\documentclass[reqno]{amsart} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2005(2005), No. 17, pp. 1--14.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2005 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2005/17\hfil Three-point problems on time scales] {Positive solutions to a generalized second-order three-point boundary-value problem on time scales} \author[H. Luo, Q. Ma\hfil EJDE-2005/17\hfilneg] {Hua Luo, Qiaozhen Ma} % in alphabetical order \address{Hua Luo\hfill\break College of Mathematics and Information Science, Northwest Normal University, \hfill\break Lanzhou 730070, Gansu, China} \email{luohua@nwnu.edu.cn} \address{Qiaozhen Ma \hfill\break College of Mathematics and Information Science, Northwest Normal University, \hfill\break Lanzhou 730070, Gansu, China} \email{maqzh@nwnu.edu.cn} \date{} \thanks{Submitted September 1, 2004. Published February 1, 2005.} \subjclass[2000]{34B18, 39A10} \keywords{Time scales; three-point boundary value problems; cone; fixed points;\hfill\break\indent positive solutions } \begin{abstract} Let $\mathbb{T}$ be a time scale with $0,T \in \mathbb{T}$. We investigate the existence and multiplicity of positive solutions to the nonlinear second-order three-point boundary-value problem \begin{gather*} u^{\Delta\nabla}(t)+a(t)f(u(t))=0,\quad t\in[0, T]\subset \mathbb{T},\\ u(0)=\beta u(\eta),\quad u(T)=\alpha u(\eta) \end{gather*} on time scales $\mathbb{T}$, where $0<\eta0$,\ $\beta\ge0$,\ $\eta\in (0, T)\subset\mathbb{T}$ are given constants. Clearly if $\beta=0$, then \eqref{e1.4} reduces to \eqref{e1.2}. We also point out that when $\mathbb{T}=\mathbb{R},\ \beta=0$, \eqref{e1.3}-\eqref{e1.4} becomes a boundary-value problem of differential equations and just is the problem considered in \cite{MaRy1}; when $\mathbb{T}=\mathbb{Z},\ \beta=0$, \eqref{e1.3}-\eqref{e1.4} becomes a boundary-value problem of difference equations and just is the problem considered in \cite{MaRy2}. We will use Guo-Krasnoselskii's fixed-point theorem and Leggett-Williams fixed-point theorem to investigate the existence and multiplicity of positive solutions for the problem \eqref{e1.3}-\eqref{e1.4}. Our main results extend the main results of Ma\cite{MaRy1}, Anderson\cite{Ande3}, Ma and Raffoul\cite{MaRy2}. \vskip 2mm The rest of the paper is arranged as follows: we state some basic time-scale definitions and prove several preliminary results in Section 2. Section 3 is devoted to the existence of a positive solution of \eqref{e1.3}-\eqref{e1.4}, the main tool being the Guo-Krasnoselskii's fixed-point theorem. Next in Section 4, we give a multiplicity result by using the Leggett-Williams fixed-point theorem. Finally we give two examples to illustrate our results in Section 5. \section{Preliminaries} For convenience, we list here the following