\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2005(2005), No. 115, pp. 1--13.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2005 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2005/115\hfil Periodic solutions] {Periodic solutions for a class of second-order Hamiltonian systems} \author[G. Bonanno, R. Livrea\hfil EJDE-2005/115\hfilneg] {Gabriele Bonanno, Roberto Livrea} % in alphabetical order \address{Gabriele Bonanno \hfill\break Dipartimento di Informatica, Matematica, Elettronica e Trasporti\\ Facolt\`a di Ingegneria, Universit\`a di Reggio Calabria\\ Via Graziella (Feo di Vito), 89100 Reggio Calabria, Italy} \email{bonanno@ing.unirc.it} \address{Roberto Livrea \hfill\break Dipartimento di Patrimonio Architettonico e Urbanistico\\ Facolt\`{a} di Architettura, Universit\`{a} di Reggio Calabria\\ Salita Melissari, 89100 Reggio Calabria, Italy} \email{roberto.livrea@unirc.it} \date{} \thanks{Submitted August 4, 2005. Published October 21, 2005.} \thanks{Reasearch supported by RdB (ex 60\% MIUR) of Reggio Calabria University} \subjclass[2000]{34B15, 34C25} \keywords{Second order Hamiltonian systems; eigenvalue problem; \hfill\break\indent periodic solutions; critical points; multiple solutions} \begin{abstract} Multiplicity results for an eigenvalue second-order Hamiltonian system are investigated. Using suitable critical points arguments, the existence of an exactly determined open interval of positive eigenvalues for which the system admits at least three distinct periodic solutions is established. Moreover, when the energy functional related to the Hamiltonian system is not coercive, an existence result of two distinct periodic solutions is given. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{proposition}{Proposition}[section] \newtheorem{remark}{Remark}[section] \newtheorem{example}{Example}[section] \numberwithin{equation}{section} \section{Introduction} Recently, several authors studied problems of the type \begin{equation} \label{eP} \begin{gathered} \ddot u=\nabla_u F(t,u)\quad \text{a.e. in } [0,T]\\ u(T)-u(0)=\dot u(T)-\dot u(0)=0 \end{gathered} \end{equation} establishing, under suitable assumptions, existence or multiplicity of periodic solutions. We refer the reader to the book of Mawhin and Willem \cite{M-W} for basic results. and to \cite{B-L,B-N,C,F,T,T-W} for more recent results. In particular, in \cite{B-N} Brezis and Nirenberg assumed that: \begin{itemize} \item [(a)] $F(t,0)=0$, $\nabla_u F(t,0)=0$. \item [(b)] $ \lim_{|u| \to +\infty}F(t,u)=+\infty$ uniformly in $t$. \item [(c)] For some constant vector $u_0$, $$\int_0^T F(t,u_0)\,dt<\int_0^T F(t,0)\,dt. $$ \item [(d)] There exists $r>0$ and an integer $k\ge 0$ such that $$ -{1 \over 2}(k+1)^2 w^2|u|^2\le F(t,u)- F(t,0) \le -{1 \over 2}k^2 w^2|u|^2 $$ for all $|u|\le r$, a.e. $t \in [0,T]$, where $w=2\pi/T$. \end{itemize} Under the previous assumptions, they proved that problem \eqref{eP} admits three periodic solutions (see \cite[Theorem 7]{B-N}). In \cite{T} and \cite{T-W}, relaxing the coercivity of the potential and exploiting assumption (d), three periodic solutions to \eqref{eP} are still ensured (see \cite[Theorems 2 and 4]{T-W} and \cite[Theorem 2]{T}). Further, the existence of one periodic solution to \eqref{eP} is guaranteed when (d) is not required and a weaker type of coercivity is assumed (see \cite[Theorems 