\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2005(2005), No. 114, pp. 1--11.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2005 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2005/114\hfil Carath\'{e}odory perturbation] {Carath\'{e}odory perturbation of a second-order differential inclusion with constraints} \author[S. Amine, R. Morchadi, S. Sajid\hfil EJDE-2005/114\hfilneg] {Sa\"{\i}da Amine, Radouan Morchadi, Sa\"{\i}d Sajid } \address{Sa\"{\i}da Amine \hfill\break U.F.R Mathematics and Applications, Department of Mathematics, Faculty of Sciences and Techniques of Mohammedia, BP 146, Mohammedia, Morocco} \email{aminesaida@hotmail.com} \address{Radouan Morchadi \hfill\break U.F.R Mathematics and Applications, Department of Mathematics, Faculty of Sciences and Techniques of Mohammedia, BP 146, Mohammedia, Morocco} \email{morchadi@hotmail.com} \address{Sa\"{\i}d Sajid \hfill\break U.F.R Mathematics and Applications, Department of Mathematics, Faculty of Sciences and Techniques of Mohammedia, BP 146, Mohammedia, Morocco} \email{saidsajid@hotmail.com} \date{} \thanks{Submitted June 30, 2005. Published October 21, 2005.} \subjclass[2000]{34A60} \keywords{Upper semicontinuous multifunction; cyclically monotone; \hfill\break\indent Carath\'{e}odory function} \begin{abstract} We prove the existence of local solutions for the second-order viability problem $$ \ddot{x}(t) \in f(t,x(t),\dot{x}(t))+F(x(t),\dot{x}(t)),\quad x(t)\in K. $$ Here $K$ is a closed subset of $\mathbb{R}^{n}$, $F$ is an upper semicontinuous multifunction with compact values contained in the subdifferential of a convex proper lower semicontinuous function $V$, and $f$ is a Carath\'{e}odory function. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \allowdisplaybreaks \section{Introduction} This paper concerns the second-order nonconvex viability problem \begin{equation} \label{e1.1} \begin{gathered} \ddot{x}(t) \in f(t,x(t),\dot{x}(t))+F(x(t),\dot{x}(t))\\ (x(0),\dot{x}(0))=(x_{0},v_{0})\\ x(t)\in K. \end{gathered} \end{equation} Where $F$ is a globally upper semicontinuous multifunction, cyclically monotone, i.e. $F(x,y)\subset\partial V(y)$, defined from $K\times U$ into the subset of all nonempty compact subset of $\mathbb{R}^{n}$; $f$ is a Carath\'{e}odory function from $\mathbb{R} \times K \times U$ to $\mathbb{R}^{n}$, where $K$ is a closed subset of $\mathbb{R}^{n}$, $U$ is an open subset of $\mathbb{R}^{n}$ and $\partial V$ is the subdifferential of a lower semicontinuous and convex function from $U$ into $\mathbb{R}^{n}$. Existence of solutions of differential inclusions with upper semicontinuous and cyclically monotone right-hand side was first established by Bressan, Cellina and Colombo \cite{b2}. It has been proved the existence of local solutions of a first order problem without constraints: $\dot{x}(t)\in F(x(t))$. The approach is based on some technics related to the subdifferential properties applied to approximate solutions. To avoid the difficulty