definitions which are needed later. A time scale $\mathbb{T}$ is an arbitrary nonempty closed subset of real numbers $\mathbb{R}$. The operators $\sigma$ and $\rho$ from $\mathbb{T}$ to $\mathbb{T}$, defined by \cite{Hilge}, \begin{gather*} \sigma(t)=\inf\{\tau\in\mathbb{T}:\tau>t\}\in\mathbb{T}, \\ \rho(t)=\sup\{\tau\in\mathbb{T}:\taut$, respectively. Let $f:\mathbb{T}\to \mathbb{R}$ and $t\in \mathbb{T}$ (assume $t$ is not left-scattered if $t=\sup\mathbb{T}$), then the {\it delta derivative of $f$ at the point $t$} is defined to be the number $f^{\Delta}(t)$(provided it exists) with the property that for each $\epsilon>0$ there is a neighborhood $U$ of $t$ such that $$ |f(\sigma(t))-f(s)-f^{\Delta}(t)(\sigma(t)-s) |\le | \sigma(t)-s|, \quad \text{for all } s\in U. $$ Similarly, for $t\in \mathbb{T}$ (assume $t$ is not right-scattered if $t=\inf\mathbb{T}$), the {\it nabla derivative of $f$ at the point $t$} is defined in \cite{atici} to be the number $f^{\nabla}(t)$(provided it exists) with the property that for each $\epsilon >0$ there is a neighborhood $U$ of $t$ such that $$ |f(\rho(t))-f(s)-f^{\nabla}(t)(\rho(t)-s) |\le | \rho(t)-s |, \quad \text{for all } s\in U. $$ A function $f$ is {\it left-dense continuous}\ (i.e. {ld-continuous}), if $f$ is continuous at each left-dense point in $\mathbb{T}$ and its right-sided limit exists at each right-dense point in $\mathbb{T}$. It is well-known\cite{Bohne} that if $f$ is ld-continuous, then there is a function $F(t)$ such that $F^{\nabla}(t)=f(t)$. In this case, it is defined that $$ \int^b_a f(t)\nabla t=F(b)-F(a). $$ For the rest of this article, $\mathbb{T}$ denotes a time scale with $0, T\in\mathbb{T}$. Also we denote the set of left-dense continuous functions from $[0, T]\subset\mathbb{T}$ to $E\subset\mathbb{R}$ by $C_{ld}([0, T],\ E)$, which is a Banach space with the maximum norm $\|u\|=\max_{t\in[0, T]}|u(t)|$. We now state and prove several lemmas before stating our main results. \begin{lemma}\label{lemm1} Let $\beta\neq\frac{T-\alpha\eta}{T-\eta}$. Then for $y\in C_{ld}([0, T],\ \mathbb{R})$, the problem \begin{gather} u^{\Delta\nabla}(t)+y(t)=0, \quad t\in[0, T]\subset\mathbb{T}, \label{e2.1} \\ u(0)=\beta u(\eta),\quad u(T)=\alpha u(\eta) \label{e2.2} \end{gather} has a unique solution \begin{equation} \begin{aligned} u(t)&=-\int_0^t (t-s)y(s)\nabla s+\frac{(\beta-\alpha)t-\beta T} {(T-\alpha\eta)-\beta(T-\eta)} \int_0^\eta (\eta-s)y(s)\nabla s \\ &\quad +\frac{(1-\beta)t+\beta\eta}{(T-\alpha\eta)-\beta(T-\eta)} \int_0^T (T-s)y(s)\nabla s. \end{aligned} \label{e2.3} \end{equation} \end{lemma} \begin{proof} From \eqref{e2.1}, we have $$ u(t)=u(0)+u^\Delta (0)t-\int_0^t (t-s)y(s)\nabla s\ :=A+Bt- \int_0^t (t-s)y(s)\nabla s. $$ Since \begin{align*} u(0)=A;\\ u(\eta)=A+B\eta-\int_0^\eta (\eta-s)y(s)\nabla s;\\ u(T)=A+BT-\int_0^T (T-s)y(s)\nabla s, \end{align*} by \eqref{e2.2} from $u(0)=\beta u(\eta)$, we have $$ (1-\beta)A-B\beta\eta=-\beta\int_0^\eta (\eta-s)y(s)\nabla s; $$ from $u(T)=\alpha u(\eta)$, we have $$ (1-\alpha)A+B(T-\alpha\eta)=\int_0^T (T-s)y(s)\nabla s-\alpha \int_0^\eta (\eta-s)y(s)\nabla s. $$ Therefore, \begin{align*} A&=\frac{\beta\eta}{(T-\alpha\eta)-\beta(T-\eta)} \int_0^T (T-s)y(s)\nabla s \\ &\quad -\frac{\beta T}{(T-\alpha\eta)-\beta(T-\eta)} \int_0^\eta (\eta-s)y(s)\nabla s;\\ B&=\frac{1-\beta}{(T-\alpha\eta)-\beta(T-\eta)} \int_0^T (T-s)y(s)\nabla s\\ &\quad -\frac{\alpha-\beta} {(T-\alpha\eta)- \beta(T-\eta)} \int_0^\eta (\eta-s)y(s)\nabla s\,, \end{align*} from which it follows that \begin{align*} u(t)=&\frac{\beta\eta}{(T-\alpha\eta)-\beta(T-\eta)} \int_0^T (T-s)y(s)\nabla s\\ &\quad -\frac{\beta T}{(T-\alpha\eta)-\beta(T-\eta)} \int_0^\eta (\eta-s)y(s)\nabla s\\ &\quad +\frac{(1-\beta)t}{(T-\alpha\eta)-\beta(T-\eta)} \int_0^T (T-s)y(s)\nabla s\\ &\quad -\frac{(\alpha-\beta)t} {(T-\alpha\eta)- \beta(T-\eta)} \int_0^\eta (\eta-s)y(s)\nabla s -\int_0^t (t-s)y(s)\nabla s\\ &=-\int_0^t (t-s)y(s)\nabla s+\frac{(\beta-\alpha)t-\beta T} {(T-\alpha\eta)-\beta(T-\eta)} \int_0^\eta (\eta-s)y(s)\nabla s \\ &\quad +\frac{(1-\beta)t+\beta\eta}{(T-\alpha\eta)-\beta(T-\eta)} \int_0^T (T-s)y(s)\nabla s. \end{align*} The function $u$ presented above is a solution to the problem \eqref{e2.1}-\eqref{e2.2}, and the uniqueness of $u$ is obvious. \end{proof} \begin{lemma}\label{lemm2} Let $0<\alpha<\frac{T}{\eta}$,\ $0\le \beta<\frac{T-\alpha\eta}{T-\eta}$. If $y\in C_{ld}([0, T],\ [0, \infty))$, then the unique solution $u$ of the problem \eqref{e2.1}-\eqref{e2.2} satisfies $$ u(t)\ge 0,\quad t\in[0, T]\subset\mathbb{T}.$$ \end{lemma} \begin{proof} It is known that the graph of $u$ is concave down on $[0, T]$ from $u^{\Delta\nabla}(t)=-y(t)\le 0$, so $$ \frac{u(\eta)-u(0)}{\eta}\ge\frac{u(T)-u(0)}{T}. $$ Combining this with \eqref{e2.2}, we have $$ \frac{1-\beta}{\eta} u(\eta)\ge\frac{\alpha-\beta}{T} u(\eta). $$ If $u(0)<0$, then $u(\eta)<0$. It implies that $\beta\ge\frac{T-\alpha\eta}{T-\eta}$, a contradiction to $\beta<\frac{T-\alpha\eta}{T-\eta}$. If $u(T)<0$, then $u(\eta)<0$, and the same contradiction emerges. Thus, it is true that $u(0)\ge 0$,\ $u(T)\ge 0$, together with the concavity of $u$, we have $$u(t)\ge 0,\quad t\in[0, T]\subset\mathbb{T}.$$ as required. \end{proof} \begin{lemma}\label{lemm3} Let $\alpha\eta\neq T$, $\beta>\max\{\frac{T-\alpha\eta}{T-\eta},0\}$. If $y\in C_{ld}([0, T], [0, \infty))$, then problem \eqref{e2.1}-\eqref{e2.2} has no nonnegative solutions. \end{lemma} \begin{proof} Suppose that problem \eqref{e2.1}-\eqref{e2.2} has a nonnegative solution $u$ satisfying $u(t)\ge 0, t\in[0, T]$ and there is a $t_0\in(0, T)$ such that $u(t_0)>0$. If $u(T)>0$, then $u(\eta)>0$. It implies $$ u(0)=\beta u(\eta)>\frac{T-\alpha\eta}{T-\eta} u(\eta)=\frac {Tu(\eta)-\eta u(T)}{T-\eta}, $$ that is $$ \frac{u(T)-u(0)}{T}>\frac{u(\eta)-u(0)}{\eta}, $$ which is a contradiction to the concavity of $u$. If $u(T)=0$, then $u(\eta)=0$. When $t_0\in (0, \eta)$, we get $u(t_0)>u(\eta)=u(T)$, a violation of the concavity of $u$. When $t_0\in (\eta, T)$, we get $u(0)=\beta u(\eta)=0=u(\eta)T$. \end{remark} \begin{lemma}\label{lemm4} Let $0<\alpha<\frac{T}{\eta}$, $0<\beta<\frac{T-\alpha\eta}{T-\eta}$. If $y\in C_{ld}([0, T],[0, \infty))$, then the unique solution to the problem \eqref{e2.1}-\eqref{e2.2} satisfies \begin{equation} \min_{t\in [0, T]} u(t)\ge \gamma \|u\|, \label{e2.4} \end{equation} where \begin{equation} \gamma:=\min\Big\{\frac{\alpha(T-\eta)}{T-\alpha\eta},\; \frac{\alpha\eta}{T},\; \frac{\beta(T-\eta)}{T},\; \frac{\beta\eta}{T}\Big\}. \label{e2.5} \end{equation} \end{lemma} \begin{proof} It is known that the graph of $u$ is concave down on $[0, T]$ from $u^{\Delta\nabla}(t)=-y(t)\le 0$. We divide the proof into two cases. \noindent Case 1.\; $0<\alpha<1$, then $\frac{T-\alpha\eta}{T-\eta}>\alpha$. For $u(0)=\beta u(\eta)=\frac \beta\alpha u(T)$, it may develop in the following two possible directions. \\ (i)\; $0<\alpha\le\beta$. It implies that $u(0)\ge u(T)$, so $$\min_{t\in[0, T]} u(t)=u(T).$$ Assume $\|u\|=u(t_1)$,\ $t_1\in [0, T)$, then either $0\le t_1\le\eta<\rho(T)$, or $0<\eta\frac{\alpha\eta}{T} u(t_1), $$ so that, $\min_{t\in[0, T]} u(t)\ge\frac{\alpha\eta}{T} \|u\|$. \noindent(ii)\; $0<\beta<\alpha$. It implies that $u(0)\le u(T)$, so $$ \min_{t\in[0, T]} u(t)=u(0). $$ Assume $\|u\|=u(t_2)$, $t_2\in (0, T]$, then either $0\alpha\ge 1$, then $\frac{T-\alpha\eta}{T-\eta}\le\alpha$. In this case, $\beta<\alpha$ is true. It implies that $u(0)\le u(T)$. So, $$ \min_{t\in [0, T]} u(t)=u(0). $$ Assume $\|u\|=u(t_2),\ t_2\in(0, T]$ again. Since $\alpha\ge 1$, it is known that $u(\eta)\le u(T)$, together with the concavity of $u$, we have $0<\eta\le t_2\le T$. Similar to the above discussion, $$ \min_{t\in [0, T]} u(t)\ge\frac{\beta\eta}{T} \|u\|. $$ Summing up, we have $$ \min_{t\in [0, T]} u(t)\ge\gamma \|u\|, $$ where $$ 0<\gamma=\min\Big\{\frac{\alpha(T-\eta)}{T-\alpha\eta},\; \frac{\alpha\eta}{T},\; \frac{\beta(T-\eta)}{T},\; \frac{\beta\eta}{T}\Big\}<1. $$ This completes the proof. \end{proof} \begin{remark} \label{rmk2.6} \rm If $\beta=0$, Anderson obtained the inequality in \cite[Lemma 7]{Ande3} that is $$ \min_{t\in [\eta, T]} u(t)\ge r\|u\|, $$ where $$r\,:=\min\Big\{\frac{\alpha(T-\eta)}{T-\alpha\eta},\ \frac{\alpha\eta}{T},\ \frac{\eta}{T}\Big\}.