\documentclass[reqno]{amsart} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2005(2005), No. 30, pp. 1--11.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2005 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2005/30\hfil Existence results] {Existence results for impulsive partial neutral functional differential inclusions} \author[S. K. Ntouyas\hfil EJDE-2005/30\hfilneg] {Sotiris K. Ntouyas} \address{Department of Mathematics, University of Ioannina, 451 10 Ioannina, Greece} \email{sntouyas@cc.uoi.gr} \date{} \thanks{Submitted February 9, 2005. Published March 14, 2005.} \subjclass[2000]{34A60, 34K05, 34K45} \keywords{Impulsive neutral functional differential inclusions; \hfill\break\indent fixed point theorem; existence theorem} \begin{abstract} In this paper we prove existence results for first order semilinear impulsive neutral functional differential inclusions under the mixed Lipschitz and Carath\'eodory conditions. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{definition}[theorem]{Definition} \section{Introduction} The theory of impulsive differential equations is emerging as an important area of investigation since it is much richer that the corresponding theory of differential equations; see the monograph of Lakshmikantham {\em et al} \cite{LBS}. In this paper, we study the existence of solutions for initial value problems for first order impulsive semilinear neutral functional differential inclusions. More precisely in Section 3 we consider first-order impulsive semilinear neutral functional differential inclusions of the form \begin{gather}\label{e11} \begin{gathered} \frac{d}{dt}[x(t)- f(t, x_t)]\in Ax(t)+G(t, x_t)\\ \mbox{a.e. } t\in J:=[0,T], \quad t\neq t_{k} \quad k=1,\dots,m, \end{gathered}\\ \label{e12} x(t_{k}^{+})-x(t_{k}^{-})=I_{k}(x(t_{k}^{-})), \quad k=1,\dots,m, \\ \label{e13} x(t)=\phi(t),\quad t\in [-r,0], \end{gather} where $A$ is the infinitesimal generator of an analytic semigroup of bounded linear operators, $S(t), t\ge 0$ on a Banach space $X$, $ f:J\times \mathcal{D} \to X$ and $G:J\times \mathcal{D} \to \mathcal{P}(X)$; $\mathcal{D}$ consists of functions $\psi:[-r,0]\to X$ such that $\psi$ is continuous everywhere except for a finite number of points $s$ at which $\psi(s)$ and the right limit $\psi(s^+)$ exist and $\psi(s^-)=\psi(s)$; $\phi\in \mathcal{D}$, $(00$ such that \begin{equation}\label{C} \|(-A)^{\alpha}S(t)\|\le \frac{C_{\alpha}}{t^{\alpha}}, \quad 0 1\}$ is unbounded. \end{itemize} \end{theorem} \section{Existence results} Let us state what we mean by a solution of problem (\ref{e11})--(\ref{e13}). For this purpose, we consider the space $PC([-r,T],X)$ consisting of functions $x: [-r,T]\to X$ such that $x(t)$ is continuous almost everywhere except for some $t_{k}$ at which $x(t^{-}_{k})$ and $ x(t^{+}_{k})$, $k=1,\dots,m $ exist and $x(t^{-}_{k})=x(t_{k})$. Obviously, for any $t\in [0,T]$ we have $x_t\in \mathcal{D}$ and $PC([-r,T],X)$ is a Banach space with the norm $$ \|x\|=\sup\{|x(t)|: t\in [-r,T]\}. $$ In the following we set for convenience $$ \Omega=PC([-r,T],X). $$ Also we denote by $AC(J,X)$ the space of all absolutely continuous functions $x: J\to X$. A function $x\in \Omega\cap AC((t_{k},t_{k+1}),X)$, $k=1, \dots, m$, is said to be a solution of (\ref{e11})--(\ref{e13}) if $x(t)-f(t,x_t)$ is absolutely continuous on $J\setminus\{t_1,\dots,t_m\}$ and (\ref{e11})--(\ref{e13}) are satisfied. A multi-valued map $G: J\to \mathcal{P}_{cp, cv}(\mathbb{R}^n)$ is said to be measurable if for every $y\in \mathbb{R}^n$, the function $t\to d(y,G(t)) =\inf \{\|y-x\|: x\in G(t)\}$ is measurable. A multi-valued map $G: J\times\/\mathcal{D} \to \mathcal{P}_{cl}(X)$ is said to be $L^{1}$-Carath\'e\-odory if \begin{itemize} \item[(i)] $t\mapsto G(t,x)$ is measurable for each $x\in \mathcal{D}$, \item[(ii)] $x\mapsto G(t,x)$ is upper semi-continuous for almost all $t\in J$, and \item[(iii)] for each real number $\rho > 0$, there exists a function $h_{\rho}\in L^{1}(J,\mathbb{R}^{+})$ such that $$ \|G(t,u)\|:=\sup\{\|v\|: v\in G(t,u)\}\le h_{\rho}(t), \quad a.e. \quad t\in J $$ for all $u\in \mathcal{D}$ with $\|u\|_\mathcal{D}\le \rho$. \end{itemize} Then we have the following lemmas due to Lasota and Opial \cite{LO}. \begin{lemma}\label{21} If $\dim (X)<\infty$ and $F: J\times X\to \mathcal{P}(X)$ is $L^1$-Carath\'eodory, then $S_{G}^{1}(x)\ne \emptyset$ for each $x\in X$. \end{lemma} \begin{lemma}\label{l22} Let $X$ be a Banach space, $G$ an $L^{1}$-Carath\'eodory multi-valued map with $S_{G}^{1}\ne \emptyset$ where $$ S_{G}^{1}(x):=\{v\in L^{1}(I,\mathbb{R}^n): v(t)\in G(t,x_t)\; a.e.\; t\in J\}, $$ and $\mathcal{K}:L^{1}(J,X)\to C(J,X)$ be a linear continuous mapping. Then the operator $$ \mathcal{K} \circ S_{G}^{1}:C(J,X)\to \mathcal{P}_{cp,cv}(C(J,X)) $$ is a closed graph operator in $C(J,X)\times C(J,X)$. \end{lemma} We need also the following result from \cite{He}. \begin{lemma}\label{hen} Let $v(\cdot), w(\cdot): [0,T]\to [0,\infty)$ be continuous functions. If $w(\cdot)$ is nondecreasing and there are constants $\theta>0, \, 0<\alpha<1$ such that $$ v(t)\le w(t)+\theta\int_0^t\frac{v(s)}{(t-s)^{1-\alpha}}\, ds, \quad t\in [0,T], $$ then $$ v(t)\le e^{\theta^{n}\Gamma(\alpha)^{n}t^{n\alpha}/\Gamma(n\alpha)} \sum_{J=0}^{n-1} \big(\frac{\theta T^{\alpha}}{\alpha}\big)^{j} w(t), $$ for every $t\in [0,T]$ and every $n\in \mathbb{N}$ such that $n\alpha>1$, and $\Gamma(\cdot)$ is the Gamma function. \end{lemma} We consider the following set of assumptions in the sequel. \begin{itemize} \item [(H1)] There exist constants $0<\beta<1, c_1, c_2, L_f$ such that $f$ is $X_{\beta}$-valued, $(-A)^{\beta}f$ is continuous, and \begin{itemize} \item[(i)] $\|(-A)^{\beta}f(t,x)\|\le c_1\|x\|_\mathcal{D}+c_2$, $(t,x)\in J\times \mathcal{D}$ \item[(ii)] $\|(-A)^{\beta}f(t,x_1)-(-A)^{\beta}f(t,x_2)\| \le L_f\|x_1-x_2\|_\mathcal{D}$, $(t,x_i)\in J\times \mathcal{D}$, $i=1,2$, with $$ L_f\big\{ \|(-A)^{-\beta}\| +\frac{C_{1-\beta}T^{\beta}}{\beta}\big\}<1. $$ \end{itemize} \item[(H2)] The multivalued map $G(t,x)$ has compact and convex values for each $(t,x)\in J\times \mathcal{D}$. \item[(H3)] The semigroup $S(t)$ is compact for $t>0$, and there exists $M\ge 1$ such that $$ \|S(t)\|\le M, \quad \mbox{for all } t\ge 0. $$ \item[(H4)] $G$ is $L^{1}$-Carath\'eodory. \item [(H5)] There exists a function $q\in L^1(I,\mathbb{R})$ with $q(t)>0$ for a.e. $t\in J$ and a nondecreasing function $\psi:\mathbb{R}^+\to (0,\infty)$ such that $$ \|G(t,x)\|:=\sup\{\|v\|: v\in G(t,x)\}\le q(t)\psi(\|x\|_\mathcal{D}) \,\,\,\mbox{a.e.}\,\,\, t\in J, $$ for all $x\in \mathcal{D}$. \item [(H6)] The impulsive functions $I_k $ are continuous and there exist constants $c_k$ such that $\|I_k(x)\|\le c_k$, $k=1,\dots,m$ for each $x\in X$. \end{itemize} \begin{theorem}\label{t31} Assume that (H1)--(H6) hold. Suppose that $$ bK_2\int_0^T q (s)\, ds< \int_{K_{0}}^{\infty}\frac{ds}{s+ \psi(s)}, $$ where \begin{gather*} K_{0}= \frac{F}{1-c_1\|(-A)^{-\beta}\|},\quad K_2=\frac{M}{1-c_1\|(-A)^{-\beta}\|}, \\ b=e^{K_1^n(\Gamma(\beta))^{n}T^{n\beta}/\Gamma(n\beta)}\sum_{j=0}^{n-1} \big(\frac{K_1T^{\beta}}{\beta}\big)^{j}, \end{gather*} and $$ F= M \|\phi\|_\mathcal{D}\{1+c_1\|(-A)^{-\beta}\|\} +c_2\|(-A)^{-\beta}\|\{M+1\}+M\sum_{k=1}^{m}c_{k} +\frac{C_{1-\beta}c_2T^{\beta}}{\beta}. $$ Then the initial-value problem (\ref{e11})--(\ref{e13}) has at least one solution on $[-r,T]$. \end{theorem} \begin{proof} Transform the problem (\ref{e11})--(\ref{e13}) into a fixed point problem. Consider the operator $N:\Omega\to \mathcal{P}(\Omega)$ defined by \begin{align*} Nx(t)=\Big\{&h\in \Omega : h(t)= \phi(t) \mbox{ for $t\in [-r,0]$, and } h(t)= S(t)[\phi(0)-f(0,\phi(0))]\\ &+f(t,x_{t})+\int_0^t AS(t-s)f(s,x_s)ds +\int_{0}^{t}S(t-s)v(s)ds \\ &+\sum_{0 < t_k < t}S(t-t_k)I_{k}(x(t_{k}^{-})) \mbox{ for $t\in J$} \Big\}, \end{align*} where $v\in S_{G}^{1}(x)$. Now, we define two operators as follows. $A: \Omega\to \Omega$ by \begin{equation}\label{e32} Ax(t) = \begin{cases} 0, &\mbox{if } t\in [-r,0],\\ \bigl\{-S(t)f(0, \phi) +f(t, x_t) +\int_0^t AS(t-s)f(s,x_s)ds\bigr\}, &\mbox{if } t\in J, \end{cases} \end{equation} and the multi-valued operator $B: \Omega\to \mathcal{P}(\Omega)$ by \begin{equation}\label{e33} \begin{aligned} Bx(t)=\Big\{&h\in \Omega: h(t)=\phi(t)\mbox{ for $t\in [-r,0]$, and } h(t)=S(t)\phi(0) \\ &+\int_{0}^{t}S(t-s)v(s)\,ds +\sum_{00$ such that $\|x\|\le \rho, \forall x\in