\ast}) > 0$, figures \ref{fig:Sela-NoSemihiperbolica5} (a) and \ref{fig:Sela-NoSemihiperbolica5} (b); \item[(b)] a saddle, if $n$ is even, $k$ is odd and $a_n^{(k)}(u_{\ast}) < 0$, figures \ref{fig:Sela-NoSemihiperbolica5} (c) and \ref{fig:Sela-NoSemihiperbolica5} $d)$; \item[(c)] a saddle-node, if $(n-3)\cdot k$ is even, figures \ref{fig:SelaNoSemihiperbolica52} and \ref{fig:SelaNoSemihiperbolica51}. \end{enumerate} \end{proposition} \begin{figure}[htbp] \begin{center} \psfrag{u}[h][B]{$u$} \psfrag{v}[h][B]{$v$} \psfrag{Wu}[h][B]{$W_u$} \psfrag{Ws}[h][B]{$W_s$} \psfrag{Wc}[h][B]{$W_c$} \includegraphics[height=1.7in,width=3.5in]{fig3.eps}% {Sela-No-Semihip5k1.eps} \caption{Phase portraits of semi-hyperbolic singularities saddle and node in $\widetilde{C}_0$ for $n \geq 5$} \label{fig:Sela-NoSemihiperbolica5} \end{center} \end{figure} \begin{figure}[htbp] \begin{center} \psfrag{u}[h][B]{$u$} \psfrag{v}[h][B]{$v$} \psfrag{Wu}[h][B]{$W_u$} \psfrag{Ws}[h][B]{$W_s$} \psfrag{Wc}[h][B]{$W_c$} \includegraphics[height=1.7in,width=3.5in]{fig4.eps}%{SelaNo-Semihip5k2.eps} \caption{Phase portraits of semi-hyperbolic singularities saddle-node for in $\widetilde{C}_0$ $n\geq 5$ and $k \geq 2$} \label{fig:SelaNoSemihiperbolica52} \end{center} %\end{figure} %\begin{figure}[htbp] \begin{center} \psfrag{u}[h][B]{$u$} \psfrag{v}[h][B]{$v$} \psfrag{Wu}[h][B]{$W_u$} \psfrag{Ws}[h][B]{$W_s$} \psfrag{Wc}[h][B]{$W_c$} \includegraphics[height=1.7in,width=3.5in]{fig5.eps}%{SelaNo-Semihip5k1.eps} \caption{Phase portraits of semi-hyperbolic singularities saddle-node in $\widetilde{C}_0$ for $n\geq 5$ and $k=1$} \label{fig:SelaNoSemihiperbolica51} \end{center} \end{figure} \begin{proof} We use the method of the center manifold as in Proposition \ref{pro:SemiHiper4}. We find that the restriction of $\widetilde{X}_1(f)$ to the center manifold, $W_c$, is of the form $$g(u) = \alpha^{n-3} u^{k(n-3)} + O(u^{k+1(n-2)})$$ where $\alpha = - \frac{a_n^{(k)}(u_{\ast})}{a_{n-1}(u_\ast)}$. The proof is finished by analyzing the sign of $\alpha$ and the orientation of the hyperbolic manifold (unstable $W_u$ or stable $W_s$) which is tangent to $v$-axis. \end{proof} \section{Definition of the sets $\Sigma^{n}$}\label{sec:definition} According to section \ref{sec:behavior}, the behaviors of $\widetilde{X}(f)$ on $C_{\pm \frac{\pi}{2}}$, under non-degeneracy conditions on the periodic orbits, singularities and tangencies, split in the following cases. \begin{description} \item[A] $C_{\pm \frac{\pi}{2}}$ are periodic orbits of $\widetilde{X}(f)$ with the first and second derivatives of the Poincar\'e map equal $1$ and $\pm \int_{0}^{\tau} a_1(s) ds$ respectively. This occurs when $n=1$. \item[B] $C_{\pm \frac{\pi}{2}}$ are hyperbolic periodic orbits of $\widetilde{X}(f)$ with second derivative of the Poincar\'e map equals $\pm 2 \int_{0}^{\tau} a_2(s) ds$. This occurs when $n=2$. \item[C] the trajectories of $\widetilde{X}(f)$ are either transversal or tangent to $C_{\pm\frac{\pi}{2}}$. This case occurs when $n= 3$. \item[D] $\widetilde{X}(f)$ has hyperbolic singularities in $C_{\pm \frac{\pi}{2}}$. This cases occurs when $n=4$. \item[E] $\widetilde{X}(f)$ has semi-hyperbolic singularities in $C_{\pm \frac{\pi}{2}}$. This occurs when $n \geq 5$. \end{description} With these cases in mind, in the subsections \ref{sec:genericidade1}-\ref{sec:genericidade5}, we define for the corresponding $n$ the set $\Sigma^{n} \subset \mathcal{E}^{n,r}$ and we prove its density in the space $\mathcal{E}^{n,r}$. Throughout this section, we denote by $\widetilde{X}(f)$ and $\widetilde{M} = S^1 \times [-\frac{\pi}{2}, \frac{\pi}{2}]$ the cylindrical compactification of $X(f)$ and $M$ respectively. Also we consider the following notation: $C_{\pm \frac{\pi}{2}} = S^1\times \{ \pm \frac{\pi}{2}\}$, $C_0= S^1 \times {0}$, $\Delta \widetilde{X}(f) = \text{det}D\widetilde{X}(f)$ and $\sigma\widetilde{X}(f) = \text{trace}D\widetilde{X}(f)$ where $D\widetilde{X}(f)$ is the Jacobian matrix of $\widetilde{X}(f)$. In the first subsection, we present several lemmas which hold for all cases. \subsection*{Preliminary lemmas} The first lemma is a particular and easy case of Sard's Theorem \cite{Sard}. \begin{lemma}\label{lema:sard} Let $h:I \to \Re$ be a $C^1$ function. The set of critical values of $h$, given by Crit$(h) = \{ h(x) : h'(x) =0 \}$, has zero Lebesgue measure in $\Re$. \end{lemma} \begin{lemma}\label{Lema:B1Xfn1} Let $X(f) \in \mathcal{E}^{n,r}(M)$ with $r\geq 2$ and $n\geq 1$. Then the set \begin{align*} B^n_{1}(X(f)) = \{ & \mu_{0} \in \Re : \widetilde{X}(f + \mu_{0}) \text{ has some singularity}\\ & (u_{\ast}, 0)\in C_0 \text{ with } \Delta \widetilde{X}(f + \mu_{0}) = 0 \} \end{align*} has Lebesgue measure zero in $\Re$. \end{lemma} \begin{proof} Let $f(x,y) = \sum_{i=0}^{n} a_i(x) y^{i}$. The set of critical value of $-a_{0}$ is given by $$\mathop{\rm Crit}(-a_{0})=\{ \mu_{0} \in \Re : \exists x_{\mu_0} \text{ such that } -a_{0}(x_{\mu_0})= \mu_0 \text{ e } a_{0}'(x_{\mu_0}) = 0 \}.$$ By Lemma \ref{lema:sard}, $Crit(-a_{0})$ has zero Lebesgue measure in $\Re$. On the other hand, we can write $$ \begin{array}{ll} Crit(-a_{0}) = & \{ \mu_0 \in \Re : \exists (x_{\mu_0},0) \in C_0 \text{ such that } \widetilde{X}(f + \mu_{0})(x_{\mu_0},0) = (0,0) \\ & \text{ with } \Delta \widetilde{X}(f + \mu_{0})(x_{\mu_0},0) = 0 \}. \end{array} $$ It follows that $B^n_{1}(X(f))= Crit(-a_{0})$. \end{proof} \begin{lemma}\label{Lema:B2Xfn1} Let $X(f) \in \mathcal{E}^{n,r}(M)$, with $r \geq 1$, $n\geq 1$, and $\mu_{0} \notin B^n_{1}(X(f))$. Then the set \begin{align*} B^n_{2}(X(f);\mu_{0})= & \{ \mu_{1} \in \Re: \widetilde{X}( f + \mu_{0} + \mu_{1} y ) \text{ has some }\\ & \text{ non-hyperbolic singularity} \} \end{align*} has zero Lebesgue measure in $\Re$. \end{lemma} \begin{proof} Let $f(x,y) = \sum_{i=0}^{n} a_i(x) y^{i}$. For $\mu_{0} \notin B^n_{1}(X(f))$, all singularities of $\widetilde{X}(f + \mu_0)$ in $C_0$, say $(u_{\ast},0)$, satisfy $\Delta\widetilde{X}(f + \mu_{0})(u_{\ast}, 0) \neq 0$. Thus $\widetilde{X}(f + \mu_{0} +\mu_1 y)$ has in $C_{0}$ a finite number of singularities. For each one, $(u_{\ast},0)$, there is a single value $\mu_{1}^{\ast} \in \Re$ such that $\sigma\widetilde{X}(f + \mu_{0} + \mu_{1}^{\ast} y ) = 0$, since $\sigma\widetilde{X}(f+ \mu_{0} + \mu_{1} y ) = a_{1}(u) + \mu_{1}$. Hence, $(u_{\ast},0)$ is a non-hyperbolic singularity of $\widetilde{X}(f + \mu_0 + \mu_{1}^{\ast} y)$. Then $B^n_{2}(X(f);\mu_{0})$ can be written of the form \[ B^n_{2}(X(f);\mu_{0}) = \{ \mu_1 \in \Re : a_1(x) + \mu_1 =0, a_0(x) + \mu_0 =0 \text{ e } a'_0(x) >0 \} \] It follows that $ B^n_{2}(X(f);\mu_{0})$ is a finite set and has therefore zero measure in $\Re$.\end{proof} \begin{lemma}\label{Lema:B3Xfn1} Let $X(f) \in \mathcal{E}^{n,r}(M)$, $n\geq 1$. Then for $\mu_{0} \in \Re$ and $r\geq 1$, the set \begin{align*} B^n_{3}(X(f);\mu_{0})=\{& \mu_{1} \in\Re: \widetilde{X}(f+ \mu_{0}+ \mu_{1} y) \text{ has some non-hyperbolic }\\ & \text{periodic orbit contained in } M \} \end{align*} has zero Lebesgue measure in $\Re$. \end{lemma} \begin{proof} A period orbit $\gamma$ of $\widetilde{X}(f + \mu_{0} + \mu_{1} y)$ is one of the following types: \begin{itemize} \item[(a)] homotopic to zero. It contains in its interior a singularity and cuts the $x$-axis transversally. \item[(b)] non-homotopic to zero. It circles the cylinder without intercepting the $x$-axis. \end{itemize} For each type we find expressions for the derivatives of the first return map with respect to a parameter. We consider $X(f)$ with $f(x,y) = \sum_{i=0}^{n} a_i(x) y^{i}$ and $n \geq 1$. Case (a). For $\mu_{0} \in \Re$, we consider a periodic orbit of $\widetilde{X}(f + \mu_{0} + \mu_{1} y)$, $\gamma(t,p,\mu_{1})=(\varphi(t,p,\mu_{1}), \psi(t,p,\mu_{1}))$ through $p=(x_{0},0)$ with period $\tau=\tau(x_{0},\mu_{1})$. Let $\pi(x,\mu_{1})$ be the Poincar\'e map defined in an interval $I\subset C_{0}$, where $x_{0}\in I$, and associated to $X(f + \mu_{0} + \mu_{1} y)$. The derivatives of $\pi(x,\mu_{1})$ with respect to $x$ and $\mu_{1}$ were calculated in \cite{Andronov} by Andronov \emph{et al.