\documentclass[reqno]{amsart} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2005(2005), No. 23, pp. 1--7.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2005 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2005/23\hfil Extinction for fast diffusion equations] {Extinction for fast diffusion equations with nonlinear sources} \author[Y. Li, J. Wu\hfil EJDE-2005/23\hfilneg] {Yuxiang Li, Jichun Wu} \address{Yuxiang Li \hfill\break Department of Mathematics, Southeast University, Nanjing 210096, China. \hfill\break Department of Earth Sciences, Nanjing University, Nanjing 210093, China} \email{lieyuxiang@yahoo.com.cn} \address{Jichun Wu\hfill\break Department of Earth Sciences, Nanjing University, Nanjing 210093, China} \email{jcwu@nju.edu.cn} \date{} \thanks{Partially supported by project40272106 from the National Science Foundation of China, \hfill\break\indent and by the Teaching and Research Award Program for Outstanding Young Teacher \hfill\break\indent of the Ministry of Education, China.} \thanks{Submitted September 15, 2004. Published February 20, 2005.} \subjclass[2000]{35K20, 35K55} \keywords{Extinction; fast diffusion; first eigenvalue} \begin{abstract} We establish conditions for the extinction of solutions, in finite time, of the fast diffusion problem $u_t=\Delta u^m+\lambda u^p$, $02$. More precisely, we show that if $p>m$, the solution with small initial data vanishes in finite time, and if $p0$. If $p=m$, then first eigenvalue of the Dirichlet problem plays a role. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{thm}{Theorem}[section] \newtheorem{defn}[thm]{Definition} \newtheorem{rem}[thm]{Remark} \section{Introduction} In this paper we are concerned with the porous medium equation \begin{equation}\label{e:main} \begin{gathered} u_t=\Delta u^m+\lambda u^p,\quad x\in\Omega,\; t>0,\\ u=0, \quad x\in\partial\Omega,\; t>0,\\ u(x,0)=u_0(x)\geq 0, \quad x\in\Omega, \end{gathered} \end{equation} with $00$, where $\Omega\subset R^N$, $N>2$, is an open bounded domain with smooth boundary $\partial\Omega$. We are interested in the extinction of the nonnegative solution of (\ref{e:main}). The phenomena of extinction have been studied extensively for (\ref{e:main}) with $\lambda\leq 0$. When $\lambda<0$, for the case of slow diffusion, see \cite{CMM, GV1, GV2, GV3, Ka,Ker, RK}. For $m=1$ we refer the reader to \cite{HV}. And for the case of fast diffusion, see \cite{BU, FV, Le, PZ1, PZ2}. When $\lambda=0$ and $01$, it is well known that the solution blows up in finite time for sufficiently large initial data; see \cite{GV4, SGKM}. In this paper we show that the solution of (\ref{e:main}) vanishes in finite time for sufficiently small initial data. If $0m$, there is a maximal positive solution of (\ref{e:main}). If $p0$. \end{defn} According to \cite[Thm. 2.1]{A1} and \cite[Thm. 2.1, 2.2, 2.3]{A2}, if $p>m$ or $p=m$ and $\lambda\leq \lambda_1$, the nonnegative solution of (\ref{e:main}) is unique. Moreover, if $u_0\geq v_0\geq 0$, then $u\geq v$. If $p\lambda_1$, then the maximal solution $U(x,t)$ of (\ref{e:main}) with $u_0\equiv 0$ has $U(x,t)\neq 0$, and $U(x,t)$ satisfies a subsolution comparison theory. Put \begin{equation}\label{e:subsolution} v(x,t)=g(t)\psi^{1/m}(x), \end{equation} where $\psi(x)$ is the first eigenfunction of (\ref{e:eigenvalue problem}) with $\max\psi(x)=1$. If $g(t)$ satisfies the ordinary differential equation \begin{gather*} g'(t)=(\lambda-\lambda_1)g^m(t),\quad g(0)=0,\\ g(t)>0,\quad\mbox{for } t>0, \end{gather*} it can be verified easily that $v(x,t)$ is a subsolution of (\ref{e:main}) for $p=m$ and $\lambda>\lambda_1$. If $p0,\quad\mbox{for } t>0. \end{gather*} Then $v(x,t)$ is also a subsolution of (\ref{e:main}). The fact that $U(x,t)>0$ in $\Omega$ for all $t>0$ follows from the subsolution comparison theory. From the above, we have the following statement. \begin{thm} Assume that $p\lambda_1$. Then for any nonnegative initial data $u_0\in L^{\infty}(\Omega)$, the maximal solution $U(x,t)$ of {\rm (\ref{e:main})} can't vanishes in finite time. \end{thm} For the case $p=m$ and $\lambda=\lambda_1$, $k\psi(x)$, $k>0$, is a steady state solution of (\ref{e:main}). Then for any nontrivial nonnegative initial data, the solution $u(x,t)$ of (\ref{e:main}) satisfies that $u(x,t)>0$ in $\Omega$ for $t>0$ or $u(x,t)$ is identically zero. In the next section we consider the case $p>m$ or $p=m$ and $\lambda\leq \lambda_1$. \section{Extinction in finite time} The regularities of the solution of (\ref{e:main}) can be found in \cite{Sa}. Multiplying the first equation of (\ref{e:main}) by $u^{s-1}$, $s>1$, and integrating over $\Omega$, we obtain \begin{equation}\label{e:main integral} \frac{1}{s}\frac{d}{dt}\int_{\Omega}u^sdx+\frac{4m(s-1)}{(m+s-1)^2} \int_{\Omega}|\nabla u^{\frac{m+s-1}{2}}|^2dx =\lambda\int_{\Omega}u^{p+s-1}dx. \end{equation} \begin{thm}\label{thm:p large than m} Assume that $0m$. Then the unique solution of {\rm (\ref{e:main})} vanishes in finite time for small initial data. \end{thm} \begin{proof} We consider first the case $p\leq 1$. For $\frac{N-2}{N+2}\leq m<1$, let $s=1+m$ in (\ref{e:main integral}). By the H\"{o}lder inequality and the embedding theorem, we have \begin{align*} \| u(\cdot,t)\|^m_{1+m,\Omega} &\leq |\Omega|^{\frac{m}{1+m}-\frac{N-2}{2N}} \| u^m(\cdot,t)\|_{\frac{2N}{N-2},\Omega}\\ &\leq \gamma\mid\Omega\mid^{\frac{m}{1+m}-\frac{N-2}{2N}} \| \nabla u^m(\cdot,t)\|_{2, \Omega}. \end{align*} where $\gamma$ is the embedding constant. This remarks in (\ref{e:main integral}) yields the differential inequality \[ \frac{d}{dt}\| u(\cdot,t)\|_{1+m,\Omega} + \gamma^{-2}|\Omega|^{\frac{N-2}{N}-\frac{2m}{1+m}} \| u(\cdot,t)\|^m_{1+m,\Omega} \leq \lambda|\Omega|^{1-\frac{p+m}{1+m}} \| u(\cdot,t)\|^p_{1+m,\Omega}. \] Choose \[ \| u_0\|^{p-m}_{1+m,\Omega}<\lambda^{-1}\gamma^{-2} |\Omega|^{\frac{p-m}{1+m}-\frac{2}{N}}\,. \] Then \begin{equation}\label{e:s 1 m} \frac{d}{dt}\| u(\cdot,t)\|_{1+m,\Omega} +c_1\| u(\cdot,t)\|^m_{1+m,\Omega}\leq 0, \end{equation} where \[ c_1=\gamma^{-2}|\Omega|^{\frac{N-2}{N}-\frac{2m}{1+m}} -\lambda|\Omega|^{1-\frac{p+m}{1+m}} \| u_0\|^{p-m}_{1+m,\Omega}. \] Integrating (\ref{e:s 1 m}) gives \[ \| u(\cdot,t)\|^{1-m}_{1+m,\Omega}\leq \| u_0\|^{1-m}_{1+m,\Omega}-(1-m)c_1t, \] as long as the right side is nonnegative. From this, \[ \| u(\cdot,t)\|_{1+m,\Omega}\leq \| u_0\|_{1+m,\Omega}\big\{1-\frac{(1-m)c_1t} {\| u_0\|^{1-m}_{1+m,\Omega}}\big\}_+^{\frac{1}{1-m}}. \] Next we take $m$ in such that $01. \] By the embedding theorem and the specific choice of $s$, we obtain \[ \|u(\cdot,t)\|^{\frac{m+s-1}{2}}_{s,\Omega} =\|u^{\frac{m+s-1}{2}}(\cdot,t)\|_{\frac{2N}{N-2},\Omega} \leq \gamma\| \nabla u^{\frac{m+s-1}{2}}(\cdot,t)\|_{2,\Omega}. \] We conclude that \[ \frac{d}{dt}\| u(\cdot,t)\|_{s,\Omega} + \gamma^{-2}\frac{4m(s-1)}{(m+s-1)^2} \| u(\cdot,t)\|^m_{s,\Omega} \leq \lambda|\Omega|^{1-\frac{p+s-1}{s}} \| u(\cdot,t)\|^p_{s,\Omega}. \] Choose \[ \|u_0\|^{p-m}_{s,\Omega}<\lambda^{-1}\gamma^{-2}\frac{4m(s-1)}{(m+s-1)^2} |\Omega|^{\frac{p+s-1}{s}-1}\,. \] Then \[ \frac{d}{dt}\| u(\cdot,t)\|_{s,\Omega} +c_2\| u(\cdot,t)\|^m_{s,\Omega}\leq 0, \] where \[ c_2=\gamma^{-2}\frac{4m(s-1)}{(m+s-1)^2} -\lambda|\Omega|^{1-\frac{p+s-1}{s}} \| u_0\|^{p-m}_{s,\Omega}. \] By integration, we have \[ \| u(\cdot,t)\|_{s,\Omega}\leq \| u_0\|_{s,\Omega}\big\{1-\frac{(1-m)c_2t} {\| u_0\|^{1-m}_{s,\Omega}}\big\}_+^{\frac{1}{1-m}}. \] For the case $p>1$, for sufficiently small $k>0$, it can be easily verified that $k\psi^{1/m}(x)$ is a supersolution of (\ref{e:main}), where $\psi(x)$ is the first eigenfunction of (\ref{e:eigenvalue problem}) with $\max\psi(x)=1$. Then \[ u(x,t)\leq k\psi^{1/m}(x), \quad t>0, \] by the comparison principle if $u_0(x)\leq k\psi^{1/m}(x)$ in $\Omega$. From this (\ref{e:main integral}) can be rewritten as \[ \frac{1}{s}\frac{d}{dt}\int_{\Omega}u^sdx+\frac{4m(s-1)}{(m+s-1)^2} \int_{\Omega}|\nabla u^{\frac{m+s-1}{2}}|^2dx \leq\lambda k^{p-1}\int_{\Omega}u^sdx, \] to which the above argument can be applied. The proof is completed. \end{proof} \begin{rem} \label{rmk2.2}\rm The method of the above proof is a modification of the argument in \cite[Prop. 10]{BC} and \cite[Prop. VII. 2.1]{D}. \end{rem} \begin{thm} \label{thm2.3} Assume that $01$ in (\ref{e:main integral}). Then we have \[ \frac{1}{s}\frac{d}{dt}\| u(\cdot,t)\|^s_{s,\Omega} + \big(\frac{4m(s-1)}{(m+s-1)^2}-\frac{\lambda}{\lambda_1}\big)\| \nabla u^{\frac{m+s-1}{2}}(\cdot,t)\|^2_{2,\Omega}\leq 0. \] Set \[ \lambda^*=\frac{(m+s-1)^2}{4m(s-1)}\lambda>\lambda. \] Then if $\lambda_1>\lambda^*$, $u(x,t)$ with any initial data vanishes in finite time. To fill the gap where $m<\frac{N-2}{N+2}$ and $\lambda<\lambda_1<\lambda^*$, we apply a supersolution argument. In fact this supersolution argument can apply to all the case of $00, \\ u=0, \quad x\in\partial\Omega,\; t>0,\\ u(x,0)=u_0(x)\geq 0,\quad x\in\Omega, \end{gathered} \end{equation} $00\quad \mbox{in } \Omega,\; 0m$, we have \begin{equation}\label{e:differential inequality} \frac{d}{dt}\mathcal{H}(u(t))\geq\lambda\big(1-\frac{2m}{p+m}\big) \int_{\Omega}u^{p+m}dx. \end{equation} By the H\"{o}lder inequality, for $p\geq 1$, \[ \frac{d}{dt}\mathcal{H}(u(t))\geq c_3\mathcal{H}^{\frac{p+m}{1+m}}(u(t)), \] where \[ c_3=\lambda\big(1-\frac{2m}{p+m}\big)(1+m)^{\frac{p+m}{1+m}} |\Omega|^{1-\frac{p+m}{1+m}}. \] By integration, if $p>1$, there exists $T^*<\infty$ such that \[ \lim_{t\to T^*}\mathcal{H}(u(t))=\infty, \] provided that $\mathcal{H}(u_0)>0$. When $p=1$, we have \[ \lim_{t\to \infty}\mathcal{H}(u(t))=\infty, \] if $\mathcal{H}(u_0)>0$. For $m0$. Then, \[ \frac{M^{1-p}}{1+m}\int_{\Omega}u^{p+m}dx\geq \mathcal{H}(u_0)+\lambda\big(1-\frac{2m}{p+m}\big) \int_0^t\int_{\Omega}u^{p+m}dx\,ds\,. \] The Gronwall inequality implies that \[ \lim_{t\to \infty}\int_{\Omega}u^{p+m}dx=\infty, \] which is a contradiction. Therefore, we have the following statement. \begin{thm} Assume that $0m$. If $u^m_0\in H_0^1(\Omega)$ satisfies \[ \mathcal{E}(u_0)\leq 0,\ \ \ \mathcal{H}(u_0)>0, \] then there exists $T^*\leq \infty$ such that \[ \lim_{t\to T^*}\| u(\cdot,t)\|_{\infty,\Omega}=\infty. \] \end{thm} \begin{thebibliography}{00} \bibitem{A1} J. R. Anderson; \textit{Local existence and uniqueness of solutions of degenerate parabolic equations}, Comm. Partial