\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2005(2005), No. 131, pp. 1--11.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2005 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2005/131\hfil Asymptotic behavior] {Asymptotic behavior of a predator-prey diffusion system with time delays} \author[Y. Meng, Y. Wang\hfil EJDE-2005/131\hfilneg] {Yijie Meng, Yifu Wang} % in alphabetical order \address{Yijie Meng \hfill\break Department of Mathematics, Xiang Fan University\\ Xiangfan, 441053, China} \email{yijie\_meng@sina.com} \address{Yifu Wang \hfill\break Department of Applied Mathematics, Beijing Institute of Technology\\ Beijing, 100081, China} \email{yifu\_wang@163.com} \date{} \thanks{Submitted September 12, 2005. Published November 24, 2005.} \thanks{Supported by grants 10226013 and 19971004 from the National Nature Science Foundation\hfill\break\indent of China.} \subjclass[2000]{35B40} \keywords{Predator-prey diffusion system; asymptotic behavior; \hfill\break\indent time delays; upper-lower solutions} \begin{abstract} In this paper, we study a class of reaction-diffusion systems with time delays, which models the dynamics of predator-prey species. The global asymptotic convergence is established by the upper-lower solutions and iteration method in terms of the rate constants of the reaction function, independent of the time delays and the effect of diffusion \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \section{Introduction} The purpose of this paper is to study the asymptotic behavior of solutions to the predator-prey diffusion system with time delays: \begin{equation} \begin{gathered} \frac{\partial u}{\partial t}= \Delta u+u[a_1-b_1u-\int_{0}^{\infty}f_1(\tau)u(t-\tau,x)d\tau - d_1v(t-r_2,x)],\\ t>0, \; x\in\Omega, \\ \frac{\partial v}{\partial t}= \Delta v+v[a_2-b_2v-\int_{0}^{\infty}f_2(\tau)v(t-\tau,x)d\tau + d_2u(t-r_1,x)], \end{gathered} \label{e1.1} \end{equation} subjected to the boundary conditions \begin{equation} \frac{\partial u}{\partial n}=\frac{\partial v}{\partial n}=0,\quad t>0,\; x\in\partial\Omega, \label{e1.2} \end{equation} and to the nonnegative initial conditions \begin{equation} u(t,x)=\phi_1(t,x),~~v(t,x)=\phi_2(t,x),\quad i=1,2,\; t\leq 0,\; x\in\overline{\Omega},\label{e1.3} \end{equation} where $\Omega\subseteq \mathbb{R}^N$ ($N\geq 1$) is a bounded domain with smooth boundary $\partial\Omega$, and $\partial/\partial n$ denotes differentiation in the direction of the outward normal. $a_i$, $b_i$, $d_i$ and $r_i(i=1,2)$ are positive constants. $f_i\in C(\mathbb{R}^+)\cap L^1(\mathbb{R}^+)$, and the integral part means the hereditary term concerning the effect of the past history on the present growth rate. $\phi_i\in C^1((-\infty,0]\times\overline{\Omega})$ is bounded nonnegative. We write $f_i=f_i^+-f_i^-(i=1,2)$, where $f_i^+(s)=\max(0,f(s))$, and $f_i^-(s)=\max(0,-f_i(s))$ for $s\geq 0$. We set $$ c_i^+=\int_0^{\infty}f_i^+(s)ds,\quad c_i^-=\int_0^{\infty}f_i^-(s)ds\quad i=1,2. $$ Throughout the paper, we assume that \begin{equation} b_1>\int_{0}^{\infty}|f_1(s)|ds,\quad b_2>\int_{0}^{\infty}|f_2(s)|ds, \label{e1.4} \end{equation} and \begin{equation} \begin{aligned} &\frac{d_2c_2^+}{(b_1-c_1^+-c_1^-)(b_2-c_2^+-c_2^-)-d_1d_2}\\ &<\frac{a_2}{a_1}<\frac{(b_1-c_1^+-c_1^-)(b_2-c_2^+-c_2^-)-d_1d_2}{d_1(b_1-c_1^-)}, \end{aligned}\label{e1.5} \end{equation} Our result can be stated as follows. \begin{theorem} \label{thm1} Assume that $f_1$ and $f_2$ belong to $C(\mathbb{R}^+)\cap L^1(\mathbb{R}^+)$ and \eqref{e1.4}--\eqref{e1.5} hold. Then for every $\phi_i\in C^1((\infty,0])\times\overline{\Omega}$ with $\phi_i(0,x)\not\equiv 0$, the solution of \eqref{e1.1}--\eqref{e1.3} satisfies \begin{equation} \lim_{t\to\infty}u(t,x)=\frac{a_1(b_2+c_2^+-c_2^-)-a_2d_1} {(b_1+c_1^+-c_1^-)(b_2+c_2^+-c_2^-)+d_1d_2}, \label{e1.6} \end{equation} uniformly for $x\in\overline{\Omega}$. Also \begin{equation} \lim_{t\to\infty}v(t,x)=\frac{a_2(b_1+c_1^+-c_1^-)+a_1d_2} {(b_1+c_1^+-c_1^-)(b_2+c_2^+-c_2^-)+d_1d_2}, \label{e1.7} \end{equation} uniformly for $x\in\overline{\Omega}$. \end{theorem} \noindent\textbf{Remark.