} Here, we write them in terms of the coefficients of $f(x,y)+\mu_{0}+\mu_{1}y$ as follows \begin{gather*} \frac{\partial\pi}{\partial x}(x_{0},\mu_{1}) = \prod_{i=1}^{n}\exp(\int _{0}^{\tau(x_{0},\mu_{1})}(ia_{i}(\varphi(s))\psi^{i-1}(s)+\mu_{1})ds) \\ \begin{aligned} \frac{\partial\pi}{\partial\mu_{1}}(x_{0},\mu_{1}) &= \frac{\frac{\partial \pi}{\partial x}(x_{0},\mu_{1})}{-|\gamma^{'}(0,x_{0},\mu_{1})|} {\displaystyle\int_{0}^{\tau(x_{0},\mu_{1})}} {\textstyle\prod_{i=1}^{n}} \exp(-\int_{0}^{s}(ia_{i}(\varphi(t))\psi^{i-1}(t) \\ &\quad +\mu_{1})dt)\psi^{2}(s)ds. \end{aligned} \end{gather*} Since $\frac{\partial\pi}{\partial\mu_{1}}(x_{0},\mu_{1}) \neq 0$ (and by the Implicit Function Theorem) there is a function $\mu_1(x)$ defined in a neighborhood $I_{x_{0}}$ of $x_0$ such that $\pi(x,\mu_{1}(x))-x=0$ for $\forall x \in I_{x_0}$. The derivative of the last equation with respect to $x$ is \[ \frac{\partial\pi}{\partial x}(x_{0},\mu_{1})+\frac{\partial\pi}{\partial \mu_{1}}(x_{0},\mu_{1})\frac{\partial\mu_{1}}{\partial x}-1=0. \] Thus $ \gamma $ is non-hyperbolic if and only if $\frac {\partial \mu_{1}} {\partial x} = 0$. We remark that for each $x \in I_{x_0}$, $\mu_1(x)$ is a value of the parameter such that $X(f + \mu_0 + \mu_1(x) y)$ has a periodic orbit through $(x,0)$. This periodic orbit is non-hyperbolic when $\mu_1(x)$ is a critical value. Then, for each $\mu_{0}\in \Re$ fixed, the set of critical values of $\mu_{1}(x)$ is written as \begin{align*} O_{1} = & \{ \mu_{1}(x) \in \Re : X(f+ \mu_{0} + \mu_{1}(x) y) \text{ has a homotopic to zero periodic orbit}\\ & \text{ non-hyperbolic through } (x,0)\}. \end{align*} Case (b). Let $\gamma(t) = (\varphi(t),\psi(t))$ be a non-homotopic to zero periodic orbit, with period $\tau$, through $(0,y_{0})$ where $y_{0} \neq 0$. The Poincar\'e map, $\pi(y,\mu_{1})$, is defined by \begin{equation}\label{eq:Piymu1} \pi(y,\mu_{1})=\Psi(\tau,y,\mu_{1}) \end{equation} where $\Psi (x,y,\mu_{1})$ is a solution of differential equation \[ \frac{d\Psi}{dx}(x,y,\mu_{1})=\frac{1}{\Psi}\left( \sum_{i=0}^{n}a_{i}(x)\Psi^{i}+\mu _{1}\Psi\right) =F(x, y ,\mu_{1}) \] with the initial condition $\Psi(0,y,\mu_{1}) =y$. The derivative of $\Psi(x,y,\mu_{1})$ with respect to $\mu_{1}$ is the solution of linear equation \[ \frac{d}{dx}(\frac{\partial\Psi}{\partial\mu_{1}})=D_{2}F(x,\Psi(x,y,\mu _{1}),\mu_{1})\frac{\partial\Psi}{\partial\mu_{1}}(x,y,\mu_{1})+D_{3}% F(x,\Psi(x,y,\mu_{1}),\mu_{1}) \] where $D_{2}F(x,y,\mu_{1})=-\frac{a_{0}(x)}{y^{2}}$ and $D_{3}F(x,y,\mu_{1})=1$. By equation (\ref{eq:Piymu1}) the derivative of $\pi(y,\mu_{1})$ with respect to $\mu_{1}$ is given by $$\frac{\partial\pi}{\partial\mu_{1}} (y,\mu_{1})= \exp(\mathcal{I}(\tau,y, \mu_{1})) \int_{0}^{\tau} \exp(- \mathcal{I}(s,y, \mu_{1})) ds $$ where $\mathcal{I}(t, y, \mu_{1})= \int_{0}^{t} D_{2}F(s,\Psi(s,y, \mu_{1}),\mu_{1})ds$ Similarly to (a), we find a function $\mu_1: I_{y_0} \to \Re$ where $I_{y_0}$ is an interval of $y$-axis containing $y_0$ and without intersection with the $x$-axis such that $\pi(y,\mu_{1}(y))-y = 0$. Hence, $\gamma$ is non-hyperbolic if and only if $ \frac{\partial\mu_{1}}{\partial y} = 0$. The critical value set of $\mu_{1}(y)$ is given by \begin{align*} O_{2} = & \{\mu_{1}(\xi )\in\Re:X(f+\mu_{0}+\mu_{1}(\xi) y)\text{ has a non-hyperbolic periodic orbit}\\ & \text{ circling the cylinder through } (0, \xi) \} \end{align*} The proof of $i)$ is complete by observing that \[ B^1_{3}(X(f);\mu_{0}) = O_{1}\cup O_{2} \] and by applying the Sard Lemma to sets $O_1$ e $O_2$. \end{proof} \subsection{Case \bf{A}}\label{sec:genericidade1} In this case, $X_{\mu}(f)$ denotes the vector field $X(f+ \mu_0 + \mu_1 y)$ where $\mu = (\mu_0, \mu_1) \in \Re^2$. \begin{definition}\label{def:n1} \rm Let $\Sigma^1$ be the set of $C^r$-vector fields $X(f) \in \mathcal{E}^{1,r}$ with $r \geq 2$ such that $\widetilde{X}(f)$ satisfies: \begin{enumerate} \item the singularities are hyperbolic and contained in $C_{0}$. \item the periodic orbits in the $\widetilde{M}^{\circ}$ are hyperbolic and the periodic orbits in $C_{\pm \frac{\pi}{2}}$ are semi-stable. \item no saddle connection. \end{enumerate} \end{definition} Next, we give the measure of the complementary set of $\Sigma^{1}$ in the parameter space $\Re^{2}$. \begin{theorem} \label{Teo:BXfn1} Let $X(f)\in \mathcal{E}^{1,r}$, with $r\geq 2$. Then the set \[ B^1(X(f)) = \{ \mu \in \Re^{2}: X_{\mu}(f ) \notin \Sigma^{1} \} \] has zero Lebesgue measure in $\Re^{2}$. \end{theorem} We have divided the proof in a sequence of lemmas. \begin{lemma}\label{Lema:B4Xfn1} Let $X(f) \in \mathcal{E}^{1,r}$. Then for $r\geq 2$, the set \begin{align*} B^1_{4}(X(f)) = \{& \mu_{1} \in\Re: \widetilde{X}(f+ \mu_{1} y) \text{ has some non semi-hyperbolic }\\ & \text{periodic orbit in } C_{\pm \frac{\pi}{2}} \} \end{align*} has zero Lebesgue measure in $\Re$. \end{lemma} \begin{proof} We observe that the periodic orbits of $\widetilde{X}(f + \mu_0 + \mu_1 y)$ in $C_{\pm \frac{\pi}{2}}$ do not depend of $\mu_0$. Moreover, the second derivative of the Poincar\'e map of these periodic orbits is $\pi'' = \pm 2 \int_0^{\tau} a_1(s) ds + 2 \mu_1 \tau$ (see Proposition \ref{pro:PeriodicOrbit}). Thus $\pi'' = 0$ only for a finite number of $\mu_1$. Then $B_4^1(X(f))$ has zero Lebesgue measure in $\Re$. \end{proof} \begin{lemma}\label{Lema:B5Xfn1} Let $X(f)\in \mathcal{E}^{1,r}$, $r\geq 1$ and $\mu_{0} \notin B^1_{1}(X(f))$. Then the set \[ B^1_{5}(X(f);\mu_{0}) = \{ \mu_{1} \in \Re: \widetilde{X}(f + \mu_0 + \mu_1 y)\text{ has not the condition } 3 \text{ of } \Sigma^{1}\} \] has zero Lebesgue measure in $\Re$. \end{lemma} \begin{proof} Fix $\mu_{0} \notin B_{1}(X(f))$. The number of singularities of $\widetilde{X}(f + \mu_{0})$ is finite. Thus the saddle connections of $\widetilde{X}_{\mu}(f)$ also are finite in number for values of $\mu_{1}$. We claim that all connections can be broken with perturbations of the form $\widetilde{X}(f + \mu_0 + \mu_1 y)$. Suppose that for $\mu_{1}^{\ast}$, $\widetilde{X}(f + \mu_{0} + \mu_{1}^{\ast}y)$ has a trajectory $\widehat{pq}$ in the superior part of $\widetilde{M}$ connecting the saddles $p$ and $q$ in $C_{0}$. We denote by $S_E(q)$ the stable separatrix of $q$ and by $S_I(p)$ the unstable separatrix of $p$. See figure \ref{fig:conexaoselan12}. \begin{figure}[htbp] \begin{center} \psfrag{C0}[h][B]{$C_0$} \psfrag{C+pi}[h][B]{$C_{+\frac{\pi}{2}}$} \psfrag{C-pi}[h][B]{$C_{-\frac{\pi}{2}}$} \psfrag{p}[h][B]{$p$} \psfrag{q}[h][B]{$q$} \psfrag{su}[h][B]{$S_I(p)$} \psfrag{ss}[h][B]{$S_E(q)$} \includegraphics[height=1.9in,width=2.5in]{fig6.eps}%{conexaoselan12.eps} \caption{Breaking connection of saddles $p$ and $q$ for $\mu_1 > \mu_1^{\ast}$ } \label{fig:conexaoselan12} \end{center} \end{figure} Let $\mathop{\rm sep}(\mu_1)$ be the separation function of $S_I(p,\widetilde{X}(f+\mu_0 + \mu_1 y))$ and $S_E(q,\widetilde{X}(f+\mu_0 + \mu_1 y))$. It is defined on a transversal section to the trajectory that links the saddles. The derivative of $\mathop{\rm sep}(\mu_1)$ with respect to $\mu_1$ is of the form \begin{align*} \mathop{\rm sep}_{\mu_1}(\mu_1^{\ast}) &= \int_{-\infty}^{+ \infty} \exp(-\int_{0}^{t} \mathop{\rm div}(\widetilde{X}(f+\mu_0 + \mu_1^{\ast} y)(u(s),v(s)))ds)\\ &\quad \cdot \widetilde{X}(f+\mu_0 + \mu_1^{\ast} y) \wedge \frac{d}{d \mu_1}\widetilde{X}(f+\mu_0 + \mu_1^{\ast} y)(u(s),v(s)) dt \end{align*} where $\wedge$ is the vectorial product defined by $(v_1,v_2) \wedge (w_1, w_2) = - \det \begin{pmatrix} v_1 & v_2 \\ w_1 & w_2 \end{pmatrix}$ and $(u(s),v(s))$ is an orbit connecting the saddles $p$ and $q$. For a treatment of the integral formula of $\mathop{\rm sep}_{\mu_1}(\cdot)$ we refer the reader to Guckeheimer-Holmes \cite{guckeheimer-holmes} and Chicone \cite{chicone}. In our case, \begin{equation} \label{eq:derivadaseparacao} \begin{aligned} \mathop{\rm sep}_{\mu_1}(\mu_1^{\ast}) &= - \int_{- \infty}^{+\infty} \exp(-\int_{0}^{t} \mathop{\rm div}(\widetilde{X}(f+\mu_0 + \mu_1^{\ast} y)(u(s),v(s)))ds) \\ & \quad \times \sin^2(v(t)) \cos^2(v(t)) dt. \end{aligned} \end{equation} Since $v(t) \in [-\frac{\pi}{2}, \frac{\pi}{2}]$, the integrand in (\ref{eq:derivadaseparacao}) is a non-negative function. Therefore $\mathop{\rm sep}_{\mu_1}(\mu_1^{\ast}) < 0$. Then the connection of $p$ and $q$ saddles is broken, without another connection to arise. Thus $B^1_5(X(f); \mu_0)$ is a discrete set. This ends the proof. \end{proof} \begin{proof}[Proof of Theorem \ref{Teo:BXfn1}] The set $B^1(X(f))$ is the union of the following sets \begin{gather*} \mathcal{B}_1 = B^1_{1}(X(f)) \times \Re, \quad \mathcal{B}_2 = \bigcup_{\mu_0 \in \Re-B^1_{1}(X(f))} \{ \mu_0 \} \times B^1_{2}(X(f), \mu_0), \\ \mathcal{B}_3 = \bigcup_{ \mu_0 \in \Re} \{ \mu_0 \} \times B^1_{3}(X(f); \mu_0), \quad \mathcal{B}_4 = \Re \times B^1_{4}(X(f)), \\ \mathcal{B}_5 = \bigcup_{\mu_0 \in \Re-B^1_{1}(X(f))} \{ \mu_0 \} \times B^1_{5}(X(f), \mu_0), \end{gather*} where $B_{i}^1(X(f), \cdot)$, $i=1, \dots,5$ are given by Lemmas \ref{Lema:B1Xfn1}-\ref{Lema:B5Xfn1} respectively. Each set $\mathcal{B}_i$: \begin{itemize} \item contains parameters $(\mu_0, \mu_1) \in \Re^2$ such that $X(f + \mu_0 + \mu_1 y)$ violates at least a condition of $\Sigma^1$. \item is measurable. Because its complement in $\Re^2$ is open. \item has measure zero in $\Re^2$. Because $\mathcal{B}_1$ and $\mathcal{B}_4$ are products of $\Re$ times a zero measure set in $\Re$. To calculate the measure of $\mathcal{B}_i$ for $i=2,3$ and $5$, we use Fubini's Theorem \cite{Royden}: $$ \int_{\Re^2} \chi(\mathcal{B}_i) d\mu_0 d\mu_1 = \int (\int \chi(\cdot, B_i^1(X(f),\mu_0)) d\mu_1) d\mu_0 = 0$$ where $\chi(\cdot)$ is the characteristic function of sets in $\Re^2$. \end{itemize} Then $B^1(X(f))$ is measurable with zero Lebesgue measure in $\Re^2$. \end{proof} \subsection{Case B}\label{sec:genericidade2} In this case, $X_{\mu}(f)$ denotes the vector field $X(f+ \mu_0 + \mu_1 y + \mu_2 y^2)$ where $\mu =(\mu_0, \mu_1, \mu_2) \in \Re^3$. \begin{definition} \rm Let $\Sigma^{2}$ be the set of $C^r$-vector fields $X(f) \in \mathcal{E}^{2,r}$ with $r \geq 1$ such that $\widetilde{X}(f)$ satisfies: \begin{enumerate} \item the singularities are hyperbolic and contained in $C_{0}$. \item the periodic orbits are hyperbolic and contained in $\widetilde{M}$. \item no saddle connection. \end{enumerate} \end{definition} We now give the measure of the complement of $\Sigma^{2}$ in the parameter space $\Re^{3}$. \begin{theorem} \label{Teo:BXfn2} Let $X(f)\in \mathcal{E}^{2,r}$, with $r \geq 1$. Then the set \[ B^2(X(f)) = \{ \mu \in \Re^{3}: X_{\mu}(f ) \notin \Sigma^{2} \} \] has zero Lebesgue measure in $\Re^{3}$. \end{theorem} We have divided the proof in a sequence of lemmas. \begin{lemma}\label{Lema:B4Xfn2} Let $X(f) \in \mathcal{E}^{2,r}$ with $r\geq 1$. Then, the set \begin{align*} B^2_{4}(X(f)) = \{& \mu_{2} \in \Re: \widetilde{X}(f + \mu_{2} y^2) \text{ has some non semi-hyperbolic }\\ &\text{periodic orbit in } C_{\pm \frac{\pi}{2}} \} \end{align*} has zero Lebesgue measure in $\Re$. \end{lemma} \begin{proof} Let $f(x,y) = a_0(x) + a_1(x) y + a_2(x) y^2$. By Proposition \ref{pro:PeriodicOrbit}, $\widetilde{X}(f)$ has two periodic orbits of period $\tau$ (the same period of function $a_i(u)$) on $C_{\pm \frac{\pi}{2}}$ with first derivative of the Poincar\'e maps equals to $\exp(\mp \int_{0}^{\tau} a_2(u) du)$. Then, $\widetilde{X}(f+ \mu_2 y^2)$ has a periodic orbit on $C_{\pm \frac{\pi}{2}}$ non-hyperbolic if and only if $\mu_2 = \pm \frac{1}{\tau} \int_{0}^{\tau} a_2(u) du$. It follows that $B^2_{4}(X(f))$ is discrete and has therefore zero measure in $\Re$.\end{proof} We remark that for every $(\mu_0, \mu_1) \in \Re^2$, $B^2_{4}(X(f +\mu_0 + \mu_1 y)) = B^2_{4}(X(f))$. \begin{lemma}\label{Lema:B5Xfn2} Let $X(f)\in \mathcal{E}^{2,r}(M)$, where $r\geq 1$ and let $\mu_{0} \notin B^2_{1}(X(f))$. Then the set \[ B^2_{5}(X(f);\mu_{0}) = \{ \mu_{1} \in \Re: \widetilde{X}(f + \mu_0 + \mu_1 y)\text{ has not the condition 3 of } \Sigma^{2}\} \] has zero Lebesgue measure in $\Re$. \end{lemma} For the proof of this lemma; see proof of Lemma \ref{Lema:B5Xfn1}. \begin{proof}[Proof of Theorem \ref{Teo:BXfn2}] The set $B^2(X(f))$ is union of following sets: \begin{gather*} \mathcal{B}_1 = B^2_{1}(X(f)) \times \Re^2,\quad \mathcal{B}_2 = \bigcup_{\mu_0 \in \Re-B^2_{1}(X(f))} \{ \mu_0 \} \times B^2_{2}(X(f), \mu_0) \times \Re, \\ \mathcal{B}_3 = \bigcup_{ \mu_0 \in \Re} \{ \mu_0 \} \times B^2_{3}(X(f); \mu_0) \times \Re,\quad \mathcal{B}_4 = \Re^2 \times B^2_{4}(X(f)),\\ \mathcal{B}_5 = \bigcup_{\mu_0 \in \Re-B^2_{1}(X(f))} \{ \mu_0 \} \times B^2_{5}(X(f), \mu_0) \times \Re, \end{gather*} where $B_{i}^2(X(f), \cdot)$, $i=1, \dots,5$, are given by Lemmas \ref{Lema:B1Xfn1}-\ref{Lema:B3Xfn1}, \ref{Lema:B4Xfn2} and \ref{Lema:B5Xfn2} respectively. Each $\mathcal{B}_i$ \begin{itemize} \item contains parameters $(\mu_0, \mu_1, \mu_2) \in \Re^3$ such that $X(f + \mu_0 + \mu_1 y + \mu_2 y^2)$ violates at least a condition of $\Sigma^2$. \item is measurable. Because its complement in $\Re^3$ is open. \item has zero measure in $\Re^3$. Because $\mathcal{B}_1$ and $\mathcal{B}_4$ are product of $\Re^2$ times a zero measure set in $\Re$. To measure $\mathcal{B}_i$ for $i=2,3$ and $5$, we apply the Fubini Theorem as follows $$ \int_{\Re^3} \chi(\mathcal{B}_i) d\mu_0 d\mu_1 d\mu_2 = \int_{\Re^2} (\int \chi(\cdot, B_i^2(X(f),\mu_0), \cdot) d\mu_1) d\mu_0 d\mu_2 = 0$$ where $\chi(\cdot)$ is characteristic function in $\Re^3$. \end{itemize} Then $B^2(X(f))$ has zero measure in $\Re^3$. \end{proof} \subsection{Case C}\label{sec:genericidade3} Here $X_{\mu}(f)$ denotes the vector field $X(f+ \mu_0 + \mu_1 y + \mu_{2} y^{3})$ where $\mu =(\mu_0, \mu_1, \mu_2) \in \Re^3$. \begin{definition} Let $\Sigma^{3}$ be the set of $X(f) \in \mathcal{E}^{3,r}$, $r\geq 1$ such that $\widetilde{X}(f)$ satisfies: \begin{enumerate} \item the singularities are hyperbolic and contained in $C_{0}$. \item the periodic orbits are hyperbolic and contained in $\widetilde{M}^{\circ}$. \item the tangency points of $\widetilde{X}(f)$ with $C_{\pm\frac{\pi}{2}}$ are parabolic. \item \begin{enumerate} \item there are no saddle connection of $\widetilde{X}(f)$. \item the separatrix of the singularity points \ in $C_{0}$ can be only transversal to $C_{\pm\frac{\pi}{2}}$. \item The trajectories are tangent to $C_{\pm\frac{\pi}{2}}$ at most one point. \end{enumerate} \end{enumerate} \end{definition} \begin{theorem} \label{Teo:BXfn3} Let $X(f)\in\mathcal{E}^{3,r}$ with $r\geq 1$. Then the set \[ B^3(X(f)) = \{ (\mu_0, \mu_1, \mu_2) \in \Re^{3}: X(f + \mu_0 + \mu_1 y + \mu_2 y^3) \notin \Sigma^{3} \} \] has Lebesgue measure zero in $\Re^{3}$. \end{theorem} The proof of this Theorem needs the following lemmas. \begin{lemma}\label{Lema:B4Xfn3} Let $X(f) \in \mathcal{E}^{3,r}$ with $r\geq 1$. Then, the set \begin{align*} B^3_{4}(X(f)) = \{ \mu_{2} \in \Re: & \text{ } \widetilde{X}(f + \mu_{2} y^3) \text{ has not the condition 3 of } \Sigma^3 \} \end{align*} has Lebesgue measure zero in $\Re$. \end{lemma} \begin{proof} Let $X(f)$ with $f(x,y) = \sum_{i=0}^3 a_{i}(x) y^{i}$. By Proposition \ref{pro:Tangencia}, $(u_{\ast}, \pm \frac{\pi}{2}) \in C_{\pm \frac{\pi}{2}}$ is a tangency point of $\widetilde{X}(f + \mu_{2} y^3)$ if $a_{3}(u_{\ast}) + \mu_2 = 0$. Moreover the tangency is parabolic when $a_{3}'(u_{\ast}) \neq 0$. The set of critical values of $-a_{3}(u)$, $$Crit(-a_{3}(u)) = \{ \mu_{2} \in \Re : \exists \, (u_\ast, 0) \text{ such that } a_{3}(u_{\ast}) + \mu_2 = 0 \text{ e } a_{3}'(u_{\ast}) = 0 \},$$ describes the set of $\mu_2 \in \Re$ such that $X(f + \mu_{0} + \mu_{1} y + \mu_{2} y^3)$ does not satisfy the condition $3$ of $\Sigma^3$. By Sard's Lemma, $B^{3}_4(X(f); \mu_0, \mu_1)$ has Lebesgue measure zero in $\Re$.\end{proof} \begin{lemma}\label{Lema:B5Xfn3} Let $X(f)\in \mathcal{E}^{3,r}$, $r\geq 1$, $\mu_{0} \notin B^3_{1}(X(f))$ and $\mu_{2} \notin B^3_{4}(X(f))$. Then the set \[ B^3_{5}(X(f);\mu_{0}, \mu_{2}) = \{ \mu_{1} \in \Re: \widetilde{X}(f + \mu_0 + \mu_1 y + \mu_2 y^3) \text{ has not the condition } 4 \text{ of } \Sigma^{3} \} \] has zero Lebesgue measure in $\Re$. \end{lemma} \begin{proof} Fix $\mu_{0} \notin B^3_{1}(X(f))$ and $\mu_{2} \notin B^3_{3}(X(f))$ as in Lemmas \ref{Lema:B1Xfn1} and \ref{Lema:B4Xfn3}. There are three types of connections (see figure \ref{fig:conexaoseparan3}). \begin{itemize} \item[(a)] Connections of saddles in $C_{0}$. \item[(b)] A saddle separatrix that is tangent to $C_{+\frac{\pi}{2}}$ or $C_{-\frac{\pi}{2}}$ with parabolic tangency. \item[(c)] A trajectory with two parabolic tangencies to $C_{\pm \frac{\pi}{2}}$. \end{itemize} \begin{figure}[htbp] \begin{center} \psfrag{p}[h][B]{$p$} \psfrag{q}[h][B]{$q$} \psfrag{C0}[h][B]{$C_{0}$} \psfrag{C+pi}[h][B]{$C_{+\frac{\pi}{2}}$} \psfrag{C-pi}[h][B]{$C_{-\frac{\pi}{2}}$} \includegraphics[height=1.9in,width=3.5in]{fig7.eps}%{conexaoseparan3.eps} \caption{Saddle connections in $C_0$ and tangency points in $C_{\pm \frac{\pi}{2}}$.