1 and 3]{T-W} and \cite[Theorem 1]{T}). Very recently, in \cite{F}, if $F(t,u)={1 \over 2}A(t)u\cdot u-b(t)G(u)$, the existence of three periodic solutions to \eqref{eP} is ensured without assuming (d), but still requiring a condition that implies the coercivity of the energy functional related to the Hamiltonian system, in addition to the following: \begin{itemize} \item [(e)] There exist $\sigma>0$ and $u_0\in \mathbb{R}^N$ such that $$ |u_0|<\sqrt{\frac{\sigma}{\sum_{i,j=1}^N\|a_{ij}\|_\infty\ T}}\quad\text{and}\quad G(u_0)=\sup_{|u|\le \overline k\sqrt \sigma}G(u), $$ that is, $G$ achieves its maximum in the interior of the ball of radius $\overline k \sqrt \sigma$, where $\overline k$ is the constant of the Sobolev embedding and $a_{ij}$ are the entries of the matrix $A$ (see \cite[assumptions 1 and 3 of Theorem 2.1]{F}). \end{itemize} The aim of this paper is twofold: on the one hand we prove the existence of three periodic solutions to \eqref{eP} (see Theorem \ref{main}) when neither condition (d) nor condition (e) are required, as Remarks \ref{oss1} and \ref{oss2} show; moreover, in our context, condition (c) together with a limit condition on %neighbourhood of $G$ at zero imply the key assumption of Theorem \ref{main} (see Remark \ref{onB-N}). On the other hand we establish the existence of two periodic solutions (see Theorem \ref{main3}) when, in addition, condition (b) can be removed, that is the energy functional related to the differential problem need not be coercive (see Remark \ref{oss3}). In our approach condition (a) is not required, as Example \ref{es1} and \ref{es2} show. To be precise, we study the following problem \begin{equation} \label{ePl} \begin{gathered} \ddot u=A(t)u-\lambda b(t)\nabla G(u)\quad \text{a.e. in } [0,T]\\ u(T)-u(0)=\dot u(T)-\dot u(0)=0 \end{gathered} \end{equation} and establish the existence of an explicit open interval of positive parameters $\lambda$ for which \eqref{ePl} admits three or two distinct periodic solutions. We also observe that problems of type \eqref{ePl} were studied in \cite{B-L} and \cite{C}, but there only an upper bound of the interval of positive parameters $\lambda$ for which \eqref{ePl} admits three distinct periodic solutions was established. The proofs of the above-mentioned results are all based on critical point theorems. In particular, the results in \cite{B-N}, \cite{T} and \cite{T-W} are obtained exploiting the critical points theorem of Brezis and Nirenberg (\cite[Theorem 4]{B-N}). In \cite{B-L} and \cite{C} the main tool is the three critical points theorem of Bonanno \cite[Theorem 2.1]{Bonanno4} (which is a consequence of the three critical points theorem of Ricceri \cite[Theorem 3]{Ricceri2}). While in \cite{F} the scope is achieved putting together the variational principle of Ricceri \cite[Theorem 2.5]{Ricceri1} and the classical mountain pass theorem of Pucci and Serrin \cite[Corollary 1]{P-S}. Here, our results are based on multiple critical points theorems established by Averna and Bonanno \cite[Theorem B]{A-B} and by Bonanno \cite[Theorem 2.1]{Bonanno} (where the variational principle of Ricceri \cite[Theorem 2.1]{Ricceri1} was applied), that we recall in Section 2 (see Theorems \ref{thmA} and \ref{thmB}). The present paper is organized as follows. Section 2 is devoted to preliminaries and basic results; while in Section 3 we