$$ \end{remark} The following two theorems, Theorem \ref{thm1} (Guo-Krasnoselskii's fixed-point theorem)and Theorem \ref{thm2} (Leggett-Williams fixed-point theorem), will play an important role in the proof of our main results. \begin{theorem}[\cite{GuoDj}]\label{thm1} Let $E$ be a Banach space, and let $K\subset E$ be a cone. Assume $\Omega_1,\Omega_2$ are open bounded subsets of $E$ with $0\in \Omega_1, \ \overline\Omega_1\subset\Omega_2$, and let $$ A:K\cap(\overline \Omega_2 \setminus \Omega_1)\longrightarrow K $$ be a completely continuous operator such that either \begin{enumerate} \item[(i)] $\|Au\| \le \|u\|, \ \ u\in K\cap \partial \Omega_1$, and $\|Au\| \ge\|u\|, \ \ u\in K\cap \partial \Omega_2$; or \item[(ii)] $\|Au\| \ge \|u\|, \ \ u\in K\cap \partial \Omega_1$, and $\|Au\| \le \|u\|, \ \ u\in K\cap \partial \Omega_2$ \end{enumerate} hold. Then $A$ has a fixed point in $K\cap (\overline \Omega_2 \setminus \Omega_1)$. \end{theorem} \begin{theorem}[\cite{Legge}] \label{thm2} Let $P$ be a cone in the real Banach space $E$. Set \begin{gather} P_c:=\{x\in P:\|x\|b\}\neq\emptyset$ and $\psi(Ax)>b$ for all $x\in P(\psi, b, d)$; \item[(ii)]$\|Ax\|b$ for $x\in P(\psi, b, c)$ with $\|Ax\|>d$. \end{enumerate} Then $A$ has at least three fixed points $x_1, x_2$ and $x_3$ in $\overline P_c $ satisfying $$ \|x_1\|b,\quad a<\|x_3\|\quad\text{with } \psi(x_3)0$. \end{enumerate} Define $$ f_0=\lim_{u\to 0^+}\frac{f(u)}{u},\quad f_{\infty}=\lim _{u\to\infty}\frac{f(u)}{u}.$$ For the boundary-value problem \eqref{e1.3}-\eqref{e1.4}, we establish the following existence theorem by using Theorem \ref{thm1} (Guo-Krasnoselskii's fixed-point theorem). \begin{theorem}\label{onesolution} Assume (A1), (A2) hold, and $0<\alpha<\frac T\eta$, $0<\beta<\frac{T-\alpha\eta}{T-\eta}$. If either \begin{enumerate} \item[(C1)]$f_0=0$ and $f_\infty=\infty$ ({\it $f$ is superlinear}), or \item[(C2)]$f_0=\infty$ and $f_\infty=0$ ({\it $f$ is sublinear}), \end{enumerate} \noindent then problem \eqref{e1.3}-\eqref{e1.4} has at least one positive solution. \end{theorem} \begin{proof} It is known that $0<\alpha<\frac T\eta$, $0<\beta<\frac{T-\alpha\eta}{T-\eta}$. From Lemma \ref{lemm1}, $u$ is a solution to the boundary-value problem \eqref{e1.3}-\eqref{e1.4} if and only if $u$ is a fixed point of operator $A$, where $A$ is defined by \begin{equation} \begin{aligned} &Au(t)\\ &=-\int^t_0 (t-s)a(s)f(u(s))\nabla s +\frac{(\beta-\alpha)t-\beta T}{(T-\alpha\eta)-\beta(T-\eta)} \int^{\eta}_0 (\eta-s)a(s)f(u(s))\nabla s\\ &\quad+\frac{(1-\beta)t+\beta\eta}{(T-\alpha\eta)-\beta(T-\eta)} \int^T_0 (T-s)a(s)f(u(s))\nabla s. \end{aligned} \label{e3.1} \end{equation} Denote $$ K=\{u\in C_{ld}([0,T], \mathbb{R}) : u \ge 0, \min_{t\in [0, T]} u(t) \ge\gamma \|u\|\}, $$ where $\gamma$ is defined in \eqref{e2.5}. It is obvious that $K$ is a cone in $C_{ld}([0,T], \mathbb{R})$. Moreover, from (A1), (A2), Lemma \ref{lemm2} and Lemma \ref{lemm4}, $AK\subset K$. It is also easy to check that $A: K\to K$ is completely continuous. \subsection*{Superlinear case} $f_0=0$ and $f_\infty =\infty$. Since $f_0=0$, we may choose $H_1>0$ so that $f(u) \le \epsilon u$, for $0 0$ satisfies $$ \epsilon\frac {T+\beta(T+\eta)}{(T-\alpha\eta)-\beta(T-\eta)} \int^T_0(T-s)a(s)\nabla s\le 1. $$ Thus, if we let $$ \Omega_1=\{u\in C_{ld}([0,T],\ \mathbb{R})\ : \ \|u\| 0$ such that $f(u)\ge \rho u,\ \text{for}\ u \ge \hat H_2$, where $\rho >0 $ is chosen so that $$ \rho\gamma\frac{T-\eta}{(T-\alpha\eta)-\beta(T-\eta)} \int^T_0 sa(s) \nabla s \ge 1. $$ Let $H_2 =\max \{2H_1,\; \frac{\hat H_2}\gamma \}$ and $$ \Omega_2=\{u\in C_{ld}([0, T], \mathbb{R}) : \|u\|0$ such that $f(u)\ge M u $ for $00$ satisfies $$ M\gamma\frac{T-\eta}{(T-\alpha\eta)-\beta(T-\eta)} \int_0^T sa(s)\nabla s\ge 1. $$ Let $$ \Omega_3=\{u\in C_{ld}([0,T], \mathbb{R}) : \|u\| 0$ so that $f(u) \le \lambda u$ for $u\ge \hat H_4$, where $\lambda>0$ satisfies $$ \lambda\frac{T+\beta(T+\eta)}{(T-\alpha\eta)-\beta(T-\eta)} \int_0^T (T-s)a(s)\nabla s\le 1. $$ Choose $H_4 =\max \{2H_3,\ \frac {\hat H_4}\gamma \}$. Let $$ \Omega_4=\{u\in C_{ld}([0, T],\ \mathbb{R}) : \|u\|0$ from $0<\eta<\rho(T)$, $0<\alpha<\frac T\eta$, $0<\beta<\frac{T-\alpha\eta}{T-\eta}$. Using Theorem \ref{thm2}(the Leggett-Williams fixed-point theorem), we established the following existence theorem for the boundary-value problem \eqref{e4.1}-\eqref{e4.2}. \begin{theorem}\label{threesolution} Assume (A3) holds, and $0<\alpha<\frac T\eta$, $0<\beta<\frac{T-\alpha\eta}{T-\eta}$. Suppose there exists constants $0b,\quad a<\|u_3\|\quad\text{with } \min_{t\in[0, T]}(u_3)(t)b$, let $d=b/\gamma$, then $\{u\in P(\psi, b, d):\psi(u)>b\}\neq\emptyset$. For $u\in P(\psi, b, d)$, we have $b\le u(t)\le b/\gamma,\ t\in[0, T]$. Combining with (D2), we get $$ f(t, u)\ge\frac b\delta,\quad t\in[\eta, T]. $$ Since $u\in P(\psi, b, d)$, then there are two cases that either $\psi(Au)(t)=Au(0)$, or $\psi(Au)(t)=Au(T)$. As the former holds, we have \begin{align*} \psi(Au)(t) &=\frac{-\beta T}{(T-\alpha\eta)-\beta(T-\eta)} \int_0^\eta (\eta-s)f(s, u(s))\nabla s\\ &\quad +\frac{\beta\eta}{(T-\alpha\eta)-\beta(T-\eta)} \int_0^T (T-s)f(s, u(s))\nabla s\\ &=\frac{\beta\eta}{(T-\alpha\eta)-\beta(T-\eta)} \int_\eta^T T f(s, u(s))\nabla s\\ &\quad+\frac{\beta T}{(T-\alpha\eta)-\beta(T-\eta)} \int_0^\eta s f(s, u(s))\nabla s\\ &\quad-\frac{\beta\eta}{(T-\alpha\eta)-\beta(T-\eta)} \int_0^T s f(s, u(s))\nabla s\\ &>\frac{\beta\eta}{(T-\alpha\eta)-\beta(T-\eta)} \int_\eta^T T f(s, u(s))\nabla s\\ &\quad-\frac{\beta\eta}{(T-\alpha\eta)-\beta(T-\eta)} \int_\eta^T s f(s, u(s))\nabla s\\ &\ge \frac{b\beta\eta}{\delta[(T-\alpha\eta)-\beta(T-\eta)]} \int_\eta^T (T-s)\nabla s \ge b. \end{align*} As the later holds, we have \begin{align*} &\psi(Au)(t)\\ &=-\int_0^T (T-s)f(s, u(s))\nabla