} \label{fig:conexaoseparan3} \end{center} \end{figure} The saddle connections of $\widetilde{X}(f + \mu_{0} + \mu_{1} y + \mu_{2}y^{3})$ happen in a number finite of $\mu_{1}$, since the number of singularities is finite. The Lemma \ref{Lema:B4Xfn1} applies straightforwardly to (a), (b) and (c). In fact, we can break these connections with perturbations of the form $\widetilde{X}(f+ \mu_0 + \mu_1 y + \mu_2 y^3)$ where $\mu_0$ and $\mu_2$ are fixed. The derivative of the separation function of the stable and unstable manifolds is \begin{equation} \label{eq:derivadaseparacao3} \begin{aligned} \mathop{\rm sep}_{\mu_1}(\mu_1^{\ast}) & = - \int_{- \infty}^{+\infty} \exp(-\int_{0}^{t} \mathop{\rm div}(\widetilde{X}(f+\mu_0 + \mu_1^{\ast} y + \mu_2 y^3)(u(s),v(s))) ds) \\ &\quad\times \sin^2(v(t)) \cos^2(v(t)) dt. \end{aligned} \end{equation} For (b) and (c) we must consider the time $T$ taken by a trajectory from $q \in \widetilde{M}^{\circ}$ to a tangency point $p \in C_{\pm \frac{\pi}{2}}$. Thus we have \begin{equation} \label{eq:derivadaseparacao3tan} \begin{aligned} \mathop{\rm sep}_{\mu_1}(\mu_1^{\ast}) &= - \frac{1}{|\widetilde{X}(f)(q)|} \int_{0}^{T} \exp(-\int_{0}^{t} \mathop{\rm div}(\widetilde{X}(f+\mu_0 + \mu_1^{\ast} y + \mu_2 y^3)(u(s),v(s))) ds) \\ &\quad \times \sin^2(v(t)) \cos^2(v(t)) dt. \end{aligned} \end{equation} The integrands in (\ref{eq:derivadaseparacao3}) and (\ref{eq:derivadaseparacao3tan}) are non-negative functions for $v(t) \in [-\frac{\pi}{2}, \frac{\pi}{2}]$. Since $\mathop{\rm sep}_{\mu_1}(\mu_1^{\ast}) < 0$, the connections are broken and no other one can arise. Then $B_4(X(f); \mu_0, \mu_2)$ is a discrete subset of $\Re$ and has zero Lebesgue measure.\end{proof} \begin{proof}[Proof of Theorem \ref{Teo:BXfn3}] The set $B^3(X(f))$ is union of \begin{gather*} \mathcal{B}_1 = B^3_{1}(X(f)) \times \Re^2,\quad \mathcal{B}_2 = \bigcup_{\mu_0 \in \Re-B^3_{1}(X(f))} \{ \mu_0 \} \times B^3_{2}(X(f), \mu_0) \times \Re,\\ \mathcal{B}_3 = \bigcup_{ \mu_0 \in \Re} \{ \mu_0 \} \times B^3_{3}(X(f); \mu_0) \times \Re,\quad \mathcal{B}_4 = \Re^2 \times B^3_{4}(X(f)),\\ \mathcal{B}_5 = \bigcup_{(\mu_0, \mu_2) \in S} \{ \mu_0 \} \times B^3_{5}(X(f), \mu_0, \mu_2) \times \{ \mu_2 \}, \end{gather*} where $S = \Re-B^3_{1}(X(f)) \times \Re-B^3_{4}(X(f))$ and $B_{i}^3(X(f), \cdot)$, $i=1, \dots,5$, are given by the Lemmas \ref{Lema:B1Xfn1}-\ref{Lema:B3Xfn1} and \ref{Lema:B4Xfn3}-\ref{Lema:B5Xfn3} respectively. Each $\mathcal{B}_i$: \begin{itemize} \item contains $(\mu_0, \mu_1, \mu_2) \in \Re^3$ such that the $X(f + \mu_0 + \mu_1 y + \mu_2 y^3)$ violates at least some condition of $\Sigma^3$. \item is mensurable. Because its complement in $\Re^3$ is open. \item has zero measure in $\Re^3$. Because $\mathcal{B}_1$ and $\mathcal{B}_4$ are products of $\Re^2$ times a set of zero measure in $\Re$. For $\mathcal{B}_i$ with $i=2,3$ e $5$, we apply the Fubini Theorem. \end{itemize} This completes the proof.\end{proof} \subsection{Case \bf{D}}\label{sec:genericidade4} In this case, $X_{\mu}(f)$ denotes the vector field $X(f+ \mu_0 + \mu_1 y + \mu_{2} y^{3} + \mu_3 y^4)$ where $\mu =(\mu_0, \mu_1, \mu_2, \mu_3) \in \Re^4$. \begin{definition} \rm Let $\Sigma^{4}$ be the set of $X(f) \in \mathcal{E}^{4,r}$ with $r \geq 1$ such that $\widetilde{X}(f)$ satisfies: \begin{enumerate} \item the singularities $(u_{\ast}, \cdot) \in C_{0} \cup C_{\pm \frac{\pi} {2}}$ are hyperbolic and the eigenvalues associated to singularities in $ C_{\pm\frac{\pi}{2}}$ are distinct. \item the periodic orbits are hyperbolic and contained in $\widetilde{M}^{\circ}$. \item there are no connection of singularity separatrix. More specifically \begin{enumerate} \item no connection of saddle that belongs to $C_0$ or $C_{\pm \frac{\pi}{2}}$, \item separatrices of saddle in $C_0$ or in $C_{\pm \frac{\pi}{2}}$ are not weak manifolds of a node in $C_{\pm \frac{\pi}{2}}$. \end{enumerate} \end{enumerate} \end{definition} \begin{theorem} \label{Teo:BXfn4} Let $X(f)\in\mathcal{E}^{4,r}$, where $r\geq 1$. Then \[ B^4(X(f)) = \{ \mu \in \Re^{4}:\ X(f + \mu_0 + \mu_1 y + \mu_2 y^3 + \mu_3 y^4) \notin \Sigma^{4} \} \] has Lebesgue measure zero in $\Re^{4}$. \end{theorem} The proof of this Theorem needs the following lemmas. \begin{lemma}\label{Lema:B1Xfn4} Let $X(f) = X(\sum^{4}_{i=0} a_{i}(x) y^{i}) \in \mathcal{E}^{4,r}$ with $r \geq 1$. Then, the set \begin{align*} B^4_{4}(X(f)) = \{ & \mu_{3} \in \Re : \widetilde {X}(f + \mu_{3} y^4) \text{ has some singularity in }\\ & C_{\pm \frac{\pi}{2}} \text{ with } \Delta \widetilde{X}(f + \mu_{3}y^4 ) = 0 \} \end{align*} has Lebesgue measure zero in $\Re$. \end{lemma} \begin{proof} The set $Crit(-a_{4})= \{\mu_{3}= -a_{4}(x) : a_{4}'(x) = 0 \}$ determines the set of $\mu_{3}$ such that $\widetilde{X}(f+ \mu_{3}y^{4})$ has singularities in $C_{\pm \frac{\pi}{2}}$ with $\Delta \widetilde{X}(f + \mu_{3}y^{4}) = 0$. By Sard's theorem, this set has Lebesgue measure zero in $\Re$. \end{proof} \begin{lemma}\label{Lema:B2Xfn4} Let $X(f)= X(\sum^{4}_{i=0} a_{i}(x) y^{i}) \in \mathcal{E}^{4,r}$ with $r \geq 1$, and let $\mu_{0} \notin B^4_{1}(X(f))$ and $\mu_{3} \notin B^4_{2}(X(f))$. Then the set \begin{align*} B^4_{5}(X(f);\mu_{3})= \{ &\mu_{2} \in \Re : \widetilde{X}(f + \mu_{2} y^3 + \mu_{3} y^4) \text{ has some hyperbolic, with equal }\\ & \text{eigenvalues, or non-hyperbolic singularity in } C_{\pm \frac{\pi}{2}} \} \end{align*} has Lebesgue measure zero in $\Re$. \end{lemma} \begin{proof} Let $ \mu_3 \notin B^4_4(X(f))$. Since \begin{equation}\label{eq:ValorProprioIgual} a_3(u_{\ast}) + \mu_2 = 2 \sqrt{a_4'(u_{\ast})}, \end{equation} $\widetilde{X}(f + \mu_2 y^3 + \mu_3 y^4)$ has a hyperbolic singularity $(u_{\ast}, \pm \frac{\pi}{2})$ with equal eigenvalues. Then there exists a single value $\mu_2^{\ast}$ that satisfies the condition (\ref{eq:ValorProprioIgual}). On the other hand, for each non-hyperbolic singularity $(u_{\ast}, \pm \frac{\pi}{2})$ of $\widetilde{X}(f + \mu_2 y^3 + \mu_3 y^4)$, there exists a unique value $\mu_2^{\ast}$ such that $\sigma(\widetilde{X}(f + \mu_2^{\ast} y^3 + \mu_3 y^4))= -(a_3(u_{\ast}) + \mu_2) = 0$. It follows that $B^{4}_5(X(f); \mu_3)$ is discrete in $\Re$ and has therefore zero Lebesgue measure.\end{proof} \begin{lemma}\label{Lema:B4Xfn4} Let $X(f) \in \mathcal{E}^{4,r}$ with $r\geq 1$, $\mu_{0} \notin B^4_{1}(X(f))$ and $\mu_{3} \notin B^4_{4}(X(f))$. Then, the set \begin{align*} B^4_{6}(X(f); \mu_{0},\mu_{3}) = \{& \mu_{1} \in \Re: \widetilde{X}(f + \mu_0 + \mu_1 y + \mu_3 y^4) \text{ has not } \\ & \text{ the condition 3 of } \Sigma^4 \} \end{align*} has Lebesgue measure zero in $\Re$. \end{lemma} \begin{proof} All singularity connections of $\widetilde{X}(f)$ can be broken with perturbations of the form $\widetilde{X}(f+ \mu_0 + \mu_1 y + \mu_3 y^4)$. The derivative of the separation function is of the form \begin{equation} \begin{aligned} \mathop{\rm sep}_{\mu_1}(\mu_1^{\ast}) & = - \int_{- \infty}^{+\infty} \exp(-\int_{0}^{t} \mathop{\rm div}(\widetilde{X}(f+\mu_0 + \mu_1^{\ast} y + \mu_3 y^4)) ds) \\ &\quad \times \sin^2(v(t)) \cos^3(v(t)) dt. \end{aligned} \label{eq:derivaSeparacao4} \end{equation} The integrand in (\ref{eq:derivaSeparacao4}) is non-negative for $v(t) \in [-\frac{\pi}{2}, \frac{\pi}{2}]$. Then $\mathop{\rm sep}_{\mu_1}(0) < 0$. This ends the proof.\end{proof} \begin{proof}[Proof of Theorem \ref{Teo:BXfn4}] The set $B^4(X(f))$ is union of \begin{gather*} \mathcal{B}_1 = B^4_{1}(X(f)) \times \Re^3,\quad \mathcal{B}_2 = \bigcup_{\mu_0 \in \Re-B^4_{2}(X(f))} \{ \mu_0 \} \times B^4_{3}(X(f), \mu_0) \times \Re^2, \\ \mathcal{B}_3 = \bigcup_{ \mu_0 \in \Re} \{ \mu_0 \} \times B^4_{3}(X(f); \mu_0) \times \Re^2,\\ \mathcal{B}_4 = \Re^3 \times B^4_{4}(X(f)),\quad \mathcal{B}_5 = \Re^2 \times B^4_5(X(f), \mu_3) \times \bigcup_{\mu_3 \in \Re-B^4_{4}(X(f))} \{ \mu_3 \}, \\ \mathcal{B}_6 = \bigcup_{(\mu_0, \mu_3) \in S} \{ \mu_0 \} \times B^4_{6}(X(f), \mu_0, \mu_3) \times \Re \times \{ \mu_3 \}, \end{gather*} where $ S = \Re-B^4_{1}(X(f)) \times \Re-B^4_{4}(X(f))$ and $B_{i}^4(X(f), \cdot)$, $i=1, \dots, 6$, are given by the Lemmas \ref{Lema:B1Xfn1}-\ref{Lema:B3Xfn1} and \ref{Lema:B1Xfn4}-\ref{Lema:B4Xfn4}. Each $\mathcal{B}_i$ \begin{itemize} \item contains $(\mu_0, \mu_1, \mu_2, \mu_3) \in \Re^4$ such that $X(f + \mu_0 + \mu_1 y + \mu_2 y^3 + \mu_3 y^4)$ violates at least a condition of $\Sigma^4$. \item is measurable. Because its complement in $\Re^4$ is open. \item has measure zero in $\Re^4$. Because $\mathcal{B}_1$ and $\mathcal{B}_4$ are products of $\Re^3$ times a set of measure zero in $\Re$. For other $\mathcal{B}_i$, we apply the Fubini Theorem. \end{itemize} This completes the proof.