establish the multiplicity results for Problem \eqref{ePl}. \section{Preliminaries} Let $T$ be a positive real number, $N$ a positive integer and consider a matrix-valued function $A:[0,T]\to\mathbb{R}^{N\times N}$. We assume that $A$ satisfies \begin{itemize} \item[(A1)] $A:[0,T]\to\mathbb{R}^{N\times N}$ is a map into the space of $N\times N$ symmetric matrices with $A\in L^\infty([0,T])$ and there exists a positive constant $\mu$ such that \[ A(t)w\cdot w\geq \mu |w|^2 \] for every $w\in\mathbb{R}^N$ and a.e. in $[0,T]$. \end{itemize} Recall that $H^1_T$ is the Sobolev space of all functions $u\in L^2([0,T],\mathbb{R}^N)$ that admit a weak derivative $\dot{u}\in L^2([0,T],\mathbb{R}^N)$. We emphasize that, in defining this kind of weak derivative, the {\it test} functions belong to the space $C^\infty_T$ of functions that are infinitely differentiable and $T-$periodic from $\mathbb{R}$ into $\mathbb{R}^N$. Moreover, for each $u\in H^1_T$ one has that $\int_0^T \dot u(t)dt=0$ and $u$ is absolutely continuous (for more details we refer the reader to \cite[pp. 6-7]{M-W}). For each $u, v\in H^1_T$, we define \begin{equation}\label{inner} \langle u, v\rangle=\int_0^T \dot u(t)\cdot\dot v(t)dt+\int_0^T A(t)u(t)\cdot v(t)dt. \end{equation} Since $A(t)$ is symmetric, (\ref{inner}) defines an inner product in $H^1_T$.\\ Then we define a norm in $H^1_T$ by putting $\|u\|=\langle u, u\rangle^{1\over 2}$ for each $u\in H^1_T$. Observe that \begin{eqnarray}\label{elliptic2} A(t)\xi\cdot \xi=\sum_{i,j=1}^N a_{ij}(t)\xi_i\xi_j\leq\sum_{i,j=1}^N |a_{ij}(t)||\xi_i||\xi_j|\leq\sum_{i,j=1}^N\|a_{ij}\|_\infty|\xi|^2. \end{eqnarray} Hence, if we put $$ m=\min\{1,\mu\},\quad M=\max\big\{1,\sum_{i,j=1}^N\|a_{ij}\|_\infty\big\}, $$ using (A1) and (\ref{elliptic2}), we see that our norm $\|\cdot\|$ is equivalent to the usual norm. Indeed one has \begin{equation}\label{equivalent} \sqrt{m}\|u\|_*\leq\|u\|\leq\sqrt{M}\|u\|_*, \end{equation} where, for each $u\in H^1_T$, $$ \|u\|_*=\Big(\int_0^T |\dot u(t)|^2dt+\int_0^T |u(t)|^2 dt\Big)^{1/2}\,. $$ It is well known that $(H^1_T,\|\cdot\|_*)$ is compactly embedded in $C^0([0,T],\mathbb{R}^N)$ (see for instance \cite{A}), hence, from (\ref{equivalent}), we conclude that \begin{equation}\label{ksegnato} \bar k=\sup_{u\in H^1_T,\; u\neq 0} {\|u\|_{C^0}\over{\|u\|}} \end{equation} is finite. We are able to give an upper estimate of $\bar k$ in the following manner. Fix $u\in H^1_T$ and consider $t_0\in[0,T]$ such that $|u(t_0)|=\min_{\tau\in[0,T]}|u(\tau)|$. We can write \begin{equation} \label{embed} \begin{aligned} |u(t)|&=\big|\int_{t_0}^t \dot u(\tau)d\tau+u(t_0)\big|\\ & \leq \int_0^T|\dot u(\tau)|d\tau+{1\over T}\int_0^T|u(t_0)|d\tau\\ &\leq \int_0^T|\dot u(\tau)|d\tau+{1\over T}\int_0^T|u(\tau)|d\tau \\ &\leq\sqrt{T}\Big(\int_0^T|\dot u(\tau)|^2 d\tau\Big)^{1/2} +{1\over\sqrt{T}}\Big(\int_0^T|u(\tau)|^2 d\tau\Big)^{1/2}\\ &\leq\sqrt 2 \max\big\{\sqrt T, {1\over\sqrt T }\big\}\|u\|_* \end{aligned} \end{equation} for each $t\in[0,T]$. Hence, from (\ref{embed}) and (\ref{equivalent}), if we put \begin{equation}\label{k} k=\sqrt{2\over m}\max\big\{\sqrt T, {1\over\sqrt T }\big\} \end{equation} one has \begin{equation}\label{estimate} \bar k\leq k. \end{equation} In the sequel we shall make use of the constants \begin{equation}\label{costanti} L=\frac{1}{ k^2 T\sum_{i,j=1}^N\|a_{ij}\|_\infty},\quad R=\frac{L}{1+L}. \end{equation} Now, let $b\in L^1([0,T])\setminus\{0\}$ which is a.e. nonnegative and $G\in C^1(\mathbb{R}^N)$.