Differential Equations \textbf{16} (1991), 105-143. \bibitem{A2} J. R. Anderson; \textit{Necessary and sufficient conditions for the unique solvability of a nonlinear reaction-diffusion model}, J. Math. Anal. Appl. \textbf{228} (1998), 483-494. \bibitem{BC} Ph. Benilan and M. G. Crandall; \textit{The continuous dependence on $\varphi$ of solutions of $u_t-\Delta\varphi(u)=0$}, Indiana Univ. Math. J. \textbf{30} (1981), 161-177. \bibitem{BH} J. G. Berryman and C. J. Holland; \textit{Stability of the separable solution for fast diffusion}, Arch. Ration. Mech. Anal. \textbf{74} (1980), 379-388. \bibitem{BU} M. Borelli and M. Ughi; \textit{The fast diffusion equation with strong absorption: the instantaneous shrinking phenomenon}, Rend. Istit. Mat. Univ. Trieste \textbf{26} (1994), 109-140. \bibitem{CMM} X. Y. Chen, H. Matano and M. Mimura; \textit{Finite-point extinction and continuity of interfaces in a nonlinear diffusion equation with strong absorption}, J. Reine Angew. Math. \textbf{459} (1995), 1-36. \bibitem{D} E. DiBenedetto; Degenerate parabolic equations, Springer-Verlag, New York, 1993. \bibitem{FK} A. Friedman and S. Kamin; \textit{The asymptotic behavior of gas in an $n$-dimensional porous medium}, Trans. Amer. Math. Soc. \textbf{262} (1980), 551-563. \bibitem{FV} R. Ferreira and J. L. Vazquez; \textit{Extinction behavior for fast diffusion equations with absorption}, Nonlinear Anal. \textbf{43} (2001), 943-985. \bibitem{GK} V. A. Galaktionov and J. R. King; \textit{Fast diffusion equation with critical Sobolev exponent in a ball}, Nonlinearity \textbf{15} (2002), 173-188. \bibitem{GPV} V. A. Galaktionov, L. A. Peletier and J. L. Vazquez; \textit{Asymptotics of fast-diffusion equation with critical exponent}, SIAM J. Math. Anal. \textbf{31} (2000), 1157-1174. \bibitem{GV1} V. A. Galaktionov and J. L. Vazquez; \textit{Asymptotic behavior of nonlinear parabolic equations with critical exponents. A dynamical system approach}, J. Funct. Anal. \textbf{100} (1991), 435-462. \bibitem{GV2} V. A. Galaktionov and J. L. Vazquez; \textit{Extinction for a quasilinear heat equation with absorption I. Technique of intersection comparison}, Comm. Partial Differential Equations \textbf{19} (1994), 1075-1106. \bibitem{GV3} V. A. Galaktionov and J. L. Vazquez; \textit{Extinction for a quasilinear heat equation with absorption II. A dynamical system approach}, Comm. Partial Differential Equations \textbf{19} (1994), 1107-1137. \bibitem{GV4} V. A. Galaktionov and J. L. Vazquez; \textit{The problem of blow-up in nonlinear parabolic equations}, Discrete Contin. Dynam. Systems \textbf{8}(2) (2002), 399-433. \bibitem{HV} M. A. Herrero and J. L. L. Velazquez; \textit{On the dynamics of a semilinear heat equation with strong absorption}, J. Math. Anal. Appl. \textbf{170} (1992), 353-381. \bibitem{Ka} A. S. Kalashnikov; \textit{Some problems on the qualitative theory of nonlinear degenerate parabolic second order equations}, Russian Math. Surveys \textbf{42} (1987), 169-222. \bibitem{Ker} R. Kersner; \textit{Degenerate parabolic equations with general nonlinearities}, Nonlinear Anal. \textbf{4} (1980), 1043-1062. \bibitem{King} J. R. King; \textit{Self-similar behavior for the equation of fast nonlinear diffusion}, Philos. Trans. Roy. Soc. London Ser. A \textbf{343} (1993), 337-375. \bibitem{Le} G. Leoni; \textit{A very singular solution for the porous media equation $u_t=\Delta u^m-u^p$ when $0