\end{proof} \subsection{Case \bf{E}}\label{sec:genericidade5} In this case, $X_{\mu}(f)$ denotes the vector field $X(f+ \mu_0 + \mu_1 y + \mu_{2} y^{n-1})$, where $\mu =(\mu_0, \mu_1, \mu_2 ) \in \Re^3$ and $n \geq 5$. \begin{definition}\label{def:n5} \rm Let $\Sigma^n$ be the set of $X(f) \in \mathcal{E}^{n,r}$ for $n \geq 5$ and $r\geq 2$ such that $\widetilde{X}(f)$ satisfies: \begin{enumerate} \item the singularities $(u_{\ast}, 0) \in C_{0}$ are hyperbolic and the singularities $(u_{\ast}, \pm \frac{\pi}{2}) \in C_{\pm \frac{\pi}{2}}$ are semi-hyperbolic. \item the periodic orbits are hyperbolic and contained in $\widetilde{M}$. \item no connections of singularity separatrix. More specifically \begin{enumerate} \item no connection of saddles that belong to $C_0$, \item saddle separatrices in $C_0$ are not invariant manifolds of singularities in $C_{\pm \frac{\pi}{2}}$. \item no connection between singularities that belong to $C_{\pm \frac{\pi}{2}}$ by invariant manifolds. \end{enumerate} \end{enumerate} \end{definition} \begin{theorem} \label{Teo:BXfn5} Let $X(f)\in\mathcal{E}^{n,r}$ with $n \geq 5$ and $r \geq 2$. Then the set \[ B^n(X(f)) = \{ (\mu_0, \mu_1, \mu_2) \in \Re^{3} : X(f + \mu_0 + \mu_1 y + \mu_2 y^{n-1}) \notin \Sigma^{n} \} \] has zero Lebesgue measure in $\Re^{3}$. \end{theorem} \begin{lemma}\label{Lema:B1Xfn5} Let $X(f) = X(\sum^{n}_{i=0} a_{i}(x) y^{i}) \in \mathcal{E}^{n,r}$ with $n \geq 5$, $r \geq 1$. Then the set \begin{align*} B^n_{4}(X(f)) = \{ & \mu_{2} \in \Re : \widetilde {X}(f + \mu_{2} y^{n-1}) \text{ has some singularity in }\\ & C_{\pm \frac{\pi}{2}} \text{ with } \sigma \widetilde{X}(f + \mu_{2}y^{n-1} ) = 0 \} \end{align*} has zero Lebesgue measure in $\Re$. \end{lemma} \begin{proof} Each singularity $(u, \pm \frac{\pi}{2})$ of $\widetilde{X}(f + \mu_2 y^{n-1})$ that satisfies $a_{n-1}(u) + \mu_2 = 0$, determines a non semi-hyperbolic singularity. Then, $B^n_{4}(X(f))$ must be a discrete set with measure zero in $\Re$. \end{proof} \begin{lemma}\label{Lema:B4Xfn5} Let $X(f) \in \mathcal{E}^{n,r}$ with $n \geq 5$, $r\geq 2$, $\mu_{0} \notin B^n_{1}(X(f))$ and $\mu_{2} \notin B^n_{2}(X(f))$. Then the set \begin{align*} B^n_{5}(X(f); \mu_{0},\mu_{2}) = \big\{ &\mu_{1} \in \Re: \widetilde{X}(f + \mu_0 + \mu_1 y + \mu_2 y^{n-1}) \\ & \text{ does not satisfying property 3 of } \Sigma^n \big\} \end{align*} has zero Lebesgue measure in $\Re$. \end{lemma} \begin{proof} It follows by the same way as in Lemma \ref{Lema:B4Xfn4}. In this case, the derivative of the separation function of the stable and unstable manifolds is of the form \begin{equation} \label{eq:derivadaseparacao5} \begin{aligned} \mathop{\rm sep}_{\mu_1}(\mu_1^{\ast}) &= - \int_{- \infty}^{+\infty} \exp(-\int_{0}^{t} \mathop{\rm div}(\widetilde{X}(f+\mu_0 + \mu_1^{\ast} y + \mu_2 y^{n-1})) ds) \\ & \quad \times \sin^2(v(t)) \cos^{n-1}(v(t)) dt. \end{aligned} \end{equation} The integrand in (\ref{eq:derivadaseparacao5}) is a non-negative function.\end{proof} \begin{proof}[Proof of Theorem \ref{Teo:BXfn5}] The set $B^n(X(f))$ is union of: \begin{gather*} \mathcal{B}_1 = B^n_{1}(X(f)) \times \Re^2,\quad \mathcal{B}_2 = \bigcup_{\mu_0 \in \Re - B_1^n(X(f))} \{ \mu_0 \} \times B^n_2(X(f), \mu_0) \times \Re, \\ \mathcal{B}_3 = \bigcup_{ \mu_0 \in \Re} \{ \mu_0 \} \times B^n_{3}(X(f); \mu_0) \times \Re,\quad \mathcal{B}_4 = \Re^2 \times B^n_{4}(X(f)),\\ \mathcal{B}_5 = \bigcup_{ (\mu_0, \mu_2) \in S} \{ \mu_0 \} \times B^n_{5}(X(f); \mu_0, \mu_2) \times \{ \mu_2 \} \end{gather*} where $S = \Re - B_1^n(X(f)) \times \Re - B^n_{4}(X(f))$ and $B_{i}^n(X(f), \cdot)$, $i=1, \dots,5$, are given by Lemmas \ref{Lema:B1Xfn1}-\ref{Lema:B3Xfn1} and \ref{Lema:B1Xfn5}-\ref{Lema:B4Xfn5}. Each $\mathcal{B}_i$ \begin{itemize} \item contains $(\mu_0, \mu_1, \mu_2) \in \Re^3$ such that $X(f + \mu_0 + \mu_1 y + \mu_2 y^{n-1})$ violates at least a condition of $\Sigma^{n}$. \item is measurable. Because its complement in $\Re^3$ is open. \item has measure zero in $\Re^3$. (As in the proof of Theorem \ref{Teo:BXfn4} by the Fubini Theorem). \end{itemize} This completes the proof.\end{proof} \begin{remark}\label{rem:concluding} \rm Theorems \ref{Teo:BXfn1} to \ref{Teo:BXfn5} express the measure of the complementary set of $\Sigma^n$ for $n\geq 1$. They may be summarized by stating that \[ B^n(X(f)) = \{ (\mu_0, \mu_1, \mu_{n-1},\mu_{n}) : X(f + \mu_0 + \mu_1 y + \mu_{n-1} y^{n-1} + \mu_{n} y^{n}) \notin \Sigma^{n} \} \] has zero Lebesgue measure. However, we observe that for $n >4$ three parameters only are sufficient. In the present work, the proof has been divided in cases {\bf A}-{\bf E} to make the presentation more accessible. \end{remark} \section{Genericity of $\Sigma^{n}$.}\label{sec:genericity} In this section, we prove the genericity of $\Sigma^{n}$. \begin{proof}[Proof of Theorem \ref{theo:genericity}] The density of $\Sigma^{n}$ follows straightforwardly from Theorems $\ref{Teo:BXfn1}$-$\ref{Teo:BXfn5}$ for corresponding $n$. In fact, for $X(f) \in \mathcal{E}^{n,r}$ and $\forall \, \epsilon > 0$ we can find $X_{\mu}(f) \in \Sigma^{n}$ such that $|\widetilde{X}_{\mu}(f) - \widetilde{X}(f)| < \epsilon$. $\mu \in \Re^k$ where $k=2$ for $n=1$; $k=3$ for $n=2,3$ and $\geq 5$; and $k=4$ for $n=4$. To see that $\Sigma^{n}$ is open in $\mathcal{E}^{n,r}$ we write $X(f) = y \frac{\partial}{\partial x} + \sum_{i=0}^{n} a_{i}(x) y^{i}\frac{\partial}{\partial y}$. In $C_{0}$, a singularity of $\widetilde{X}(f)$, say $(u_{\ast}, 0)$, satisfies $a_{0}(u_{\ast})=0$ and $a'_{0}(u_{\ast}) \neq 0$. In $C_{\pm \frac{\pi}{2}}$, we must consider the following cases: \begin{enumerate} \item $n=3$, since $\widetilde{X}(f)$ has a parabolic tangency at $(u_{\ast}, \cdot)$, it satisfies $a_{3}(u_{\ast}) = 0$ and $a'_{3}(u_{\ast}) \neq 0$. \item $n=4$, a singularity of $\widetilde{X}(f)$, say $(u_{\ast}, \cdot)$, satisfies $a_{4}(u_{\ast})=0$ and $a'_{4}(u_{\ast}) \neq 0$, and, also, $a_3(u_{\ast}) \neq 2 \sqrt{a'_{4}(u_{\ast})}$ if $a'_{4}(u_{\ast})>0$. \item $n \geq 5$, a singularity of $\widetilde{X}(f)$, say $(u_{\ast}, \cdot)$, satisfies $a_{n}(u_{\ast})=0$ and $a_{n-1}(u_{\ast})\neq 0$. \end{enumerate} In all those cases, we can choose $\mu_{0}, \mu_{1}, \mu_{2}$ and $\mu_{3}$ sufficiently small such that $X( \sum_{i=0}^{n} b_{i}(x) y^{i})$, where $b_{0} = a_{0} + \mu_{0}$, $b_{1} = a_{1} + \mu_{1}$, $b_{n-1} = a_{n-1} + \mu_{2}$ and $b_{n} = a_{n} + \mu_{3}$, has singularities or tangencies of the same type than $X(f)$. If $X(f)$ has a hyperbolic periodic orbit, $X(g)$ with $b_{1} = a_{1}(u) + \mu_{1}$ will also have a hyperbolic periodic orbit for small values of $\mu_{1}$. For $n=1$ and $2$, we obtain the same type of periodic orbits in $C_{\pm \frac{\pi}{2}}$, taking $b_1 = a_1 + \mu_1$ and $b_2 = a_2 + \mu_2$. \end{proof} \section{Characterization}\label{sec:characterization} We will prove the necessity of Theorem \ref{theo:characterization} in detail. For the sufficiency, we will only touch on some aspects with respect to new canonical regions and to the building of homeomorphism. \subsection{Necessity}\label{sec:necessity} There is a neighborhood $\mathcal{U}$ of $X(f)$ in $\mathcal{E}^{n,r}$ such that for $X(g) \in \mathcal{U}$ there is a homeomorphism $h_{g}:\widetilde{M} \to \widetilde{M}$ that transforms trajectories of $\widetilde{X}(f)$ in trajectories of $\widetilde{X}(g)$. By density of $\Sigma^{n}$, there is $X(\sum_{i=0}^{n} b_i(x) y^{i}) \in \Sigma^{n} \cap \mathcal{U}$ such that it is topologically equivalent to $X(f)$. Then $X(f)$ inherits the following properties of $X(\sum_{i=0}^{n} b_i(x) y^{i})$: \begin{itemize} \item In $C_0$, $X(f)$ has a finite number of singularities and all topologically equivalent to saddles, focus or nodes. \item In $C_{\pm \frac{\pi}{2}}$, $X(f)$ has a finite number of tangencies (when $n=3$) or of