\\ Put $$ \Phi(u)={1\over 2}\|u\|^2 \quad\mbox{and}\quad \Psi(u)=-\int_0^T b(t)G(u(t))dt $$ for each $u\in H^1_T$. There are no difficulties in verifying that $\Phi$ is a continuously G\^{a}teaux differentiable functional whose G\^{a}teaux derivative admits a continuous inverse. In addition, $\Phi$ is a continuous and convex functional, so that it is sequentially lower semicontinuous too. Thanks to the Rellich-Kondrachov theorem, $\Psi$ is a well-defined continuously G\^{a}teaux differentiable functional whose G\^{a}teaux derivative is a compact operator. In particular, for $u, v\in H^1_T$, one has \begin{gather*} \Phi'(u)(v)=\int_0^T \dot u(t)\cdot\dot v(t)dt+\int_0^T A(t)u(t)\cdot v(t)dt, \\ \Psi'(u)(v)=-\int_0^T b(t)\nabla G(u(t))\cdot v(t)dt\,. \end{gather*} Let us recall that a critical point for the functional $\Phi+\lambda\Psi$ is any $u\in H^1_T$ such that \begin{equation}\label{critical} \Phi'(u)(v)+\lambda\Psi'(u)(v)=0 \end{equation} for each $v\in H^1_T$. Moreover, a solution for problem \eqref{ePl} is any $u\in C^1([0,T],\mathbb{R}^k)$ such that $\dot u$ is absolutely continuous and \begin{gather*} \ddot u=A(t)u-\lambda b(t)\nabla G(u)\quad \text{a.e. in } [0,T]\\ u(T)-u(0)=\dot u(T)-\dot u(0)=0. \end{gather*} We claim that each critical point for the functional $\Phi+\lambda\Psi$ is a solution for problem \eqref{ePl}. In fact, since $C^\infty_T$ is a subset of $H^1_T$, we can observe that if $u$ is a critical point for the functional $\Phi+\lambda\Psi$, then $\dot u\in H^1_T$ and, in particular, \[ \ddot u=A(t)u-\lambda b(t)\nabla G(u) \quad \text{a.e. in } [0,T]. \] Hence, \[ \int_0^T \dot u(t)dt=\int_0^T\ddot u(t)dt=0 \] and $u(T)-u(0)=\dot u(T)-\dot u(0)=0$; that is, $u$ is a solution for problem \eqref{ePl}. Let us recall a recent result, due to Averna and Bonanno \cite[Theorem B]{A-B}, which is the main tool to reach our goal. \begin{theorem}[{\cite[Theorem B]{A-B}}] \label{thmA} Let $X$ be a reflexive Banach Space, $\Phi:X\to\mathbb{R}$ a continuously G\^{a}teaux differentiable, coercive and sequentially weakly lower semicontinuous functional whose G\^{a}teaux derivative admits a continuous inverse on $X^*$, $\Psi:X\to\mathbb{R}$ a continuously G\^{a}teaux differentiable functional whose G\^{a}teaux derivative is compact. Put, for each $r>\inf_X \Phi$, \begin{gather*} \varphi_1(r)=\inf_{x\in\Phi^{-1}(]-\infty,r[)}\frac{\Psi(x) -\inf_{\overline{\Phi^{-1}(]-\infty,r[)}^w}\Psi}{r-\Phi(x)}, \\ \varphi_2(r)=\inf_{x\in\Phi^{-1}(]-\infty,r[)}\sup_{y\in \Phi^{-1}([r,+\infty[)}\frac{\Psi(x)-\Psi(y)}{\Phi(y)-\Phi(x)}, \end{gather*} where $\overline{\Phi^{-1}(]-\infty,r[)}^w$ is the closure of $\Phi^{-1}(]-\infty,r[)$ in the weak topology, and assume that \begin{itemize} \item[(i)] There is $r\in\mathbb{R}$ such that $\inf_X\Phi 0$ and fix $\lambda$ in $\big]\frac{1}{2\|b\|_1 k^2}\frac{1}{R}\frac{|w_0|^2}{G(w_0)},\frac{1}{2 \|b\|_1 k^2} \frac{\gamma^2}{\max_{|w|\leq \gamma}G(w)}\big[$. By assumption \eqref{e2}, we can find two positive numbers $\delta$ and $\delta'$, with $$ \limsup_{|w|\to\infty}\frac{G(w)}{|w|^2}<\delta<\frac{\max_{|w|\leq \gamma}G(w)}{\gamma^2} $$ such that $G(w)\leq\delta|w|^2+\delta'$ for each $w\in\mathbb{R}^N$. Fix For each $u\in X$ one has \begin{equation}\label{coecivity} \begin{aligned} \Phi(u)+\lambda\Psi(u)&\geq {1\over 2}\|u\|^2-\lambda\delta\int_0^T b(t)|u(t)|^2dt-\lambda\delta'\|b\|_1 \\ & \geq{1\over 2}\|u\|^2-\lambda\delta\|b\|_1\|u\|^2_{C^0}-\lambda\delta'\|b\|_1\\ &\geq\left({1\over 2}-\lambda\delta k^2\|b\|_1\right)\|u\|^2-\lambda\delta'\|b\|_1\\ &>\frac{1}{2}\left(1-\delta\frac{\gamma^2}{\max_{|w|\leq \gamma}G(w)} \right)\|u\|^2-\lambda\delta'\|b\|_1. \end{aligned} \end{equation} Hence $\Phi+\lambda\Psi$ is coercive. Let us consider $\varphi_1$ and $\varphi_2$ given in Theorem \ref{thmA}. We can observe that $\inf_X \Phi=\Phi(0)=0$ and that, for each $r>0$, $0\in\Phi^{-1}(]-\infty,r[)$ and $\overline{\Phi^{-1}(]-\infty,r[)}^w=\Phi^{-1}(]-\infty,r])$. Fix $r>0$. One has \begin{equation} \label{phi1<1} \begin{aligned} \varphi_1(r)& \leq\frac{-G(0)\|b\|_1-\inf_{\|v\|^2\leq 2r}\big(-\int_0^T b(t)G(v(t))dt\big)}{r} \\ &\leq\sup_{\|v\|^2\leq 2r}\frac{\int_0^T b(t)G(v(t))dt}{r}. \end{aligned} \end{equation} Thanks to (\ref{k}) and (\ref{estimate}), it is easy to check that \[ \{v\in X: \|v\|^2\leq 2r\}\subseteq\{v\in C^0: \|v\|_{C^0}^2\leq 2 k^2 r\}. \] Hence, from (\ref{phi1<1}), bearing in mind that $b\geq 0$ a.e. and that $G$ is continuous, we can write \begin{equation}\label{phi1<2} \varphi_1(r)\leq \|b\|_1\frac{\max_{|w|\leq k \sqrt{2r}}G(w)}{r}. \end{equation} Let now $r=\gamma^2/(2 k^2)$ and consider the function $v\in X$ defined by putting $v(t)=w_0$ for each $t\in[0,T]$. A simple computation shows that $k\sqrt{\mu T}\geq\sqrt 2$. Therefore, from $\gamma<|w_0|$ one has $\gamma< k\sqrt{\mu T}|w_0|$ and, in view of condition ($\mathcal{A}$), we obtain \[ \|v\|^2=\int_0^T A(t) w_0\cdot w_0 dt\geq T\mu|w_0|^2> 2r. \] On the other hand, from (\ref{elliptic2}), one has \begin{equation}\label{v>} \|v\|^2\leq T\sum_{i,j=1}^N\|a_{ij}\|_\infty|w_0|^2. \end{equation} For each $u\in X$ such that $\|u\|^2<2r$ one has \begin{equation}\label{-psi<} \int_0^T b(t)G(u(t))dt\leq\|b\|_1\max_{|w|\leq k \sqrt{2r}}G(w)=\|b\|_1\max_{|w|\leq \gamma}G(w) \end{equation} and \begin{equation}\label{no} 0<\|v\|^2-\|u\|^2\leq \|v\|^2. \end{equation} We claim that \begin{equation}\label{primo<} \frac{\max_{|w|\leq\gamma}G(w)}{\gamma^2}\max_{|w|\leq \gamma}G(w). \end{equation} At this point, putting together (\ref{-psi<}), (\ref{no1}), (\ref{no}) and (\ref{v>}) we can obtain \begin{equation} \label{>} \begin{aligned} \frac{\int_0^T b(t)G(v(t))dt-\int_0^T b(t)G(u(t))dt}{\|v\|^2-\|u\|^2} &\geq\|b\|_1\frac{G(w_0)-\max_{w\leq \gamma}G(w)}{\|v\|^2-\|u\|^2} \\ &\geq\|b\|_1\frac{G(w_0)-\max_{|w|\leq \gamma}G(w)}{\|v\|^2}\nonumber\\ &\geq\|b\|_1\frac{G(w_0)-\max_{|w|\leq \gamma}G(w)}{T\sum_{i,j=1}^N\|a_{ij}\|_\infty|w_0|^2} \\ &= L k^2\|b\|_1\frac{G(w_0)-\max_{|w|\leq \gamma}G(w)}{|w_0|^2} \end{aligned} \end{equation} for each $u\in X$ such that $\|u\|^2<2r$. Hence, one has \begin{equation} \label{phi2>} \begin{aligned} \varphi_2(r)& \geq 2\inf_{\|u\|^2<2r}\frac{\int_0^T b(t)G(v(t))dt-\int_0^T b(t)G(u(t))dt}{\|v\|^2-\|u\|^2} \\ & \geq 2L k^2\|b\|_1\frac{G(w_0)-\max_{|w|\leq \gamma}G(w)}{|w_0|^2}. \end{aligned} \end{equation} Making use of (\ref{phi1<2}), (\ref{primo<}) and (\ref{phi2>}), we conclude that \begin{equation} \label{phi1\bar\delta$. At this point, if $\lambda>0$, one has \begin{equation} \label{coecivitybis} \begin{aligned} \Phi(u)+\lambda\Psi(u) &\geq{1\over 