} If $f_1\equiv 0$ and $f_1\equiv 0$, then \[ \lim_{t\to\infty}u(t,x)=\frac{a_1b_2+a_2d_1} {b_1b_2+d_1d_2}, \quad\mbox{and}\quad \lim_{t\to\infty}v(t,x)=\frac{a_2b_1+a_1d_2} {b_1b_2+d_1d_2}, \] uniformly for $x\in\overline{\Omega}$, which coincides with the result of \cite{p1}. \smallskip Let us introduce the following result (see \cite{r1}) on the asymptotic behavior of the diffusion logistic equation with time delays, which plays an important role in the proof of Theorem. \begin{equation} \begin{gathered} \frac{\partial u}{\partial t}= \Delta u+u[a-bu-\int_{0}^{\infty}f(\tau)u(t-\tau,x)d\tau], \quad t>0,\; x\in\Omega,\\ \frac{\partial u}{\partial n}=0,\quad t>0,\; x\in\partial\Omega,\\ u(t,x)=\phi(t,x), \quad t\leq 0,\; x\in\overline{\Omega}, \end{gathered} \label{e1.8} \end{equation} where $a$ and $b$ are positive constants, $\phi\in C^1((-\infty,0]\times\overline{\Omega})$ is a bounded nonnegative function. \begin{lemma} \label{lem1.1} Assume that $f\in C(\mathbb{R}^+)\cap L^1(\mathbb{R}^+)$ and $b>\int_0^{\infty}|f(s)|ds$. Then \eqref{e1.8} has a unique bounded nonnegative solution. Moreover, if $\phi(0,x)\not\equiv 0$, then $u(t,x)>0$ for all $(t,x)\in (0,\infty)\times\overline{\Omega}$ and \[ \lim_{t\to\infty}u(t,x)=\frac{a}{b+\int_{0}^{\infty}f(s)ds}, \] uniformly for $x\in\overline{\Omega}$. \end{lemma} Reaction-diffusion systems with delays have been studied by many authors. However, most of the systems are mixed quasimonotone, and most of the discussions are in the framework of semi-group theory of dynamical systems \cite{m1,m2,r2,r3}. The method of upper and lower solutions and its associated monotone iterations have been used to investigate the dynamic property of the system, which is mixed quasimonotone with discrete delays \cite{l1,p2,p3}. In this paper, the method of proof is via successive improvement of upper-lower solutions of some suitable systems, and the fact that we are dealing with system (1.1) without mixed quasimonotone forces us to develop some significance in the process of proof. \section{Proof of Main Results} In this section, we first introduce the following existence-comparison result for the predator-prey system \eqref{e1.1}--\eqref{e1.3}. \smallskip \noindent\textbf{Definition} \cite{p2} % def. 2.1 A pair of smooth functions $(\tilde{u},\tilde{v})$ and $(\hat{u},\hat{v})$ are called upper-lower solutions of \eqref{e1.1}--\eqref{e1.3}, if $\tilde{u}\geq \hat{u}$, $\tilde{v}\geq \hat{v}$ in $\mathbb{R}^1\times\overline{\Omega}$, and if for all $\hat{u}\leq\psi_1\leq\tilde{u}$, $\hat{v}\leq\psi_2\leq\tilde{v}$, the following differential inequalities hold. \begin{equation} \begin{gathered} \frac{\partial \tilde{u}}{\partial t}-\Delta \tilde{u}\geq \tilde{u}[a_1-b_1\tilde{u}- \int_{0}^{\infty}f_{1}(\tau)\psi_1(t-\tau,x)d\tau-d_1\hat{v}(t-r_2,x)],\\ t>0,\; x\in\Omega, \\ \frac{\partial \tilde{v}}{\partial t}-\Delta \tilde{v}\geq \tilde{v}[a_2-b_2\tilde{v}- \int_{0}^{\infty}f_{2}(\tau)\psi_2(t-\tau,x)d\tau+d_2\tilde{u}(t-r_1,x)], \\ \frac{\partial \hat{u}}{\partial t}-\Delta \hat{u}\leq \hat{u}[a_1-b_1\hat{u}- \int_{0}^{\infty}f_{1}(\tau)\psi_1(t-\tau,x)d\tau-d_1\tilde{v}(t-r_2,x)], \\ \frac{\partial \hat{v}}{\partial t}-\Delta \hat{v}\leq \hat{v}[a_1-b_1\hat{v}- \int_{0}^{\infty}f_{2}(\tau)\psi_2(t-\tau,x)d\tau+d_2\hat{u}(t-r_1,x)], \\ \frac{\partial \hat{u}}{\partial n} \leq 0\leq \frac{\partial \tilde{u}}{\partial n},~~ \frac{\partial \hat{v}}{\partial n} \leq 0\leq \frac{\partial \tilde{v}}{\partial n},\quad t>0,x\in\partial\Omega, \\ \hat{u}(t,x)\leq \phi_1(t,x)\leq \tilde{u}(t,x),\quad \hat{v}(t,x)\leq \phi_2(t,x)\leq \tilde{v}(t,x),\quad t\leq 0,\; x\in\overline{\Omega}. \end{gathered} \label{e2.1} \end{equation} With these definitions of upper-lower solutions, we can state the following lemma. \begin{lemma}[\cite{p2}] \label{lem2.1} If