singularities (when $n \geq 4$). The tangencies are internal or external. \item The periodic orbits are finite in number, all are attractors or repellors and are contained in the interior of $\widetilde{M}$. \item $X(f)$ has no connection of singularity separatrix, nor separatrix of saddle tangent to $C_{\pm \frac{\pi}{2}}$. \end{itemize} The following properties of $X(f)$ remain to be proved. \noindent{\bf (a)} The singularities in $C_0$ are all hyperbolic. In fact, if $\Delta \widetilde{X}(f) = 0$ at some singularity, say $(u_{\ast},0)$, we can consider $\widetilde{X}(f+ \epsilon \beta(u) (u-u_{\ast}))$ where $\beta$ is a non-negative periodic function on a neighborhood $V$ of $u_{\ast}$ and with the compact support contained in $V$, $\beta(u_{\ast}) = 1$ and $V$ does not contain other singularities. Consequently, $\Delta \widetilde{X}(f)(u_{\ast},0) = -\epsilon \beta(u_{\ast})$. Then, by choosing the adequate sign for $\epsilon$, $(u_{\ast}, 0)$ is also a singularity of $\widetilde{X}(f+\epsilon \beta(u) (u- u_{\ast}))$, but it has the different index as singularity of $\widetilde{X}(f)$. This contradicts the structural stability of $X(f)$. \smallskip \noindent{\bf (b)} In $C_{\pm \frac{\pi}{2}}$, depending on $n$, we have hyperbolic and semi-hyperbolic singularities, or parabolic tangency points. For $n=3$, suppose that $(u_{\ast}, \frac{\pi}{2})$ is a point of non-parabolic tangency but it is internal or external. That is, $(u_{\ast},\frac{\pi}{2})$ satisfies $a_3(u_{\ast}) = 0$ and $a_3'(u_{\ast}) = 0$. Let $V$ be a neighborhood of $u_{\ast}$ in $\Re$ such that it contains no other tangency points of $\widetilde{X}(f)$. For $\epsilon$ to be small, $\widetilde{X}(f + \epsilon (x-u_{\ast}) \beta(x) y^3)$ is sufficiently close to $X(f)$, where $\beta(x)$ is a non-negative $C^r$ periodic function with support contained in $V$. Since $\widetilde{X}(f + \epsilon (x-u_{\ast}) \beta(x) y^3) \cdot b (u_{\ast}, \frac{\pi}{2}) = 0$, $(u_{\ast}, \frac{\pi}{2})$ is a tangency point. Moreover the tangency is parabolic, since $\widetilde{X}^2(f + \epsilon (x-u_{\ast}) \beta(x) y^3) \cdot b (u_{\ast}, \frac{\pi}{2}) = \epsilon \neq 0$, where $b: \widetilde{M} \to \Re$ is defined by $b(u,v)= \cos(v)$, see the Proposition \ref{pro:Tangencia}. Then, if $(u_{\ast}, \frac{\pi}{2})$ is an external (respectively internal) tangency point of $\widetilde{X}(f)$, we take $\epsilon$ positive (respectively, negative) such that $\widetilde{X}(f + \epsilon (x-u_{\ast}) \beta(x) y^3)$ has at $(u_{\ast}, \frac{\pi}{2})$ an internal (respectively, external) tangency point, contradicting the structural stability of $X(f)$. For $n =4$, the hyperbolicity of all singularities of $\widetilde{X}(f)$ in $C_{\pm \frac{\pi}{2}}$ can be shown in the same way that (a), considering the system $\widetilde{X}(f + \epsilon (x- u_{\ast}) \beta(x) y^{4})$ close to $\widetilde{X}(f)$ and $(u_{\ast}, \pm \frac{\pi}{2})$ is a singularity of $\widetilde{X}(f)$. We need to treat here only the case that $D\widetilde{X}(f)$ at a singularity of $\widetilde{X}(f)$ has equal eigenvectors. In the fact, if $(u_{\ast}, \pm \frac{\pi}{2})$ is one such singularity then $a_4'(u_\ast) >0$ and $a_3(u_{\ast}) = 2 \sqrt{a_4' (u_{\ast})}$. Thus taking $X(f + \epsilon (x- u_{\ast}) \beta(x) y^{3})$ sufficiently near to $\widetilde{X}(f)$, where $\beta(x)$ is a non-negative periodic function with support in a neighborhood of $u_{\ast}$ and without any other singularity, we find that $(u_{\ast}, \pm \frac{\pi}{2})$ is also a singularity of $X(f + \epsilon (x- u_{\ast}) \beta(x) y^{3})$, but with non-equal eigenvalues. More specifically, if $\epsilon < 2 \sqrt{a_4'(u_{\ast})} - a_3(u_{\ast})$, the singularity is a focus and if $\epsilon > 2 \sqrt{a_4'(u_{\ast})} - a_3(u_{\ast})$ the singularity is a hyperbolic node. Therefore, $X(f + \epsilon (x- u_{\ast}) \beta(x) y^{3})$ and $X(f)$ can not be topologically equivalent. For $n \geq 5$, if $(u_{\ast}, \pm \frac{\pi}{2})$ is a singularity of $\widetilde{X}(f)$ non-semi-hyperbolic then $a_n(u_{\ast}) = 0$ and $a_{n-1}(u_{\ast}) = 0$. Now, $X(f + \epsilon (x- u_{\ast}) \beta(x) y^{n-1})$ sufficiently close to $\widetilde{X}(f)$ has $(u_{\ast}, \pm \frac{\pi}{2})$ as a semi-hyperbolic singularity. This contradicts the structural stability of $X(f)$. \smallskip \noindent{\bf (c)} The periodic orbits in $\widetilde{M}^{\circ}$ are all hyperbolic. In fact, we suppose that $\gamma(s) =(\varphi(s), \xi(s))$ is a periodic orbit of $X(f)$ with period $\tau$ such that $\chi(\gamma, X(f)) = 0$. We will obtain a field $X(f+g)$ sufficiently near to $X(f)$ in which $\gamma$ is a periodic orbit but $\chi(\gamma, X(f+g)) \neq 0$. Then, we search a function $g(x,y) = b_{0}(x) + b_{1}(x) y$, where $b_0$ and $b_1$ are $C^r$-periodic such that \begin{itemize} \item[(i)] $X(f+g)$ is near to $X(f)$, we say at a distance $|\epsilon| \neq 0$. \item[(ii)] $X(f+g)(\gamma) = X(f)(\gamma)$ (i.e. $\gamma$ is a periodic orbit of both vector fields). \item[(iii)] $\chi(\gamma, X(f+g)) \neq 0$ \end{itemize} The conditions $i), ii),$ and $iii)$ determine: \begin{itemize} \item[$\ast$] $\sup |b_{i}^{(k)}(x)| < |\epsilon| $ for $i=1,2, 0\leq k \leq r$ and $x\in S^{1}$. \item[$\ast$] $b_0(\varphi(s)) + b_{1}(\varphi(s)) \xi(s) = 0$. \item[$\ast$] $b_{1}(\varphi(s))$ is not identically null in $\Re$. \end{itemize} The task is now to find a function $b_{1}: \Re \to \Re$ which is $C^{r}$-periodic and not identically null. Thus we can choose $b_0:\Re \to \Re$ $C^{r}$-periodic such that $b_0(\varphi(s)) = -b_{1}(\varphi(s)) \xi(s)$ for $s\in \Re$. We should consider the following three situations: \begin{enumerate} \item $b_0$ can not be null. Because, in otherwise, $\xi(s) =0$ for $s \in \Re$ and $C_0$ should be a periodic orbit of $X(f)$, contradicting the fact that all periodic orbits only can intercept $C_0$ at isolated points. \item If $\xi(s)$ is not a non-null constant, say $\xi_0$, then we can put $b_{1}(x) = \epsilon \neq 0$ and $b_{0}(x) = -\epsilon \xi_{0}$ both constant. Thus, $g(x,y) = -\epsilon \xi_0 + \epsilon y$ defines a perturbation $|\epsilon|$-close to $X(f)$ such that $\chi(\gamma, X(f+g)) = \epsilon$. \item If $\xi(s)$ is not constant, we can choose some $s_0 \in (0, \tau)$ such that $\xi(s_0) \neq 0$ and $\varphi(s_0) \neq 0$. Let $W= \varphi([0, \tau]) \subset \Re$. Then there is an open neighborhood $U$ of $s_0$ contained in $[0,\tau]$ such that $\varphi_{|U}$ has differentiable inverse (since $\varphi'(s_0) = \xi(s_0)\neq 0$). We suppose that $\xi(s_0)>0$. We denote $\widetilde{U} = \varphi(U) \subset W$ and let $V=(\alpha, \beta)$ be a neighborhood of $\varphi(s_0)$ such that $V \subset \overline{V} \subset \widetilde{U}$. (See figure \ref{fig:orbitas}). \begin{figure}[htb] \begin{center} \psfrag{xi}[h][B]{$\xi(s_0)$} \psfrag{phi}[h][B]{$\varphi(s_0)$} \psfrag{alfa}[h][B]{$\alpha$} \psfrag{beta}[h][B]{$\beta$} \psfrag{a}[h][B]{$a$} \psfrag{b}[h][B]{$b$} \psfrag{gamma}[h][B]{$\gamma(s) = (\varphi(s),\xi(s))$} \psfrag{tau}[h][B]{$\tau$} \psfrag{U}[h][B]{$U$} \psfrag{c0}[h][B]{$C_0$} \psfrag{s0}[h][B]{$s_0$} \includegraphics[height=2.8in,width=4in]{fig8.eps}%{orbitas.eps} \caption{(a) Homotopic to zero periodic orbit. (b) Periodic orbit circling the cylinder. The points $a$ and $b$ are identified} \label{fig:orbitas} \end{center} \end{figure} Now, we can take a function $b_{1}:\Re \to \Re$ with the following properties: \begin{itemize} \item[$\ast$] $b_{1}(x) > 0$ for $x \in V$ and $b_{1}(x) = 0$ for $x\in W-V$, \item[$\ast$] $C^r$ with $r\geq 1$, \item[$\ast$] periodically extended to whole $\Re$. \end{itemize} Next, we define $b_0: \Re \to \Re$ by $b_{0}(x) = -b_{1}(x) \varphi'(\varphi^{-1}(x))$ for $x \in V$ and $b_{0}=0$ for $x \in W-V$. $b_{0}$ can be extended periodically to all $\Re$ and of $C^{r}$ class. It follows that $g(x,y) = \epsilon b_0(x) + \epsilon b_{1}(x) y$ is a perturbation of $f(x,y)$, as we wanted. In fact, $X(f+g)$ has $\gamma$ as a period orbit with characteristic index $$\chi(\gamma, X(f+g)) = \epsilon \int_{\varphi^{-1}(\alpha)} ^{\varphi^{-1}(\beta)} b_{1}(\varphi(s)) ds \neq 0.