2}\|u\|^2-\lambda\int_{\{t\in[0,T]: |u(t)|\leq\bar\delta\}} b(t)G(u(t))dt \\ &\geq{1\over 2}\|u\|^2-\lambda\|b\|_1\max_{|w|\leq\bar\delta}G(w) \end{aligned} \end{equation} for every $u\in X$. Hence $\Phi+\lambda\Psi$ is coercive. Due to (\ref{phi1<2}), for $r=\gamma^2/(2k^2)$, one has $\varphi_1(r)=0$. As well as, since $G(w_0)>0$, reasoning as in (\ref{phi2>}) we obtain $$ \varphi_2(r)\geq 2L k^2\|b\|_1\frac{G(w_0)}{|w_0|^2}>2R k^2\|b\|_1\frac{G(w_0)}{|w_0|^2}>0. $$ At this point we have $$ \frac{1}{\varphi_2(r)}<\frac{1}{2\|b\|_1 k^2}\frac{1}{R}\frac{|w_0|^2}{G(w_0)} $$ and we can conclude as in the previous case, where we agree to read $1\over 0$ as $+\infty$. \end{proof} \begin{remark} \label{rmk3.1} {\rm We explicitly observe that, from the proof of Theorem \ref{main} we obtain that, when $\max_{|w|\leq\gamma}G(w)=0$, the interval of parameters for which problem \eqref{ePl} admits at least three solutions is $]\frac{1}{2\|b\|_1k^2}\frac{1}{L}\frac{|w_0|^2}{G(w_0)},+\infty[$. Moreover, in this particular case, the conclusion can be also obtained by standard arguments.} \end{remark} \begin{example}\label{es1} {\rm Let $G:\mathbb{R}^2\to\mathbb{R}$ be defined by \[ G(x,y)=\frac{\left(x^2+y^2\right)^{6}}{e^{x^2+y^2}}+x \] for every $(x,y)\in\mathbb{R}^2$. By choosing $\gamma=1$ and $w_0\equiv(\sqrt 6,0)$ all assumptions of Theorem \ref{main} are satisfied and so, for every function $b\in L^1([0,1])\setminus \{0\}$ that is a.e. nonnegative and for every $\lambda\in\left]\frac{1}{\|b\|_1}\frac{7}{100},\frac{1}{\|b\|_1}\frac{18}{100}\right[$, the problem \begin{gather*} \ddot u=u-\lambda b(t)\nabla G(u)\quad \text{ a.e. in } [0,1]\\ u(1)-u(0)=\dot u(1)-\dot u(0)=0 \end{gather*} admits at least three nonzero solutions. In fact, it is enough to observe that \[ \frac{\max_{|w|\leq\gamma}G(w)}{\gamma^2}=\frac{1}{e}+1, \] $R=1/5$, $G(w_0)=\left(\frac{6}{e}\right)^6+\sqrt 6$ and \[ \lim_{|w|\to +\infty}\frac{G(w)}{|w|^2}=0. \] }\end{example} \begin{remark}\label{oss1} {\rm Let $G$ be as in Example \ref{es1}, fix $b\in C^0([0,1],\mathbb{R}^+)$ and $\lambda>0$. It is easy to see that, if we put $F(t,w)=\frac{1}{2}|w|^2-\lambda b(t)G(w)$ for every $(t,w)\in [0,1]\times\mathbb{R}^2$, one has that \[ \liminf_{|w|\to 0}\frac{F(t,w)}{|w|^2}=-\infty \] uniformly with respect to $t$. Therefore, assumption (d) in the introduction does not hold and, hence by \cite[Theorem 7]{B-N}, \cite[Theorem 4]{T-W} and \cite[Theorem 2]{T} cannot be applied.} \end{remark} \begin{example}\label{es2} {\rm Let $G:\mathbb{R}\to\mathbb{R}$ be defined by \[ G(w)=\begin{cases} e^{e^w}-e & \text{if } w<2\\ e^{e^2}(e^2 w+1-2e^2)-e & \text{if } w\geq 2. \end{cases} \] By choosing $\gamma=1$ and $w_0=2$ we are able to apply Theorem \ref{main} and affirm that for every function $b\in L^1([0,1])\setminus\{0\}$ that is a.e. nonnegative and for every $\lambda\in]\frac{1}{\|b\|_1}\frac{19}{1000},\frac{1}{\|b\|_1}\frac{17}{100}[$, the problem \begin{gather*} \ddot u=u-\lambda b(t) \dot G(u)\quad \text{a.e. in } [0,1]\\ u(1)-u(0)=\dot u(1)-\dot u(0)=0 \end{gather*} admits at least three nonzero solutions. In fact, a simple computation shows that \[ \frac{\max_{|w|\leq\gamma}G(w)}{\gamma^2}=e^e-e, \] $R=1/3$ and $G(w_0)=e^{e^2}-e$ so that assumption \eqref{e1} holds. Moreover \[ \lim_{|w|\to +\infty}\frac{G(w)}{|w|^2}=0 \] and \eqref{e2} is also true.