there exists a pair of upper-lower solutions $(\tilde{u},\tilde{v})$, $(\hat{u},\hat{v})$ of \eqref{e1.1}--\eqref{e1.3}. Then the problem \eqref{e1.1}--\eqref{e1.3} has a unique solution $(u^*,v^*)$ satisfying $\hat{u}\leq u^*\leq\tilde{u}$, $\hat{v}\leq v^*\leq\tilde{v}$. \end{lemma} For a given $\phi=(\phi_1,\phi_2)$, let $M_1,M_2$ be constants such that $$ M_1\geq \max\Big\{\|\phi_1\|,\frac{a_1}{b_1-\int_{0}^{\infty}|f_1(s)|ds}\Big\},\quad M_2\geq\max\Big\{\|\phi_2\|,\frac{a_2+d_2M_1}{b_2-\int_{0}^{\infty} |f_2(s)|ds}\Big\} $$ where $\|\phi_i\|=\sup_{(t,x)\in (-\infty,0]\times\overline{\Omega}}|\phi_i(t,x)|$, $i=1,2$. Then $(0,0)$ and $(M_1,M_2)$ are clearly a pair of lower-upper solutions of \eqref{e1.1}--\eqref{e1.3}. By Lemma \ref{lem2.1}, a unique global nonnegative solution $(u,v)$ to \eqref{e1.1}--\eqref{e1.3} exists and satisfies $0\leq u\leq M_1,0\leq v\leq M_2$, moreover $(u,v)$ is positive in $(0,+\infty)\times\overline{\Omega}$ if $\phi_i(0,x)\not\equiv 0(i=1,2)$ by maximal principle. Define $\overline{u}_1(t,x)$ by \begin{equation} \begin{gathered} \frac{\partial \overline{u}_1}{\partial t}= \Delta \overline{u}_1+\overline{u}_1[a_1-b_1\overline{u}_1+ \int_{0}^{\infty}f_1^-(\tau)\overline{u}_1(t-\tau,x)d\tau],\quad t>0,\; x\in\Omega,\\ \frac{\partial \overline{u}_1}{\partial n}=0, \quad t>0,\; x\in\partial\Omega,\\ \overline{u}_1(t,x)=M_1,\quad t\leq 0,\; x\in\overline{\Omega}. \end{gathered} \label{e2.2} \end{equation} By Lemma \ref{lem1.1}, we have $$ \lim_{t\to\infty}\overline{u}_1(t,x)= \frac{a_1}{b_1-c_1^-}=\overline{\alpha}_1, \quad\hbox{uniformly for } x\in\overline{\Omega}. $$ So, for all sufficiently small $\varepsilon>0$, there exists a $t_1>0$, such that \begin{equation} \max_{x\in\overline{\Omega}}\overline{u}_1(t,x)< \overline{\alpha}_1+\varepsilon,\quad \hbox{for } t>t_1. \label{e2.3} \end{equation} Define $\overline{v}_1(t,x)$ by \begin{equation} \begin{gathered} \frac{\partial \overline{v}_1}{\partial t}= \Delta \overline{v}_1+\overline{v}_1[a_2-b_2\overline{v}_1+ \int_{0}^{\infty}f_2^-(\tau)\overline{v}_1(t-\tau,x)d\tau+d_2\overline{u}_1], \quad t>t_1,\; x\in\Omega,\\ \frac{\partial \overline{v}_1}{\partial n}=0, \quad t>t_1,\; x\in\partial\Omega,\\ \overline{v}_1(t,x)=M_2,\quad t\leq t_1,\; x\in\overline{\Omega}. \end{gathered} \label{e2.4} \end{equation} It is easy to check that $(0,0)$ and $(\overline{u}_1,\overline{v}_1)$ are the lower and upper solutions of \eqref{e1.1}--\eqref{e1.3}. Therefore, Lemma \ref{lem2.1} implies $$ 0\leq u\leq \overline{u}_1,\quad 0\leq v\leq \overline{v}_1. $$ From \eqref{e2.3} and \eqref{e2.4}, it follows that $$ \frac{\partial \overline{v}_1}{\partial t}\leq \Delta \overline{v}_1+\overline{v}_1[a_2-b_2\overline{v}_1+ \int_{0}^{\infty}f_2^-(\tau)\overline{v}_1(t-\tau,x)d\tau+d_2(\overline{\alpha}_1+\varepsilon)]. $$ By the comparison principle, $$ \overline{v}_1\leq \overline{V}_1, $$ where $\overline{V}_1$ is the solution of the problem \begin{gather*} \frac{\partial \overline{V}_1}{\partial t}=\Delta \overline{V}_1+\overline{V}_1[a_2-b_2\overline{V}_1+ \int_{0}^{\infty}f_2^-(\tau)\overline{V}_1(t-\tau,x)d\tau +d_2(\overline{\alpha}_1+\varepsilon)],\\ t>t_1,\; x\in\Omega,\\ \frac{\partial \overline{V}_1}{\partial n}=0, \quad t>t_1,\; x\in\partial\Omega,\\ \overline{V}_1(t,x)=M_2,\quad t\leq t_1,\; x\in\overline{\Omega}. \end{gather*} From Lemma \ref{lem1.1}, $$ \lim_{t\to\infty}\overline{V}_1(t,x)= \frac{a_2+d_2\overline{\alpha}_1}{b_2-c_2^-}+ \varepsilon\frac{d_2}{b_2-c_2^-}, \quad \hbox{uniformly for } x\in\overline{\Omega}. $$ So, for all sufficiently small $\varepsilon$, there exists a $t_2>t_1$ such that \begin{equation} \max_{x\in\overline{\Omega}}\overline{v}_1(t,x)< \overline{\beta}_1+\varepsilon,\quad \hbox{for } t>t_2, \label{e2.5} \end{equation} where $\overline{\beta}_1=(a_2+d_2\overline{\alpha}_1)/(b_2-c_2^-)$. Define $\underline{u}_1$ by \begin{equation} \begin{gathered} \begin{aligned} \frac{\partial \underline{u}_1}{\partial