s+\frac{(\beta-\alpha)T-\beta T}{(T-\alpha\eta)-\beta(T-\eta)} \int_0^\eta (\eta-s)f(s, u(s))\nabla s\\ &\quad +\frac{(1-\beta)T+\beta\eta}{(T-\alpha\eta)-\beta(T-\eta)} \int_0^T (T-s)f(s, u(s))\nabla s\\ &=\frac{\alpha\eta}{(T-\alpha\eta)-\beta(T-\eta)}\int_0^T (T-s)f(s, u(s))\nabla s\\ &\quad -\frac{\alpha T}{(T-\alpha\eta)-\beta(T-\eta)} \int_0^\eta (\eta-s)f(s, u(s))\nabla s\\ &=\frac{\alpha\eta}{(T-\alpha\eta)-\beta(T-\eta)}\int_\eta^T T f(s, u(s))\nabla s\\ &\quad -\frac{\alpha\eta}{(T-\alpha\eta)-\beta(T-\eta)}\int_0^T s f(s, u(s))\nabla s\\ &\quad +\frac{\alpha T}{(T-\alpha\eta)-\beta(T-\eta)} \int^\eta_0 s f(s, u(s))\nabla s\\ &> \frac{\alpha\eta}{(T-\alpha\eta)-\beta(T-\eta)} \int_\eta^T T f(s, u(s))\nabla s\\ &\quad -\frac{\alpha\eta}{(T-\alpha\eta)-\beta(T-\eta)} \int_\eta^T s f(s, u(s))\nabla s\\ &\ge \frac{b\alpha\eta}{\delta[(T-\alpha\eta)-\beta(T-\eta)]} \int_\eta^T (T-s)\nabla s \ge b. \end{align*} So, $\psi(Au)>b,\ u\in P(\psi, b, b/\gamma)$, as required. For the condition (iii) of the Theorem \ref{thm2}, we can verify it easily under our assumptions using Lemma \ref{lemm4}. Here $$ \psi(Au)=\min_{t\in [0, T]} Au(t) \ge \gamma\|Au\| > \gamma \frac b\gamma = b $$ as long as $u\in P(\psi, b, c)$ with $\|Au\|>b/\gamma$. Since all conditions of Theorem \ref{thm2} are satisfied. We say the problem \eqref{e4.1}-\eqref{e4.2} has at least three positive solutions $u_1$,\ $u_2$,\ $u_3$ with $$ \|u_1\|b,\quad a<\|u_3\|\quad\text{with }\psi(u_3)1$. In this case, $$ \lim_{u\to 0^+} \frac{f(u)}{u}=\lim_{u\to 0^+}u^{p-1}=0, \quad \lim_{u\to\infty} \frac{f(u)}{u}=\lim_{u\to \infty}u^{p-1}=\infty, $$ and (C1) of Theorem \ref{onesolution} holds. So the problem \eqref{e5.1}-\eqref{e5.2} has at least one positive solution by Theorem \ref{onesolution}. \noindent Case 2. $p<1$. In this case, $$ \lim_{u\to 0^+} \frac{f(u)}{u}=\lim_{u\to 0^+}\frac 1{u^{1-p}}=\infty, \quad \lim_{u\to\infty} \frac{f(u)}{u}=\lim_{u\to \infty}\frac 1{u^{1-p}}=0, $$ and (C2) of Theorem \ref{onesolution} holds. So the problem \eqref{e5.1}-\eqref{e5.2} has at least one positive solution by Theorem \ref{onesolution}. Therefore, the boundary-value problem \eqref{e5.1}-\eqref{e5.2} has at least one positive solution when $p\neq 1$. \end{example} \begin{example} \label{exa5.2} Let $\mathbb{T}=\{0\}\cup\{1/2^n:n\in\mathbb{N}_0\}$. Considering the boundary-value problem on $\mathbb{T}$ \begin{gather} u^{\Delta\nabla}(t)+\frac{2005u^3}{u^3+5000}=0,\quad t\in[0, 1]\subset \mathbb{T}, \label{e5.3}\\ u(0)=\frac13 u(\frac1{16}),\quad u(1)=8u(\frac1{16}), \label{e5.4} \end{gather} When taking $T=1$, $\eta=1/16$, $\alpha=8$, $\beta=1/3$, and $$ f(t,u)=f(u)=\frac{2005u^3}{u^3+5000},\quad u\ge 0, $$ we prove the solvability of the problem \eqref{e5.1}-\eqref{e5.2} by means of Theorem \ref{threesolution}. It is clear that $f(\cdot)$ is continuous and increasing on $[0,\infty)$. We can also seen that $$ 0<\alpha\eta=\frac 12<1=T,\quad 0<\beta(T-\eta)=\frac 5{16}10,\quad \frac 15<\|u_3\|\quad\text{with}\quad \min_{t\in[0, T]}(u_3)(t)<10. $$ \end{example} \begin{thebibliography}{99} \bibitem{atici} F. M. Atici and G. Sh. Guseinov; On Green's functions and positive solutions for boundary value problems on time scales, \emph{J. Comput. Appl. Math.