} \end{example} \begin{remark}\label{oss2} {\rm By the fact that the function $\overline \lambda G$, where $\overline\lambda \in]\frac{1}{\|b\|_1}\frac{19}{1000},\frac{1}{\|b\|_1}\frac{17}{100}[$ and $G$ is as in Example \ref{es2}, is increasing, condition (e) in the introduction does not hold. Hence, \cite[Theorem 2.1]{F} cannot be applied. Moreover, for fixed $b\in C^0([0,1],\mathbb{R}^+)$, if we consider $F(t,w)=\frac{1}{2}|w|^2- b(t)[\overline\lambda G(w)]$ for every $(t,w)\in [0,1]\times\mathbb{R}^2$, it is easy to verify that \[ \liminf_{|w|\to 0}\frac{F(t,w)}{|w|^2}=-\infty \] uniformly with respect to $t$ and condition (d) in Introduction does not hold.} \end{remark} \begin{remark}\label{onB-N} {\rm In our context, from (c) in Introduction one has \begin{itemize} \item [(b1)] $G(w_0)>0$ for some constant vector $w_0$. \end{itemize} If, in addition, we assume \begin{itemize} \item [(b2)] $\lim_{w\to 0} {G(w)\over |w|^2} =0$, \end{itemize} then it is easy to verify that (b1) and (b2) imply \eqref{e1} of Theorem \ref{main}.} \end{remark} As an immediate consequence of Theorem \ref{main}, we can obtain the following result. \begin{theorem}\label{conse} Let $A$, $G$, $\gamma$ and $w_0$ be like in Theorem \ref{main}. Then, for every $b\in L^1([0,T])\setminus\{0\}$ that is a.e. nonnegative and such that $\|b\|_1$ is in the interval $]\frac{1}{2k^2}\frac{1}{R}\frac{|w_0|^2}{ G(w_0)},\frac{1}{2 k^2} \frac{\gamma^2}{\max_{|w|\leq \gamma}G(w)}[$, the problem \begin{gather*} \ddot u=A(t)u-b(t)\nabla G(u)\quad \text{a.e. in } [0,T]\\ u(T)-u(0)=\dot u(T)-\dot u(0)=0 \end{gather*} admits at least three solutions. \end{theorem} \begin{proof} Fix any $b\in L^1([0,T])\setminus\{0\}$ that is a.e. nonnegative and such that $\|b\|_1$ is in $]\frac{1}{2 k^2}\frac{1}{R}\frac{|w_0|^2}{ G(w_0)},\frac{1}{2 k^2} \frac{\gamma^2}{\max_{|w|\leq \gamma}G(w)}[$. Obviously, one has that \[ 1\in\big]\frac{1}{2\|b\|_1 k^2}\frac{1}{R}\frac{|w_0|^2}{ G(w_0)},\frac{1}{2\|b\|_1 k^2} \frac{\gamma^2}{\max_{|w|\leq \gamma}G(w)}\big[ \] and we apply Theorem \ref{main}. \end{proof} Here is another multiplicity result in which assumption \eqref{e2} is not required. \begin{theorem}\label{main3} Let $A$ be a matrix-valued function satisfying condition (A1) and $G\in C^1(\mathbb{R}^N)$. Put $l=\min\big\{1,\frac{1}{k(T\sum_{i,j=1}^k\|a_{ij}\|_\infty)^{1/2}}\big\}$, where $k$ is defined in (\ref{k}) and assume that there exist two positive constants $\gamma_1,\ \gamma_2$ and a vector $w_0\in\mathbb{R}^N$ such that $\gamma_1<|w_0|\max_{|w|\leq\gamma_1}G(w). \end{gather*} Hence, by assumption \eqref{e3} and noting that $\gamma_1<|w_0|$, one has \begin{equation} \label{phi2*>} \begin{aligned} \varphi_2^*(r_1,r_2) &\geq\inf_{x \in \Phi^{-1}(]-\infty,r_1[)}\frac{\Psi(x) -\Psi(v)}{\Phi(v)-\Phi(x)}\\ &=2\inf_{\|u\|^2<2r_1}\frac{\int_0^T b(t)G(v(t))dt -\int_0^T b(t)G(u(t))dt}{\|v\|^2-\|u\|^2}\\ &\geq 2L k^2\|b\|_1\frac{G(w_0)-\max_{|w|\leq\gamma_1}G(w)}{|w_0|^2}\\ &> 2L k^2\|b\|_1(1-R)\frac{G(w_0)}{|w_0|^2}\\ &= 2R k^2\|b\|_1\frac{G(w_0)}{|w_0|^2}. \end{aligned} \end{equation} Moreover, as we saw in Theorem \ref{main}, \begin{gather}\label{phi1r1<} \varphi(r_1)\leq 2 k^2\|b\|_1\frac{\max_{|w|\leq\gamma_1}G(w)}{\gamma_1^2} \\ \label{phi1r2<} \varphi(r_2)\leq 2 k^2\|b\|_1\frac{\max_{|w|\leq\gamma_2}G(w)}{\gamma_2^2}. \end{gather} At this point, combining (\ref{phi1r1<}), (\ref{phi1r2<}), assumption \eqref{e3} and (\ref{phi2*>}) we obtain \begin{equation} \label{phi1\sqrt{3+\frac{15}{2}\pi}. \end{cases} \] Theorem \ref{main3} guarantees that for every $b\in L^1([0,1])\setminus\{0\}$ that is a.e. nonnegative and for every $\lambda\in]\frac{3}{\|b\|_1},\frac{4}{\|b\|_1}[$ the problem \begin{equation} \label{ePIl} \begin{gathered} \ddot u=u-\lambda b(t)\nabla G(u)\quad \text{a.e. in } [0,1]\\ u(1)-u(0)=\dot u(1)-\dot u(0)=0 \end{gathered} \end{equation} admits at least one nonzero solution $u_\lambda$ such that $\|u_\lambda\|_{C^0}\leq \sqrt{3+ {15\over 2}\pi}$. To see this, we can observe that $$ k=\sqrt 2,\quad \sum_{i,j=1}^2\|a_{ij}\|_\infty=2,\quad l={1 \over 2},\quad R={1\over 5}. $$ Hence, Theorem \ref{main3} applies with $\gamma_1=1/2$, $\gamma_2=\sqrt{3+{15\over 2}\pi}$ and $w_0\in\mathbb{R}^2$ such that $|w_0|=\sqrt 3$.} \end{example} \begin{remark}\label{oss3} {\rm We observe that in Example \ref{es3}, for every positive $\lambda$, the energy functional related to problem ($P^I_\lambda$) is not coercive, that is condition (b) in Introduction fails. Hence, we cannot apply \cite[Theorem 1]{T-W} or \cite[Theorem 1]{T}}. \end{remark} \begin{thebibliography}{99} \bibitem{A} \textsc{R. A. Adams}, {\em Sobolev spaces}, Academic Press, 1975. \bibitem{A-B} \textsc{D. Averna and G. Bonanno}, {\em A three critical point theorem and its applications to the ordinary Dirichlet problem}, Topological Methods Nonlinear Anal. {\bf 22} (2003), 93-103. \bibitem{B-L} \textsc{G. Barletta and R. Livrea}, {\em Existence of three periodic solutions for a non autonomous second order system}, Le Matematiche, {\bf 57} (2002), no. 2, 205-215. \bibitem{Bonanno} \textsc{G. Bonanno}, {\em Multiple critical points theorems without the Palais-Smale condition}, J. Math. Anal. Appl., {\bf 299} (2004), 600-614. \bibitem{Bonanno4} \textsc{G. Bonanno}, {\em Some remarks on a three critical points theorem}, Nonlinear Anal., {\bf 54} (2003), 651-665. \bibitem{B-N} \textsc{H. Brezis and L. Nirenberg}, {\em Remarks on finding critical points}, Comm. Pure. Appl. Math., {\bf 44} (1991), 939-963. \bibitem{C} \textsc{G. Cordaro}, {\em Three periodic solutions to an eigenvalue problem for a class of second order Hamiltonian systems}, Abstr. Appl. Anal., {\bf 18} (2003), 1037-1045. \bibitem{F} \textsc{F. Faraci}, {\em Three periodic solutions for a second order nonautonomous system}, J. Nonlinear Convex Anal., {\bf 3} (2002), 393-399. \bibitem{M-W} \textsc{J. Mawhin and M. Willem}, {\em Critical Point Theory and Hamiltonian Systems}, Springer-Verlag, New York 1989. \bibitem{P-S} \textsc{P.Pucci, J.Serrin}, {\em A mountain pass theorem}, J. Differential Equations {\bf 60} (1985), 142-149. \bibitem{Ricceri1} \textsc{B. Ricceri}, {\em A general variational principle and some of its applications}, J. Comput. Appl. Math. {\bf 133} (2000), 401-410. \bibitem{Ricceri2} \textsc{B. Ricceri}, {\em On a three critical points theorem}, Arch. Math. (Basel) {\bf 75} (2000), 220-226. \bibitem{T} \textsc{C.L. Tang}, {\em Existence and multiplicity periodic solutions of nonautonomous second order systems}, Nonlinear Anal. {\bf 32} (1998), 299-304. \bibitem{T-W} \textsc{C.L. Tang and X.P. Wu}, {\em Periodic solutions for second order systems with not uniformly coercive potential}, J. Math. Anal. Appl. {\bf 259} (2001), 386-397. \end{thebibliography} \end{document}