t} &= \Delta \underline{u}_1+\underline{u}_1\Big[a_1-b_1\underline{u}_1 +\int_{0}^{\infty}f_1^-(\tau)\underline{u}_1(t-\tau,x)d\tau\\ &\quad -\int_{0}^{\infty}f_1^+(\tau)\overline{u}_1(t-\tau,x)d\tau -d_1\overline{v}_1(t-r_2,x)\Big],\quad t>t_2,\; x\in\Omega, \end{aligned} \\ \frac{\partial \underline{u}_1}{\partial n}=0,\quad t>t_2,\; x\in\partial\Omega, \\ \underline{u}_1(t,x)=\frac{1}{2}u(t,x), \quad (t,x)\in(-\infty,t_2]\times\overline{\Omega}. \end{gathered}\label{e2.6} \end{equation} From \eqref{e2.5} and \eqref{e2.6}, for $t>t_2$, $x\in\Omega$ we have $$ \frac{\partial \underline{u}_1}{\partial t}\geq \Delta \underline{u}_1+\underline{u}_1[a_1-b_1\underline{u}_1 +\int_{0}^{\infty}f_1^-(\tau)\underline{u}_1(t-\tau,x)d\tau -c_1^+(\overline{\alpha}_1+\varepsilon) -d_1(\overline{\beta}_1+\varepsilon)]. $$ By the comparison principle, $$ \underline{u}_1\geq \underline{U}_1, \quad t>t_2,\; x\in\Omega, $$ where $\underline{U}_1$ is defined by \begin{gather*} \begin{aligned} \frac{\partial \underline{U}_1}{\partial t} &= \Delta \underline{U}_1+\underline{U}_1[a_1-b_1\underline{U}_1 +\int_{0}^{\infty}f_1^-(\tau)\underline{U}_1(t-\tau,x)d\tau \\ &\quad -c_1^+(\overline{\alpha}_1+\varepsilon) -d_1(\overline{\beta}_1+\varepsilon)], \quad t>t_2,\; x\in\Omega, \end{aligned} \\ \frac{\partial \underline{U}_1}{\partial n}=0,\quad t>t_2, \; x\in\partial\Omega,\\ \underline{U}_1(t,x)=\frac{1}{2}u(t,x), \quad (t,x)\in(-\infty,t_2]\times\overline{\Omega}. \end{gather*} By \eqref{e1.5} with $\varepsilon$ sufficiently small, $$ a_1-c_1^+(\overline{\alpha}_1+\varepsilon)-d_1(\overline{\beta}_1 +\varepsilon)>0. $$ Thus from Lemma \ref{lem1.1}, we have $$ \lim_{t\to\infty}\underline{U}_1(t,x)= \frac{a_1-c_1^+\overline{\alpha}_1-d_1\overline{\beta}_1}{b_1-c_1^-}- \varepsilon\frac{c_1^++d_1}{b_1-c_1^-} , \quad\hbox{uniformly for } x\in\overline{\Omega}. $$ Hence for any sufficiently small $\varepsilon>0$, there exists a $t_3>t_2$ such that \begin{equation} \min_{x\in\overline{\Omega}}\underline{u}_1(t,x)>\underline{\alpha}_1 -\varepsilon,\quad t>t_3, \label{e2.7} \end{equation} where $\underline{\alpha}_1= (a_1-c_1^+\overline{\alpha}_1-d_1\overline{\beta}_1)/(b_1-c_1^-)$. Define $\underline{v}_1$ by \begin{equation} \begin{gathered} \begin{aligned} \frac{\partial \underline{v}_1}{\partial t} &= \Delta \underline{v}_1+\underline{v}_1[a_2-b_2\underline{v}_1 +\int_{0}^{\infty}f_2^-(\tau)\underline{v}_1(t-\tau,x)d\tau\\ &\quad -\int_{0}^{\infty}f_2^+(\tau)\overline{v}_1(t-\tau,x)d\tau +d_2\underline{u}_1(t-r_1,x)],\quad t>t_3, x\in\Omega, \end{aligned}\\ \frac{\partial \underline{v}_1}{\partial n}=0,\quad t>t_3,\; x\in\partial\Omega,\\ \underline{v}_1(t,x)=\frac{1}{2}v(t,x), \quad (t,x)\in(-\infty,t_3]\times\overline{\Omega}. \end{gathered} \label{e2.8} \end{equation} It is easy to check that $(\overline{u}_1,\overline{v}_1)$ and $(\underline{u}_1,\underline{v}_1)$ are the upper and lower solutions of \eqref{e1.1}--\eqref{e1.3}, and from Lemma \ref{lem2.1} we get $$ \underline{u}_1\leq u\leq\overline{u}_1,\quad \underline{v}_1\leq v\leq\overline{v}_1. $$ From \eqref{e2.5}, \eqref{e2.7} and \eqref{e2.8}, we have $$ \frac{\partial \underline{v}_1}{\partial t}\geq \Delta \underline{v}_1+\underline{v}_1[a_2-b_2\underline{v}_1 +\int_{0}^{\infty}f_2^-(\tau)\underline{v}_1(t-\tau,x)d\tau -c_2^+(\overline{\beta}_1+\varepsilon) +d_2(\underline{\alpha}_1-\varepsilon)]. $$ By the comparison principle, $$ \underline{v}_1\geq \underline{V}_1, \quad t>t_3,\; x\in\Omega, $$ where $\underline{V}_1$ is defined by \begin{gather*} \begin{aligned} \frac{\partial \underline{V}_1}{\partial t} &= \Delta \underline{V}_1+\underline{V}_1[a_2-b_2\underline{V}_1 +\int_{0}^{\infty}f_2^-(\tau)\underline{V}_1(t-\tau,x)d\tau\\ &\quad -c_2^+(\overline{\beta}_1+\varepsilon) +d_2(\underline{\alpha}_1-\varepsilon)], \quad t>t_3,\; x\in\Omega, \end{aligned}\\ \frac{\partial \underline{V}_1}{\partial n}=0,\quad t>t_3,\; x\in\partial\Omega,\\ \underline{V}_1(t,x)=\frac{1}{2}v(t,x), \quad (t,x)\in(-\infty,t_3]\times\overline{\Omega}. \end{gather*} Note that from \eqref{e1.5}, $$ a_2-c_2^+(\overline{\beta}_1+\varepsilon)+d_2(\underline{\alpha}_1 -\varepsilon)>0. $$ for sufficiently small $\varepsilon$. From Lemma \ref{lem1.1}, we get $$ \lim_{t\to\infty}\underline{V}_1(t,x)= \frac{a_2-c_2^+\overline{\beta}_1+d_2\underline{\alpha}_1}{b_2-c_2^-}- \varepsilon\frac{c_2^++d_2}{b_2-c_2^-} , $$ uniformly for $x\in\overline{\Omega}$. So for any sufficiently small $\varepsilon$, there exists a $t_4>t_3$ such that \begin{equation} \min_{x\in\overline{\Omega}}\underline{v}_1(t,x)>\underline{\beta}_1-\varepsilon, \quad t>t_4, \label{e2.9} \end{equation} where $\underline{\beta}_1=\frac{a_2-c_2^+\overline{\beta}_1+d_2\underline{\alpha}_1} {b_2-c_2^-}$. Hence for all sufficiently small $\varepsilon$, we can conclude \begin{equation} 0<\underline{\alpha}_1\leq \liminf_{t\to\infty}\min_{x\in\overline{\Omega}}u(t,x)\leq \limsup_{t\to\infty}\max_{x\in\overline{\Omega}}u(t,x)\leq\overline{\alpha}_1, \label{e2.10} \end{equation} and \begin{equation} 0<\underline{\beta}_1\leq \liminf_{t\to\infty}\min_{x\in\overline{\Omega}}v(t,x)\leq \limsup_{t\to\infty}\max_{x\in\overline{\Omega}}v(t,x)\leq\overline{\beta}_1. \label{e2.11} \end{equation} Define $\overline{u}_2$ by \begin{equation} \begin{gathered} \begin{aligned} \frac{\partial \overline{u}_2}{\partial t} &= \Delta \overline{u}_2+\overline{u}_2[a_1-b_1\overline{u}_2 +\int_{0}^{\infty}f_1^-(\tau)\overline{u}_2(t-\tau,x)d\tau\\ &\quad -\int_{0}^{\infty}f_1^+(\tau)\underline{u}_1(t-\tau,x)d\tau -d_1\underline{v}_1(t-r_2,x)],& t>t_4, x\in\Omega, \end{aligned}\\ \frac{\partial \overline{u}_2}{\partial n}=0,\quad t>t_4,\; x\in\partial\Omega,\\ \overline{u}_2(t,x)=M_1, \quad (t,x)\in(-\infty,t_4]\times\overline{\Omega}. \end{gathered} \label{e2.12} \end{equation} From \eqref{e2.7}, \eqref{e2.9} and \eqref{e2.12}, for $t>t_4$, we have $$ \frac{\partial \overline{u}_2}{\partial t}\leq \Delta \overline{u}_2+\overline{u}_2[a_1-b_1\overline{u}_2 +\int_{0}^{\infty}f_1^-(\tau)\overline{u}_2(t-\tau,x)d\tau -c_1^+(\underline{\alpha}_1-\varepsilon) -d_1(\underline{\beta}_1-\varepsilon)]. $$ By the comparison principle, we get $\overline{u}_2\leq\overline{U}_1$, $t>t_4$, where $\overline{U}_1$ is defined by \begin{gather*} \begin{aligned} \frac{\partial \overline{U}_1}{\partial t} &\leq \Delta \overline{U}_1+\overline{U}_1[a_1-b_1\overline{U}_1 +\int_{0}^{\infty}f_1^-(\tau)\overline{U}_1(t-\tau,x)d\tau\\ &\quad -c_1^+(\underline{\alpha}_1-\varepsilon) -d_1(\underline{\beta}_1-\varepsilon)],\quad t>t_4,\; x\in\Omega, \end{aligned}\\ \frac{\partial \overline{U}_1}{\partial n}=0,\quad t>t_4,\; x\in\partial\Omega,\\ \overline{U}_1(t,x)=K_1, \quad (t,x)\in(-\infty,t_4]\times\overline{\Omega}. \end{gather*} For sufficiently small $\varepsilon$, It is easy to show that $$ a_1-c_1^+(\underline{\alpha}_1-\varepsilon)-d_1(\underline{\beta}_1 -\varepsilon)>0. $$ Thus, from lemma \ref{lem1.1}, we have $$ \lim_{t\to\infty}\overline{U}_1(t,x)= \frac{a_1-c_1^+\underline{\alpha}_1-d_1\underline{\beta}_1}{b_1-c_1^-}+ \varepsilon\frac{c_1^++d_1}{b_1-c_1^-} , \quad \hbox{uniformly for } x\in\overline{\Omega}. $$ Hence, for any sufficiently small $\varepsilon>0$, there exists a $t_5>t_4$ such that \begin{equation} \max_{x\in\overline{\Omega}}\overline{u}_2(t,x) <\overline{\alpha}_2+\varepsilon,\quad t>t_5, \label{e2.13} \end{equation} where $\overline{\alpha}_2=\frac{a_1-c_1^+\underline{\alpha}_1 -d_1\underline{\beta}_1} {b_1-c_1^-}$. \par Define $\overline{v}_2$ by \begin{equation} \begin{gathered} \begin{aligned} \frac{\partial \overline{v}_2}{\partial t} &= \Delta \overline{v}_2+\overline{v}_2[a_2-b_2\overline{v}_2 +\int_{0}^{\infty}f_2^-(\tau)\overline{v}_2(t-\tau,x)d\tau\\ &\quad -\int_{0}^{\infty}f_2^+(\tau)\underline{v}_1(t-\tau,x)d\tau +d_2\overline{u}_2(t-r_1,x)],& t>t_5, x\in\Omega, \end{aligned}\\ \frac{\partial \overline{v}_2}{\partial n}=0,\quad