of the weak convergence of the derivatives of such approximate solutions, authors rely on the basic relation $$ \frac{d}{dt}(V(x(t)))=\|\dot{x}(t)\| ^{2}. $$ Regarding the existence of viable solutions of second-order upper semicontinuous differential inclusions without convexity, we refer to Lupulescu \cite{l1,l2}, where two results are given in this subject: the first deals with the problem \eqref{e1.1} where $f\equiv 0$; while the second studies problem \eqref{e1.1}, but without constraint, i.e. $K=\mathbb{R}^{n}$. The first work in the second-order viability problem, was done by Cornet and Haddad \cite{c1}, the authors were subject concerned by a problem with upper semicontinuous right-hand side, not cyclically monotone but convex. This research program was pursued by some works, see \cite{a4,m1}. For the nonconvex case, existence results may be found in \cite{a1,h1,m2}. It is known that viability problems require tangential conditions. So far as we know, for a second-order viability problem, most of the time, authors use the second-order contingent set $$ A_{K}(x,y)=\big\{ z\in \mathbb{R}^{n}:\lim_{h\to 0^{+}} \inf \frac{d_{K}(x+hy+\frac{1}{2}h^{2}z)}{\frac {h^{2}}{2}}=0\big\} $$ introduced by Ben-Tal. In the present paper we prove the existence solutions to \eqref{e1.1} assuming the tangential condition: For all $(t,x,y)\in I\times K\times U$, there exists $w\in F(x,y)$ such that $$ \liminf_{h\to 0^{+}} \frac{1}{h^{2}}d_{K}(x+hy+\frac{h^{2}}{2}w +\int_{t}^{t+h}f(\tau ,x,y)d\tau )=0. $$ This condition is also used by Lupulescu \cite{l1} with $f\equiv 0$. \section{Notations and statement of the main result} Let $\mathbb{R}^{n}$ be the $n$-dimensional Euclidean space with scalar product $\langle \ ;\ \rangle $ and norm $\| \ \| $. Let $K$ be a closed subset of $\mathbb{R}^{n}$, $U$ be a nonempty open subset of $\mathbb{R}^{n}$ and denote $\Omega =K\times U$. For each $x\in\mathbb{R}^{n}$ we denote by $d_{K}(x)$ the distance from $x$ to $K$. For $r>0$, $B(x,r)$ stands for the ball centered at $x$ with radius $r$ and $\overline{B}(x,r)$ its closure, $B$ is the unit ball of $\mathbb{R}^{n}$. Let $F$ be a multifunction from $\Omega $ into the set of all nonempty compact subsets of $\mathbb{R}^{n}$. Let $f$ be a function from $\mathbb{R}\times \Omega $ into $\mathbb{R}^{n}$ . Assume that $F$ and $f$ satisfy the following conditions: \begin{itemize} \item[(A1)] $F$ is upper semicontinuous, i.e. for all $(x,y)$ and for every $\varepsilon >0$ there exists $\delta >0$ such that $ F(x',y')\subseteq F(x,y)+\varepsilon B$, whenever $\|(x,y) - (x',y')\| \leq \delta$; \item[(A2)] There exists a convex proper and lower semicontinuous function $V:\mathbb{R}^{n}\to \mathbb{R}^{n}$ such that $F(x,y)\subset \partial V(y)$, where $\partial V$ denotes the subdifferential of the function $V$; \item[(A3)] $f: \mathbb{R}\times \Omega \to \mathbb{R}^{n}$ is a Carath\'{e}odory function, i.e. for each $(x,y)\in \Omega$, $t\to f(t,x,y)$ is measurable and for all $t\in \mathbb{R}$, $(x,y)\to f(t,x,y)$ is continuous; \item[(A4)] There exists $m\in L^{2}(\mathbb{R})$ such that $\| f(t,x,y)\| \leq m(t)$ for all $(t,x,y)\in \mathbb{R}\times \Omega$; \item[(A5)] (Tangential condition) For all $(t,x,v)\in \mathbb{R}\times \Omega$, there exists $w\in F(x,v)$ such that $$ \liminf_{h\to 0^{+}} \frac{1}{h^{2}}d_{K}\Big(x+hv+\frac{h^{2}}{2}w+\int_{t}^{t+h}f(\tau ,x,v)d\tau \Big)=0. $$ \end{itemize} Let $(x_{0},y_{0})\in \Omega$. Assuming that $F$ and $f$ satisfy (A1)--(A5), we shall prove the following result. \begin{theorem} \label{thm2.1} There exist $T>0$ and an absolutely continuous $x:[ 0,T] \to \mathbb{R}^{n}$ for which $\dot x$ is also absolutely continuous such that \begin{gather*} \ddot{x}(t) \in f(t,x(t),\dot{x}(t))+F(x(t), \dot{x}(t)) \quad \mbox{a.e. } t\in [0,T]\\ (x(0),\dot{x}(0))=(x_{0},y_{0})\\ x(t)\in K \quad \forall t\in [0,T]. \end{gather*} \end{theorem} \section{Proof of the main result} We begin by recalling the following result which was proved in \cite{b2}, and will be used in the second step of the proof of the main result. \begin{lemma} \label{lem3.1} Let $V$ be a convex proper lower semicontinuous function such that $F(x,y)\subset \partial V(y)$, for any $ (x,y)\in \Omega$. Then there exist $r=r_{x,y}>0$ and $M=M_{x,y}>0$ such that $$ \| F(x,y)\| =\sup_{z\in F(x,y)}\| z\| \leq M \quad\mbox{on } B((x,y),r) $$ and $V$ is Lipschitz continuous on $B(y,r)$ with constant $M$. \end{lemma} Let $r$ and $M$ be the real numbers defined in the Lemma above, and such that $B(y_{0},r)\subset U$. Choose $T_{1}>0$ such that \begin{equation} \label{e3.1} \int_{0}^{T_{1}}(m(s)+M+1)\,ds <\frac{r}{3}. \end{equation} Set \begin{equation} \label{e3.2} T_{2}=\min \big\{ \frac{r}{3(M+1)}, \frac{2r}{3( \| y_{0}\| +r)}\big\}. \end{equation} In the sequel, we denote by $\Omega _{0}$ the compact set $(K\times\overline{B}(y_{0},r))\cap \overline{B}((x_{0},y_{0}),r)$ and choose $T$ such that \begin{equation} \label{e3.3} T \in ]0,\min \{ T_{1},T_{2}\}]\,. \end{equation} The following result will be used for proving the viability property of the solutions to \eqref{e1.1}. \begin{lemma} \label{lem3.2} Let $F$ and $f$ satisfy assumptions (A1)--(A5). Then for each $\varepsilon >0$ there exists $\eta \in ]0,\varepsilon[ $ such that for each $(t,x,v)$ in $[ 0,T] \times \Omega_{0}$, there exist $w$ in $F(x,v)+\frac{\varepsilon }{T}B$ and $h$ in $[ \eta ,\varepsilon ]$; that is, $$ \big( x+hv+\frac{h^{2}}{2}w+\int_{t}^{t+h}f(\tau ,x,v)d\tau\big) \in K. $$ \end{lemma} \begin{proof} Let $(t,x,v)\in [ 0,T] \times \Omega_{0}$, let $ \varepsilon >0$. Since $F$ is upper semicontinuous, then there exists $ \delta _{(x,v)}>0$ such that \begin{equation} F(y,u)\subset F(x,v)+ \frac {\varepsilon}{T} B \quad\forall (y,u)\in B((x,v),\delta _{(x,v)}). \label{e3.4} \end{equation} On the other hand, for all $(s,y,u)\in [0,T]\times \Omega _{0}$, by the tangential condition, there exist $h_{(s,y,u)} \in ] 0,\varepsilon ] $ and $c \in F(y,u)$ such that $$ d_{K}\Big(y+h_{(s,y,u)}u+\frac{h_{(s,y,u)}^{2}}{2}c +\int_{s}^{s+h_{(s,y,u)}}f(\tau ,y,u)d\tau \Big)0. $$ Let $(t,x,v)\in [0,T] \times \Omega _{0}$. Since $(t,x,v)$ belongs to one of the balls $B((s_{i},y_{i},u_{i}),\eta_{i})$, there exist $x_{i}\in K$ and $c_{i}\in F(y_{i},u_{i})$ such that \begin{align*} &\big\| c_{i}-\frac{2}{h_{i}^{2}}(x_{i}-x-h_{i}v-\int_{t}^{t+h_{i}} f(\tau,x,v)\,d\tau)\big\|\\ &\leq \frac{1}{h_{i}^{2}}d_{K}(x+h_{i}v+\frac{h_{i}^{2}}{2}c_{i} +\int_{t}^{t+h_{i}}f(\tau ,x,v)\,d\tau ) +\frac{\varepsilon }{4T} \leq \frac{\varepsilon }{2T}. \end{align*} Let us set $$ w=\frac{2}{h_{i}^{2}}(x_{i}-x-h_{i}v-\int_{t}^{t+h_{i}}f(\tau,x,v)\,d\tau), $$ then $$ (x+h_{i}v+\frac{h_{i}^{2}}{2}w+\int_{t}^{t+h_{i }}f(s\tau,x,v)d\tau)\in K \quad \mbox{and}\quad \|c_{i}-w\| \leq \frac{\varepsilon }{2T}. $$ Since $(t,x,v)\in B((s_{i},y_{i},u_{i}),\eta_{i})$ and $\eta_{i}<\delta_{(x,v)}$, relation \eqref{e3.4} implies $$ F(y_{i},u_{i})\subset F(x,v)+\frac{\varepsilon }{2T}B; $$ so that $w\in F(x,v)+\frac{\varepsilon }{T}B$. Hence the Lemma is proved. \end{proof} Now, we are able to prove the main result. Our approach consists of constructing, in a first step, a sequence of approximate solutions and deduce, in a second step, from available estimates that a subsequence converges to a solution of \eqref{e1.1}. \subsection*{Step 1. Construction of approximate solutions} Let $(x_{0},y_{0})\in \Omega _{0}$ and $\varepsilon >0$. By Lemma \ref{lem3.2}, there exist $\eta >0$, $h_{0}$ in $[\eta ,\varepsilon ] $ and $w_{0}$ in $F(x_{0},y_{0})+\frac{\varepsilon }{T}B$ such that $$ \big(x_{0}+h_{0}y_{0}+\frac{h_{0}^{2}}{2}w_{0}+\int_{0}^{h_{0}}f(\tau ,x_{0},y_{0})d\tau \big)\in K. $$ Put $$ x_{1}= x_{0}+h_{0}y_{0}+\frac{h_{0}^{2}}{2}w_{0}+\int_{0}^{h_{0}}f(\tau ,x_{0},y_{0})d\tau \quad \mbox{and} \quad y_{1}=y_{0}+h_{0}w_{0}. $$ Since $w_{0} \in F(x_{0}, y_{0})\subset B(0,M+1)$, $\| f(t,x_{0},y_{0})\| \leq m(t)$, by \eqref{e3.1}, \eqref{e3.2}, we obtain \begin{align*} \| x_{1}-x_{0}\| &=\big\|h_{0}y_{0}+\frac{h_{0}^{2}}{2}w_{0}+\int_{0}^{h_{0}} f(\tau ,x_{0},y_{0})\,d\tau \big\|\\ &\leq T\|y_{0}\| +\frac{T}{2}\| w_{0}\| +\| \int_{0}^{h_{0}}f(\tau,x_{0},y_{0})\,d\tau \|\\ & \leq T\| y_{0}\| +\int_{0}^{T}(M+1+m(\tau ))d\tau\\ & \leq T\| y_{0}\| +\frac{r}{3}\leq r, \end{align*} and $$ \| y_{1}-y_{0}\| =\| h_{0}w_{0} \| \leq T\| w_{0}\| <\frac{r}{3}\,d\tau. $$ Moreover, by \eqref{e3.8}, we have $$ \| \ddot{x}\| _{2}^{2}\geq \lim_{k\to \infty }\sup \| \ddot{x}_{k}\| _{2}^{2}, $$ and by the weak lower semicontinuity of the norm, it follows that $$ \| \ddot{x}\| _{2}^{2}\leq \lim_{k\to \infty }\inf \| \ddot{x}_{k}\| _{2}^{2}. $$ Hence $\lim_{k\to \infty }\|\ddot{x}_{k}\| _{2}^{2}=\| \ddot{x}\| _{2}^{2}$, i.e. $((\ddot{x}_{k}))_{k}$ converges to $\ddot{x}$ strongly in $L^{2}([0,T] ,\mathbb{R}^{n})$. So that there exists a subsequence $\ddot{x}_{k}$ which converges pointwisely almost every where to $\ddot{x}$. In view of Proposition \ref{prop3.3}, we conclude that $$ d_{grF}(x(t),\dot{x}(t),\ddot{x}(t)-f(t,x(t),\dot{x}(t)))=0\quad \mbox{a.e. }t\in [0,T]. $$ Since the graph of $F$ is closed, we have $$ \ddot{x}(t)\in f(t,x(t),\dot{x}(t))+F(x(t),\dot{x}(t))\ \mbox{a.e. } t\in [0,T] . $$ Finally, let $t\in [0,T] $. Recall that there exits $(\tau _{k}^{q})_{k}$ such that $\lim_{k\to \infty }$ $\tau _{k}^{q}=t$ for all $t\in [0,T] $. Since $\underset{k\to \infty }{\lim }\| x(t)-x_{k}(\tau _{k}^{q})\| =0$, $x_{k}(\tau _{k}^{q})\in K$ and $K$ is closed, by passing to the limit for $k\to \infty $ we obtain $x(t)\in K$. This completes the proof. \end{proof} \subsection*{Acknowledgements} The authors would like to thank the anonymous referee for reading carefully the original manuscript and for giving us some suggestions. \begin{thebibliography}{00} \bibitem{a1} B. Aghezzaf and S. Sajid; {\it On the Second Order Contingent Set and Differential Inclusions}, Journal of Convex Analysis, 7, 183-195, (2000). \bibitem{a2} F. Ancona, G. Colombo; {\it Existence of solutions for a class of nonconvex differential inclusions}, Rend. Sem. Mat. Univ. Padova, Vol. 83 (1990). \bibitem{a3} J. P. Aubin, A. Cellina; {\it Differential Inclusion}, Spring-Verlag, Berlin, (1984). \bibitem{a4} Auslender A and Mechler J; {\it Second Order Viability Problems for Differential Inclusions}, J. Math. Anal. Appl., 181. (1994), 205-218. \bibitem{b1} A. Ben-Tal; {\it Second Order of Extremum Problems in Extremal Methods and System Analysis}, Lecture Notes in Economics and Mathematical Systems 174, (A. V. Fiacco and Kortanck Editor), Spring-Verlag, New-York (1979). \bibitem{b2} A. Bressan, A. Cellina, G. Colombo; {\it Upper Semicontinuous Differential Inclusions Without Convexity}, Proc. Am. Math. Soc. 106, 771-775 (1989). \bibitem{b3} H. Brezis; {\it Op\'{e}rateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert}, North-Holland, Amsterdam, (1973). \bibitem{c1} B. Cornet and G. Haddad; {\it Th\'{e}or\`{e}me de Viabilit\'{e} pour les Inclusions Diff\'{e}rentielles du Second Ordre}, Isr.J.Math. vol.57,2 , 225-238 (1987). \bibitem{h1} T. X. D. Ha and M. Marques; {\it Nonconvex Second Order Differential Inclusions with Memory}, Set-valued Anal. 9, 1401-1443, (1995). \bibitem{l1} V. Lupulescu; {\it A Viability Result for Second-Order Differential Inclusions}, Electron. J. diff. Equations, Vol. 2002, No.76, 1-12 (2002). \bibitem{l2} V. Lupulescu; {\it Existence of Solutions for Nonconvex Second-Order Differential Inclusions}, Applied Mathematics E-notes, 115-123, 3 (2003). \bibitem{m1} L. Marco and J. A. Murillo; {\it Viability Theorem for Higher-Order Differential Inclusions}, Set-valued Anal. 6, 21-37, (1998). \bibitem{m2} R. Morchadi and S. Sajid; {\it Nonconvex Second Order Differential Inclusions}, Bulletin of the Polish Academy of Sciences. vol. 47, 3, 267-281, (1999). \bibitem{m3} R. Morchadi and S. Sajid; {\it A Viability Result for a First-Order Differential Inclusion}, to appear in Portugaliae Mathematica. \end{thebibliography} \end{document}