}, {\bf 141}(2002), 75-99. \bibitem{avery} R. I. Avery and D. R. Anderson; Existence of three positive solutions to a second-order boundary value problem on a measure chain, \emph{J. Comput. Appl. Math.}, {\bf 141}(2002), 65-73. \bibitem{agarw} R. P. Agarwal and D. O'Regan; Nonlinear boundary value problems on time scales, \emph{Nonlinear Anal.}, {\bf 44}(2001), 527-535. \bibitem{erbep} L. H. Erbe and A. C. Peterson; Positive solutions for a nonlinear differential equation on a measure chain, \emph{Mathematical and Computer Modelling}, {\bf 32}(2000), 571-585. \bibitem{maluo} Ruyun Ma and Hua Luo; Existence of solutions for a two-point boundary value problem on time scales, \emph{Appl. Math. Comput.}, {\bf 150}(2004), 139-147. \bibitem{Ande1} D. R. Anderson; Nonlinear triple-point problems on time scales, \emph{Electron. J. Differential Equations}, {\bf 47}(2004), 1-12. \bibitem{Ande2} D. R. Anderson and R. I. Avery; An even-order three-point boundary value problem on time scales, \emph{J. Math. Anal. Appl.}, {\bf 291}(2004), 514-525. \bibitem{Kaufm} E. R. Kaufmann; Positive solutions of a three-point boundary value problem on a time scale, \emph{Electron. J. Differential Equations}, {\bf 82}(2003), 1-11. \bibitem{Ande3} D. R. Anderson; Solutions to second order three-point problems on time scales, \emph{J. Difference Equations and Applications}, {\bf 8}(2002), 673-688. \bibitem{MaRy1} Ruyun Ma; Positive solutions of a nonlinear three-point boundary-value problem, \emph{Electron. J. Differential Equations}, {\bf 34}(1999), 1-8. \bibitem{MaRy2} Ruyun Ma and Y. N. Raffoul; Positive solutions of three-point nonlinear discrete second-order boundary value problem, \emph{J. Difference Equations and Applications}\ {\bf 10}(2004), 129-138. \bibitem{Hilge} S. Hilger; Analysis on measure chains -- a unified approach to continuous and discrete calculus, \emph{Results Math.}, {\bf 18}(1990), 18-56. \bibitem{Bohne} M. Bohner and A. C. Peterson, editors; \emph{Advances in Dynamic Equations on Time Scales}, Birkh\"auser, Boston, 2003. \bibitem{GuoDj} Dajun Guo and V. Lakshmikantham; Nonlinear problems in abstract cones, \emph{Academic Press, San Diego}, 1988. \bibitem{Legge} R. W. Leggett and L. R. Williams; Multiple positive fixed points of nonlinear operators on ordered Banach spaces, \emph{Indiana. University Math. J.}\ {\bf 28}(1979), 673-688. \end{thebibliography} \end{document}