$$ \end{enumerate} It follows from (1)-(3) that if $\gamma$ is attractor for $X(f)$ then by taking $\epsilon > 0$, $X(f+g)$ has at least two periodic orbits more than $X(f)$. This contradicts the structural stability of $X(f)$. The proof of (c) is complete. Finally (a), (b) and (c) together with the properties described above show that $X(f) \in \Sigma^n$. \subsection{Sufficiency}\label{sec:sufficiency} The proof of the sufficiency of Theorem \ref{theo:characterization} is essentially the same given by Peixoto-Peixoto in \cite{peixoto-peixoto} and later by Sotomayor in \cite{Sotomayor2}. Here we indicate some important aspects of this Theorem. Every $X(f) \in \Sigma^n$ determines a decomposition of $\widetilde{M}$ in connected components, called \emph{canonical regions}, whose boundary are formed by separatrices (i.e. an arc of trajectory, a singularity, a limit cycle, a saddle separatrix and a portion of $\partial \widetilde{M}$). An \emph{attractor} (resp. a \emph{source}) of $\widetilde{X}(f)$ associated to a canonical region $R \subset \widetilde{M}$ is a node, a focus or a limit cycle of $\widetilde{X}(f)$ or is an arc of $\partial R$ where the trajectories in $R$ tend as $t\to + \infty$ (resp. $t\to - \infty$). A \emph{critical region of a singularity} $p$ of $\widetilde{X}(f)$ is a neighborhood $D$ of $p$ such that the systems sufficiently near to $\widetilde{X}(f)$ have a single singularity and of the same type as $p$. A \emph{critical region of a limit cycle} $\Gamma$ of $\widetilde{X}(f)$ is a ring $A$ contained $\Gamma$ such that the systems sufficiently close to $\widetilde{X}(f)$ have a limit cycle and of the same stability that $\Gamma$. Every canonical region has in its boundary only a source and an attractor. This property plays a very important role in the classification of canonical regions. See \cite{peixoto-peixoto}. We denote by $\alpha$, $\omega$ and $\gamma$ a source, an attractor and a separatrix of $\widetilde{X}(f)$ respectively. A separatrix can be a point (e.g. a singularity or an external tangency). Then we classify a canonical region $R$ by the number and type of separatrices contained in $\partial R$, as follows (see figure \ref{fig:regcanonica}). \begin{itemize} \item \emph{Type} $i$. $\partial R = \{ \alpha, \omega \}$. \item \emph{Type} $ii$. $\partial R = \{ \alpha, \omega, \gamma_1 \}$ where $\gamma_1$ is a trajectory that is transversal to $\partial M$, and $\alpha$ and $\omega$ belong to $\partial M$. \item \emph{Type} $iii$. $\partial R = \{ \alpha, \omega, \gamma_1, p_1 \}$ where $\gamma_1$ is a trajectory with internal tangency to $\partial M$ and $p_1$ is a point of external tangency. \item \emph{Type} $iv$. $\partial R = \{ \alpha, \omega, \gamma_1, \gamma_2\}$ where $\gamma_1$ and $\gamma_2$ are arcs of trajectories. \item \emph{Type} $v$. $\partial R = \{ \alpha, \omega, p_1, \gamma_1, \gamma_2\}$ where $p_1$ is a saddle, $\gamma_1$ and $\gamma_2$ are trajectories tending to $p_1$. \item \emph{Type} $vi$. $\partial R = \{ \alpha, \omega, p_1, \gamma_1, \gamma_2, \gamma_3\}$ where $p_1$ is a saddle, $\gamma_1$, $\gamma_2$ are trajectories tending to $p_1$ and $\gamma_3$ is a trajectory that does not tend to $p_1$. \item \emph{Type} $vii$. $\partial R = \{ \alpha, \omega, p_1, \gamma_1, \gamma_2, \gamma_3 \}$ where $p_1$ is a saddle, $\gamma_1$, $\gamma_2$ and $\gamma_3$ are trajectories tending to $p_1$. \item \emph{Type} $viii$. $\partial R = \{ \alpha, \omega, p_1, \gamma_1, \gamma_2, p_2, \gamma_3 \}$ where $p_1$ and $p_2$ are saddles, $\gamma_1$, $\gamma_2$ trajectories tending to $p_1$ and $\gamma_3$ trajectory tending to $p_2$. \item \emph{Type} $ix$. $\partial R = \{ \alpha, \omega, p_1, \gamma_1, \gamma_2, p_2, \gamma_3, \gamma_4 \}$ where $p_1$ and $p_2$ are saddles, $\gamma_1$, $\gamma_2$ trajectories tending to $p_1$, $\gamma_3$ and $\gamma_4$ are trajectories tending to $p_2$. \end{itemize} \begin{figure}[htbp] \begin{center} \psfrag{alpha}[h][B]{$\alpha$} \psfrag{omega}[h][B]{$\omega$} \psfrag{gamma1}[h][B]{$\gamma_1$} \psfrag{gamma2}[h][B]{$\gamma_2$} \psfrag{gamma3}[h][B]{$\gamma_3$} \psfrag{gamma4}[h][B]{$\gamma_4$} \psfrag{dM}[h][B]{$\partial \widetilde{M}$} \psfrag{p1}[h][B]{$p_1$} \psfrag{p2}[h][B]{$p_2$} \includegraphics[height=3.0in,width=4in]{fig9.eps} %{regioescanonicas.eps} \caption{Canonical regions classified by the number and the type of separatrices.} \label{fig:regcanonica} \end{center} \end{figure} In \cite{peixoto-peixoto}, Peixoto and Peixoto showed five types of canonical regions of $C^1$ vector fields in the plane. Later, Sotomayor in \cite{Sotomayor2} extended to seven regions considering external and internal tangencies of trajectories (that are not saddle separatrices) with the boundary. We remark that the types $ii$, $v$ and $viii$ are new ones, which arise by considering singularities on the boundary of $\widetilde{M}$. In Table \ref{tab:regioescanonicas} we compare the classifications of Peixoto-Peixoto, Sotomayor and ours. \begin{table}[htbp] \centering \begin{tabular}{llcc} & Type & Peixoto-Peixoto & Sotomayor \\ \hline $i.$ & $\partial R = \{ \alpha, \omega \}$ & I & $1$ \\ $ii.$ & $ \partial R = \{ \alpha, \omega, \gamma_1 \}$ & & \\ $iii.$ & $ \partial R = \{ \alpha, \omega, \gamma_1, p_1 \}$ & & $6$ \\ $iv.$ & $\partial R = \{ \alpha, \omega, \gamma_1, \gamma_2\}$ & II & $7$ \\ $v.$ & $ \partial R = \{ \alpha, \omega, p_1, \gamma_1,\gamma_2\}$ & & \\ $vi.$ & $ \partial R = \{ \alpha, \omega, p_1, \gamma_1, \gamma_2, \gamma_3\}$ & III & $4, 5$ \\ $vii.$ & $ \partial R = \{ \alpha, \omega, p_1, \gamma_1, \gamma_2, \gamma_3 \}$ & IV & $3$ \\ $viii.$ & $ \partial R = \{ \alpha, \omega, p_1, \gamma_1, \gamma_2, p_2, \gamma_3 \}$ & & \\ $ix. $ & $\partial R = \{ \alpha, \omega, p_1, \gamma_1, \gamma_2, p_2, \gamma_3, \gamma_4 \}$ & V & $2$ \end{tabular} \caption{Classification of canonical regions with the notation given by Peixoto-Peixoto ($I$-$V$), by Sotomayor ($1$-$7$) and by us ($i$-$ix$).} \label{tab:regioescanonicas} \end{table} Now we define a homeomorphism between same type canonical regions of two vector fields of $\Sigma^n$ which are sufficiently close to each other. We present details of homeomorphism between two canonical regions $R$ and $\widetilde{R}$ of the type $v$. For that we consider the function $Z_{AB}: AB \to [0,1]$ defined by $Z_{AB}(m)= \frac{l(Am)}{l(AB)}$ where $l(AB)$ is the length of arc $AB$ that links the points $A$ and $B$, and $m \in AB$ (see figure \ref{fig:region-v}). \begin{figure}[htbp] \begin{center} \psfrag{a}[h][B]{$\alpha$} \psfrag{w}[h][B]{$\omega$} \psfrag{a1}[h][B]{$\widetilde{\alpha}$} \psfrag{w1}[h][B]{$\widetilde{\omega}$} \psfrag{g1}[h][B]{$\gamma_1$} \psfrag{g2}[h][B]{$\gamma_2$} \psfrag{g11}[h][B]{$\widetilde{\gamma}_1$} \psfrag{g21}[h][B]{$\widetilde{\gamma}_2$} \psfrag{dM}[h][B]{$\partial \widetilde{M}$} \psfrag{p1}[h][B]{$p_1$} \psfrag{p11}[h][B]{$\widetilde{p}_1$} \psfrag{R}[h][B]{$R$} \psfrag{R1}[h][B]{$\widetilde{R}$} \psfrag{A0}[h][B]{$A_0$} \psfrag{A01}[h][B]{$\widetilde{A}_0$} \psfrag{B0}[h][B]{$B_0$} \psfrag{B01}[h][B]{$\widetilde{B}_0$} \includegraphics[height=2.0in,width=3in]{fig10.eps} %{region-v.eps} \caption{Canonical regions of the type $v$.} \label{fig:region-v} \end{center} \end{figure} Let $D$ (respectively $\widetilde{D}$) be a critical region of $\alpha \in R$ (resp. $\widetilde{\alpha} \in \widetilde{R}$) and let $B_0 = \gamma_1 \cap \partial D$ (resp. $\widetilde{B}_0 = \widetilde{\gamma}_1 \cap \partial \widetilde{D}$) and $A_0 = \gamma_2 \cap \omega$ (resp. $\widetilde{A}_0 = \widetilde{\gamma}_2 \cap \widetilde{\omega}$). Hence, the boundary of $R$-$D^{\circ}$ (respectively $\widetilde{R}$-$\widetilde{D}^{\circ}$) is formed by the singularity $p_1$ (resp. $\widetilde{p_1}$), the arcs of trajectory $p_1A_0$ (resp. $\widetilde{p_1}\widetilde{A}_0$) and $B_0p_1$ (resp. $\widetilde{B}_0\widetilde{p_1}$) and the arcs $B_0B_0$ (i.e. $\partial D$) and $A_0p_1$ (resp. $\widetilde{B}_0\widetilde{B}_0$ and $\widetilde{A}_0\widetilde{p_1}$). Each arc of $\partial (R$-$D^{\circ})$ is mapped to the corresponding one of $\partial (\widetilde{R}$-$\widetilde{D}^{\circ})$ by $$ \varphi(A) = \begin{cases} Z^{-1}_{\widetilde{A}_0 \widetilde{p_1}} \circ Z_{A_0p_1}(A) & \text{if } A \in A_0p_1 \\ Z^{-1}_{\widetilde{p_1} \widetilde{A}_0} \circ Z_{p_1A_0}(A) & \text{if } A \in p_1A_0 \\ Z^{-1}_{\widetilde{B}_0 \widetilde{p_1}} \circ Z_{B_0p_1}(A) & \text{if } A \in B_0p_1 \\ \end{cases} $$ We extend $\varphi$ to interior of $R$-$D^{\circ}$ as follows. For $P \in (R$-$D^{\circ})^{\circ}$, there is a trajectory $BA$ through $P$ where $B \in B_0B_0$ and $A \in A_0p_1$. Hence, $$ \varphi(P) = Z^{-1}_{\widetilde{B} \widetilde{A}} \circ Z_{BA}(P).