t>t_5,\; x\in\partial\Omega,\\ \overline{v}_2(t,x)=M_2, \quad (t,x)\in(-\infty,t_5]\times\overline{\Omega}. \end{gathered} \label{e2.14} \end{equation} It is easy to check that $(\underline{u}_1,\underline{v}_1)$ and $(\overline{u}_2,\overline{v}_2)$ are the lower and upper solutions of \eqref{e1.1}--\eqref{e1.3}, and thus from Lemma \ref{lem2.1}, we get $$ \underline{u}_1\leq u\leq\overline{u}_2,\quad \underline{v}_1\leq v\leq\overline{v}_2 $$ From \eqref{e2.9}, \eqref{e2.13} and \eqref{e2.14}, for $t>t_5$, we have $$ \frac{\partial \overline{v}_2}{\partial t}\leq \Delta \overline{v}_2+\overline{v}_2[a_2-b_2\overline{v}_2 +\int_{0}^{\infty}f_2^-(\tau)\overline{v}_2(t-\tau,x)d\tau -c_2^+(\underline{\beta}_1-\varepsilon) +d_2(\underline{\alpha}_2+\varepsilon)]. $$ By the comparison principle, we get $\overline{v}_2\leq\overline{V}_2$, $t>t_5$, where $\overline{V}_2$ is defined by \begin{gather*} \begin{aligned} \frac{\partial \overline{V}_2}{\partial t} &=\Delta \overline{V}_2+\overline{V}_2[a_2-b_2\overline{V}_2 +\int_{0}^{\infty}f_2^-(\tau)\overline{V}_2(t-\tau,x)d\tau\\ &\quad -c_2^+(\underline{\beta}_1-\varepsilon) +d_2(\overline{\alpha}_2+\varepsilon)],\quad t>t_5,\; x\in\Omega, \end{aligned}\\ \frac{\partial \overline{V}_2}{\partial n}=0,\quad t>t_5,\; x\in\partial\Omega,\\ \overline{V}_2(t,x)=M_2, \quad (t,x)\in(-\infty,t_5]\times\overline{\Omega}. \end{gather*} For sufficiently small $\varepsilon$, it is easy to show that $$ a_2-c_2^+(\underline{\beta}_1-\varepsilon)-d_2(\overline{\alpha}_2 +\varepsilon)>0. $$ Thus from lemma \ref{lem1.1}, we have $$ \lim_{t\to\infty}\overline{V}_2(t,x)= \frac{a_2-c_2^+\underline{\beta}_1+d_2\overline{\alpha}_2}{b_2-c_2^-}+ \varepsilon\frac{c_2^++d_2}{b_2-c_2^-} , \quad \hbox{uniformly for } x\in\overline{\Omega}. $$ Hence for any sufficiently small $\varepsilon>0$, there exists $t_6>t_5$ such that \begin{equation} \max_{x\in\overline{\Omega}}\overline{v}_2(t,x)<\overline{\beta}_2 +\varepsilon,\quad t>t_6, \label{e2.15} \end{equation} where $\overline{\beta}_2=\frac{a_2-c_2^+\underline{\beta}_1+d_2\overline{\alpha}_2} {b_2-c_2^-}$. Define $\underline{u}_2$ by \begin{equation} \begin{gathered} \begin{aligned} \frac{\partial \underline{u}_2}{\partial t} &= \Delta \underline{u}_2+\underline{u}_2[a_1-b_1\underline{u}_2 +\int_{0}^{\infty}f_1^-(\tau)\underline{u}_2(t-\tau,x)d\tau\\ &\quad -\int_{0}^{\infty}f_1^+(\tau)\overline{u}_2(t-\tau,x)d\tau -d_1\overline{v}_2(t-r_2,x)],\quad t>t_6, x\in\Omega, \end{aligned}\\ \frac{\partial \underline{u}_2}{\partial n}=0,\quad t>t_6,\; x\in\partial\Omega,\\ \underline{u}_2(t,x)=\frac{1}{2}u(t,x), \quad (t,x)\in(-\infty,t_6]\times\overline{\Omega}. \end{gathered} \label{e2.16} \end{equation} From \eqref{e2.13}, \eqref{e2.15} and \eqref{e2.16}, for $t>t_6, x\in\Omega$ we get $$ \frac{\partial \underline{u}_2}{\partial t}\geq \Delta \underline{u}_2+\underline{u}_2[a_1-b_1\underline{u}_2 +\int_{0}^{\infty}f_1^-(\tau)\underline{u}_2(t-\tau,x)d\tau -c_1^+(\overline{\alpha}_2+\varepsilon) -d_1(\overline{\beta}_2+\varepsilon)]. $$ By the comparison principle, $$ \underline{u}_2\geq \underline{U}_2, \quad t>t_6,\; x\in\Omega, $$ where $\underline{U}_2$ is defined by \begin{gather*} \begin{aligned} \frac{\partial \underline{U}_2}{\partial t} &= \Delta \underline{U}_2+\underline{U}_2[a_1-b_1\underline{U}_2 +\int_{0}^{\infty}f_1^-(\tau)\underline{U}_2(t-\tau,x)d\tau\\ &\quad -c_1^+(\overline{\alpha}_2+\varepsilon) -d_1(\overline{\beta}_2+\varepsilon)], \quad t>t_6,\; x\in\Omega, \end{aligned}\\ \frac{\partial \underline{U}_2}{\partial n}=0,\quad t>t_6,\; x\in\partial\Omega,\\ \underline{U}_2(t,x)=\frac{1}{2}u(t,x), \quad (t,x)\in(-\infty,t_6]\times\overline{\Omega}. \end{gather*} For sufficiently small $\varepsilon$, we can get $$ a_1-c_1^+(\overline{\alpha}_2+\varepsilon)-d_1(\overline{\beta}_2 +\varepsilon)>0. $$ Thus from Lemma \ref{lem1.1}, we have $$ \lim_{t\to\infty}\underline{U}_2(t,x)= \frac{a_1-c_1^+\overline{\alpha}_2-d_1\overline{\beta}_2}{b_1-c_1^-}- \varepsilon\frac{c_1^++d_1}{b_1-c_1^-} , ~~\hbox{uniformly