$$ The function $\varphi: R$-$D^{\circ} \to \widetilde{R}$-$\widetilde{D}^{\circ}$ is bijective. $\varphi^{-1}$ is defined in the same way. The continuity of $\varphi$ follows from that of solutions with respect to the initial values. On the other hand, the homeomorphism of the critical region $D$, say $\psi$, also is built using the function $Z_{AB}$. See \cite{peixoto-peixoto, Sotomayor2} for more details. We observe that $\varphi$ and $\psi$ coincide in $\partial D$, since both are defined in the same way. This finishes the building of the homeomorphism. \section{Concluding remarks}\label{sec:discussion} A study of the structural stability of second order differential equation $E_{f}$ on $M = S^{1}\times \Re$ for $C^1$ functions $f(x,y)$ periodic in $x$ and with the Whitney topology was carried out by Barreto in \cite{barreto} (see also Shahshahani \cite{Shahshahani}). Below we review the conditions for the structurally stable equations $E_f$ proposed by Barreto: \begin{enumerate} \item All singularities are hyperbolic and, therefore, finite in number \item If a trajectory $\lambda$ has a saddle as its $\alpha$-limit (resp. $\omega$-limit), then every trajectory in some tubular neighborhood of $\lambda$ has the same $\omega$-limit (resp. $\alpha$-limit). In particular, no trajectory joins saddle points. \item All periodic orbits are hyperbolic and, therefore, countable in number. Only a finite number of these intersect $C_0$. \item The $\alpha$ and $\omega$-limit set of any trajectory can be only singularities, periodic orbits or infinite. \end{enumerate} Among the conditions above, $(2)$ is the most difficult, if not impossible, to verify in concrete cases. It corresponds to the asymptotic behavior of trajectory near infinity. In this context, Camacho \emph{ et al.} in \cite{CKM-Nitecki} and Kotus \emph{ et al.} in \cite{KK-Nitecki} and \cite{Kotus} formulated analogous conditions of those by Peixoto for $C^r$ vector fields on open surfaces with finite genus and a countable space of ends. They distinguish a behavior at infinity of the type ``saddle at infinity'' formed by two unbounded semi-trajectories with prolongational limit sets contained in the space of ends. On compact regions of $\Re^2$ and $M$, in \cite{sotomayor}, Sotomayor established a characterization theorem for $C^{1}$-structurally stable second order differential equations, using the uniform topology in the space of equations and the tangency conditions between the orbits and the boundary of the regions. The purpose of our work is to establish a link between \cite{barreto} and \cite{sotomayor}, obtaining conditions that allow verification in a simple calculatory fashion, when restricted to the class $\mathcal{E}^{n,r}$. This is done by applying a compactification to the open surface $M$ and to the equation $E_f$, as explained in section \ref{sec:compactification}. This compactification allows us to obtain a large class of stable equations $E_f$ that have behaviors at infinity not exhibited by the conditions studied in \cite{barreto}, and also to obtain some patterns of behavior at infinity described in terms of the tangency conditions between the orbits and the boundary of the compactification of $M$, as given in \cite{sotomayor}. Other compactifications present discouraging results. For example, by applying a two-point compactification, we would be able to induce a field with two singularities at the infinite. In order to know the topological type of those singularities, we would need to apply a blow-up \cite{dumortier}. We would expect the same topological types already calculated in section \ref{sec:behavior}. Another example is the known Poincar\'e compactification that is applied successfully when the vector field on $\Re^2$ \begin{enumerate} \item is polynomial in the variables $x$ and $y$ (see \cite{Sotomayor2}, \cite{gonzales}, \cite{dumortier1}, \cite{DH}, \cite{Llibre-Perez}, among other works); or \item has the Lojasiewicz property at infinity (see \cite{teruel}). \end{enumerate} The vector field $X(f)$ is not completely polynomial. However, it can be proven that $X(f)$ has the property of Lojasiewicz at infinity. Then, $M$ and $X(f)$ can be compactified by the Poincar\'e compactification as a compact cylinder, and a vector field with two lines of singularities on the border of the cylinder. \begin{thebibliography}{00} \bibitem{Andronov} Andronov, A.~A., E. Leontovich, I. Gordon, and A. Maier: 1971, {\em Theory of Bifurcations of Dynamic Systems on a Plane}. \newblock Israel Program for Scientific Translations. \bibitem{barreto} Barreto, A.~C.: 1964, `Estabilidade Estrutural das Equa\c c\~oes Diferenciais da Forma $x''=f(x,x')$.'. \newblock {\em Tese de Doutorado, IMPA}. \bibitem{CKM-Nitecki} Camacho, C., M. Krych, R. Ma{\~n}e, and Z. Nictecki: 1983, `An extension of Peixoto's structural stability theorem to open surface with finite genus'. \newblock {\em Lecture Notes in Math.} (1007). \bibitem{chicone} Chicone, C.: 1999, {\em Ordinary differential equations with applications}, No.~34 in Text Applied Math. \newblock Springer Verlag. \bibitem{DH} Dumortier, F and C.~Herssens. \newblock Tracing phase portraits of planar polynomial vector fields with detailed analysis of the singularities. \newblock {\em Qualitative Theory of Dynanical Systems}, 1:97--131, 1999. \bibitem{dumortier1} Dumortier, F. \newblock Singularities of vector fields on the plane. \newblock {\em Journal of Differential Equations}, 23:53--106, 1977. \bibitem{dumortier} Dumortier, F. \newblock Local study of planar vector fields: Singularities and their unfoldings. \newblock In E.~von Groesen and E.M. de~Jager, editors, {\em Studies in Mathematical Physics 2, Structures in dynamic, finite dimensional, deterministic studies}. North-Holland, 1995. \bibitem{gonzales} Gonz{\'a}lez-Velasco, E. \newblock Generic properties of polynomial vector fields at infinity. \newblock {\em Transactions A.M.S.}, 143:201--222, 1969. \bibitem{guckeheimer-holmes} Guckenheimer, J. and P. Holmes: 1983, {\em Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields}, Vol.~42 of {\em Applied Mathematical Sciences}. \newblock Springer Verlag, corrected fifth printing, 1997 edition. \bibitem{Kotus} Kotus, J.: 1990, `Global $C^r$ structural stability of vector fields on open surface with finite genus'. \newblock {\em Proceedings of the American Mathematical Society} {\bf 108}(4). \bibitem{KK-Nitecki} Kotus, J., M. Krych, and Z. Nitecki: 1982, `Global structural stability of flows on open surfaces'. \newblock {\em Memoirs of the American Mathematical Society} {\bf 37}(261). \bibitem{Llibre-Perez} Llibre, J., J. P{\'e}rez~del R{\'{\i}}o, and Jos{\'e}~Angel Rodr{\'{\i}}guez. \newblock Structural stability of planar homogeneous polynomial vector fields: applications to critical points and to infinity. \newblock {\em J. Differential Equations}, 125(2):490--520, 1996. \bibitem{peixoto-peixoto} Peixoto, M.~C. and M.~M. Peixoto: 1959, `Structural Stability in the Plane with Enlarged Boundary Conditions'. \newblock {\em Anais da Academia Brasileira de Ciencias} {\bf 31}(2), 135--160. \bibitem{Royden} Royden, H.~L.: 1968, {\em Real Analysis}. \newblock Macmillan Publishing, second edition. \bibitem{Sard} Sard, A.: 1942, `The measure of the critical set of differentiable maps'. \newblock {\em B.A.M.S} {\bf 48}. \bibitem{Shahshahani} Shahshahani, S.: 1970, `Second order ordinary differential equations on differentiable manifolds'. \newblock In: {\em Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968)}. \newblock Providence, R.I.: Amer. Math. Soc., pp. 265--272. \bibitem{Sotomayor2} Sotomayor, J.~M.: 1981, {\em Curvas Definidas por Equa\c c\~oes Diferenciais no Plano}. \newblock 13 Col\'oquio Brasileiro de Matem\'atica. \bibitem{sotomayor} Sotomayor, J.~M.: 1982, `Structurally Stable Second Order Differential Equations'. \newblock {\em Lecture Notes in Math.} (957), 284--301. \bibitem{teruel} Teruel-Aguilar, A. \newblock {\em Clasificaci\'on topol\'ogica de una familia de campos vectoriales lineales atrozos sim\'etricos en el plano}. \newblock PhD thesis, Universitat Autonoma de Barcelona, 2000. \end{thebibliography} \end{document}