for}~ x\in\overline{\Omega}. $$ Hence, for any sufficiently small $\varepsilon>0$, there exists a $t_7>t_6$ such that \begin{equation} \min_{x\in\overline{\Omega}}\underline{u}_2(t,x) >\underline{\alpha}_2-\varepsilon,\quad t>t_3, \label{e2.17} \end{equation} where $\underline{\alpha}_2=\frac{a_1-c_1^+\overline{\alpha}_2 -d_1\overline{\beta}_2}{b_1-c_1^-}$. Define $\underline{v}_2$ by \begin{equation} \begin{gathered} \begin{aligned} \frac{\partial \underline{v}_2}{\partial t} &= \Delta \underline{v}_2+\underline{v}_2[a_2-b_2\underline{v}_2 +\int_{0}^{\infty}f_2^-(\tau)\underline{v}_2(t-\tau,x)d\tau\\ &\quad -\int_{0}^{\infty}f_2^+(\tau)\overline{v}_2(t-\tau,x)d\tau +d_2\underline{u}_2(t-r_1,x)],\quad t>t_7, x\in\Omega, \end{aligned}\\ \frac{\partial \underline{v}_2}{\partial n}=0,\quad t>t_7,\; x\in\partial\Omega,\\ \underline{v}_2(t,x)=\frac{1}{2}v(t,x), \quad (t,x)\in(-\infty,t_7]\times\overline{\Omega}. \end{gathered} \label{e2.18} \end{equation} It is easy to check that $(\overline{u}_2,\overline{v}_2)$ and $(\underline{u}_2,\underline{v}_2)$ are the upper and lower solutions of \eqref{e1.1}--\eqref{e1.3}, and thus from Lemma \ref{lem2.1}, we get $$ \underline{u}_2\leq u\leq\overline{u}_2,~~\underline{v}_2\leq v\leq\overline{v}_2. $$ From \eqref{e2.15}, \eqref{e2.17} and \eqref{e2.18}, we have $$ \frac{\partial \underline{v}_2}{\partial t}\geq \Delta \underline{v}_2+\underline{v}_2[a_2-b_2\underline{v}_2 +\int_{0}^{\infty}f_2^-(\tau)\underline{v}_2(t-\tau,x)d\tau -c_2^+(\overline{\beta}_2+\varepsilon) +d_2(\underline{\alpha}_2-\varepsilon)]. $$ By the comparison principle, $$ \underline{v}_2\geq \underline{V}_2, \quad t>t_7,\; x\in\Omega, $$ where $\underline{V}_2$ is defined by \begin{gather*} \begin{aligned} \frac{\partial \underline{V}_2}{\partial t} &= \Delta \underline{V}_2+\underline{V}_2[a_2-b_2\underline{V}_2 +\int_{0}^{\infty}f_2^-(\tau)\underline{V}_2(t-\tau,x)d\tau\\ &\quad -c_2^+(\overline{\beta}_2+\varepsilon) +d_2(\underline{\alpha}_2-\varepsilon)],\quad t>t_7,\; x\in\Omega, \end{aligned}\\ \frac{\partial \underline{V}_2}{\partial n}=0,\quad t>t_7,\; x\in\partial\Omega,\\ \underline{V}_2(t,x)=\frac{1}{2}v(t,x), \quad (t,x)\in(-\infty,t_7]\times\overline{\Omega}. \end{gather*} For sufficiently small $\varepsilon$, we can show that $$ a_2-c_2^+(\overline{\beta}_2+\varepsilon)+d_2(\underline{\alpha}_2 -\varepsilon)>0. $$ From lemma \ref{lem1.1}, we get $$ \lim_{t\to\infty}\underline{V}_2(t,x)= \frac{a_2-c_2^+\overline{\beta}_2+d_2\underline{\alpha}_2}{b_2-c_2^-}- \varepsilon\frac{c_2^++d_2}{b_2-c_2^-} , \quad \hbox{uniformly for } x\in\overline{\Omega}. $$ So for any sufficiently small $\varepsilon$, there exists a $t_8>t_7$ such that \begin{equation} \min_{x\in\overline{\Omega}}\underline{v}_2(t,x)>\underline{\beta}_2 -\varepsilon,\quad t>t_8, \label{e2.19} \end{equation} where $\underline{\beta}_2=\frac{a_2-c_2^+\overline{\beta}_2+d_2\underline{\alpha}_2} {b_2-c_2^-}$. Therefore, for all sufficiently small $\varepsilon$, we can conclude \begin{gather} \underline{\alpha}_2\leq \liminf_{t\to\infty}\min_{x\in\overline{\Omega}}u(t,x)\leq \limsup_{t\to\infty}\max_{x\in\overline{\Omega}}u(t,x)\leq \overline{\alpha}_2, \label{e2.20} \\ \underline{\beta}_2\leq \liminf_{t\to\infty}\min_{x\in\overline{\Omega}}v(t,x)\leq \limsup_{t\to\infty}\max_{x\in\overline{\Omega}}v(t,x)\leq\overline{\beta}_2. \label{e2.21} \end{gather} It is obvious that \begin{equation} \underline{\alpha}_1\leq\underline{\alpha}_2\leq\overline{\alpha}_2 \leq\overline{\alpha}_1, \quad \underline{\beta}_1\leq\underline{\beta}_2\leq\overline{\beta}_2\leq\overline{\beta}_1 \end{equation} Define the sequences $\underline{\alpha}_k$, $\overline{\alpha}_k$, $\underline{\beta}_k$, $\overline{\beta}_k(k\geq 1)$ as follows \begin{equation} \begin{gathered} \overline{\alpha}_k= \frac{a_1-c_1^+\underline{\alpha}_{k-1}-d_1\underline{\beta}_{k-1}}{b_1-c_1^-}, \overline{\beta}_k=\frac{a_2-c_2^+\underline{\beta}_{k-1} +d_2\overline{\alpha}_k}{b_2-c_2^-},\\ \underline{\alpha}_k= \frac{a_1-c_1^+\overline{\alpha}_k -d_1\overline{\beta}_k}{b_1-c_1^-},\quad \underline{\beta}_k= \frac{a_2-c_2^+\overline{\beta}_k+d_2\underline {\alpha}_k}{b_2-c_2^-}. \end{gathered} \label{e2.23} \end{equation} where $\underline{\alpha}_0=\underline{\beta}_0=0$. \begin{lemma} \label{lem2.2} For the above defined sequences, we have \begin{equation} [\underline{\alpha}_{k+1},\overline{\alpha}_{k+1}]\subseteq [\underline{\alpha}_k,\overline{\alpha}_k], \quad [\underline{\beta}_{k+1},\overline{\beta}_{k+1}]\subseteq [\underline{\beta}_k,\overline{\beta}_k],\quad k\geq 1. \label{e2.24} \end{equation} \end{lemma} For $k=1$, it has been shown that $[\underline{\alpha}_{2},\overline{\alpha}_{2}]\subseteq [\underline{\alpha}_1,\overline{\alpha}_1]$, $[\underline{\beta}_{2},\overline{\beta}_{2}]\subseteq [\underline{\beta}_1,\overline{\beta}_1]$. Using induction, we can easily complete the proof, and omit the detail. Note that Lemma \ref{lem2.2} implies that the following limits exist: $\lim_{k\to\infty}\underline{\alpha}_k=\underline{\alpha}$, $\lim_{k\to\infty}\overline{\alpha}_k=\underline{\alpha}$, $\lim_{k\to\infty}\underline{\beta}_k=\underline{\beta}$ and $\lim_{k\to\infty}\overline{\beta}_k=\overline{\beta}$. By straightforward computation, we can obtain \begin{equation} \begin{gathered} \underline{\alpha}=\overline{\alpha}=\frac{a_1(b_2+c_2^+-c_2^-)-a_2d_1} {(b_1+c_1^+-c_1^-)(b_2+c_2^+-c_2^-)+d_1d_2},\\ \underline{\beta}=\overline{\beta}=\frac{a_2(b_1+c_1^+-c_1^-)+a_1d_2} {(b_1+c_1^+-c_1^-)(b_2+c_2^+-c_2^-)+d_1d_2}. \end{gathered} \label{e2.25} \end{equation} \begin{lemma} \label{lem2.3} For the solutions of \eqref{e1.1}--\eqref{e1.3}, we have \begin{gather} \underline{\alpha}_k\leq \liminf_{t\to\infty}\min_{x\in\overline{\Omega}}u(t,x)\leq \limsup_{t\to\infty}\max_{x\in\overline{\Omega}}v(t,x)\leq \overline{\alpha}_k,\quad \hbox{for } k\geq 1, \label{e2.26} \\ \underline{\beta}_k\leq \liminf_{t\to\infty}\min_{x\in\overline{\Omega}}u_2(t,x)\leq \limsup_{t\to\infty}\max_{x\in\overline{\Omega}}u_2(t,x) \leq\overline{\beta}_k,\quad \hbox{for } k\geq 1. \label{e2.27} \end{gather} \end{lemma} We have shown that \eqref{e2.26} and \eqref{e2.27} are valid for $k=1,2$. Using induction and repeating the above process, we can complete the proof of Lemma \ref{lem2.3}. Combining the above lemmas, we can complete the proof of the main theorem. \begin{thebibliography}{0} \bibitem{l1} X. Lu; \emph{Persistence and extinction in a competition-diffusion system with time delays}, Canad. Appl. Math. Quart., \textbf{2} (1994), 231--246. \bibitem{m1} R. H. Martin and H. L. Smith; \emph{Abstract functional differential equations and reaction diffusion systems}, Trans. Amer. Math. Sco. \textbf{321} \rm(1990), 1--44. \bibitem{m2} R. H. Martin and H. L. Smith; \emph{Reaction-diffusion systems with time delays: monotonicity, invariance, comparison and convergence}, J. Reine Angew Math., \textbf{413} (1991), 1-35. \bibitem{p1} C. V. Pao; \emph{Convergence of solutions of reaction-diffusion equations with time delays}, Nonlinear Anal. \textbf{48} (2002), 349--362. \bibitem{p2} C. V. Pao; \emph{Systems of parabolic equations with continuous and discrete delays}, J. Math. Anal. Appl., \textbf{205} (1997), 157--185. \bibitem{p3} C. V. Pao; \emph{Dynamics of nonlinear parabolic systems with time delays}, J. Math. Anal. Appl. \textbf{198} (1996), 751-779. \bibitem{r1} R. Redlinger; \emph{On volterra's population equation with diffusion}, Siam J. Math. Anal. \textbf{16} (1985), 135-142. \bibitem{r2} R. Redlinger; \emph{Existence theorems for semilinear parabolic syatems with functionals}, Nonlinear Anal. \textbf{8} (1984), 667--682. \bibitem{r3} S. G. Ruan and X. Q. Zhao; \emph{Persistence and extinction in two species reaction-diffusion systems with delays}, J. Diff. Eqns. \textbf{156} (1999), 71-92. \end{thebibliography} \end{document}