Q$. Now for each $u\in Bx$, there exists a $v\in S_{G}^{1}(x)$ such that $$ u(t)=S(t)\phi(0)+\sum_{00$ implies the continuity in the uniform operator topology. This proves the equicontinuity for the case where $t\neq t_{i}$, $i=1,\dots, m+1$. It remains to examine the equicontinuity at $t=t_{i}$. Set $$ h_{1}(t)=S(t)\phi(0)+\sum_{00$ such that $\{t_{k} : \ k\neq i\}\cap [t_{i}-\delta_{1},t_{i}+\delta_{1}]=\emptyset$, \begin{align*} h_{1}(t_{i})&=S(t_{i})\phi(0)+\sum_{00$ such that $\{t_{k} : k\neq i\}\cap [t_{i}-\delta_{2},t_{i}+\delta_{2}]=\emptyset $. Then \[ \hat{h}(t_{i})=S(t_{i})\phi(0)+\int^{t_{i}}_{0}S(t_{i}-s)v(s) +\sum_{k=1}^{i}S(t_{i}-t_k)I_k(y(t_k)). \] For $01\} $$ is bounded. Let $u\in \mathcal{E}$ be any element. Then there exists $v\in S_{G}^{1}(u)$ such that \begin{align*} u(t)=&\lambda^{-1}S(t)[\phi(0)-f(0,\phi(0))] +\lambda^{-1}f(t,x_{t})\\[0.3cm] &+\lambda^{-1}\int_0^t AS(t-s)f(s,x_s)ds +\lambda^{-1}\int_{0}^{t}S(t-s)v(s)ds\\[0.3cm] &+\lambda^{-1}\sum_{0 < t_k < t}S(t-t_k)I_{k}(x(t_{k}^{-})). \end{align*} Then \begin{align*} \|u(t)\|&\le M\|\phi\|_\mathcal{D}+M\|(-A)^{-\beta}\|[c_1\|\phi\|_\mathcal{ D}+c_2] +\|(-A)^{-\beta}\|[c_1\|u_t\|_\mathcal{D}+c_2]\\ &\quad+\int_0^t \|(-A)^{1-\beta}S(t-s)\|\|(-A)^{\beta}f(s,x_s)\|\, ds\\ &\quad+ M\int_{0}^{t}\, q(s)\psi(\|u_s\|_\mathcal{D}) ds+M\sum_{k=1}^{m}c_{k} \\ &\le M\|\phi\|_\mathcal{D}+M\|(-A)^{-\beta}\|[c_1\|\phi\|_\mathcal{ D}+c_2] +\|(-A)^{-\beta}\|[c_1\|u_t\|_\mathcal{D}+c_2]\\[0.3cm] &\quad+\int_0^t \frac{C_{1-\beta}c_1}{(t-s)^{1-\beta}}\, \|u_s\|_\mathcal{D}\, ds +\frac{C_{1-\beta}c_2T^{\beta}}{\beta}\\[0.3cm] &\quad+ M\int_{0}^{t}\, q(s)\psi(\|u_s\|_\mathcal{D}) ds+M\sum_{k=1}^{m}c_{k} \\ &\le F+c_1\|(-A)^{-\beta}\|\|u_t\|_\mathcal{D}\\[0.3cm] &\quad+\int_0^t \frac{C_{1-\beta}c_1}{(t-s)^{1-\beta}}\, \|u_s\|_\mathcal{D}\, ds+ M\int_{0}^{t}\, q(s)\psi(\|u_s\|_\mathcal{D}) ds,\quad t\in J, \end{align*} where $$ F= M \|\phi\|_\mathcal{D}\{1+c_1\|(-A)^{-\beta}\|\} +c_2\|(-A)^{-\beta}\|\{M+1\}+M\sum_{k=1}^{m}c_{k} +\frac{C_{1-\beta}c_2T^{\beta}}{\beta}. $$ Put $w(t)= \max\{\|u(s)\|: -r\le s\le t\}$, $t\in J$. Then $\|u_t\|_\mathcal{D}\le w(t)$ for all $t\in J $ and there is a point $t^*\in [-r,t]$ such that $w(t)=\|u(t^*)\|$. Hence we have \begin{align*} w(t)&= \|u(t^*)\|\\ &\leq F+c_1\|(-A)^{-\beta}\|\|u_{t^{*}}\|_\mathcal{D}+C_{1-\beta} c_1\int_0^{t^{*}}\frac{\|u_s\|_\mathcal{D}}{(t-s)^{1-\beta}}\,ds\\ &\quad + M\int_{0}^{t^{*}}\, q(s)\psi(\|u_s\|_\mathcal{D}) ds\\ &\le F+ c_1\|(-A)^{-\beta}\| w(t)+C_{1-\beta}c_1\int_{0}^{t}\frac{w(s)}{(t-s)^{1-\beta}}\, ds + M\int_{0}^{t}q(s)\psi(w(s))\,ds, \end{align*} or \begin{align*} w(t)&\le \frac{F}{1-c_1\|(-A)^{-\beta}\|}\\ &\quad +\frac{1}{1-c_1\|(-A)^{-\beta}\|}\Bigl\{C_{1-\beta}c_1\int_{0}^{t}\frac{w(s)}{ ( t-s)^{1-\beta}}\, ds+ M\int_{0}^{t}q(s)\psi(w(s))\,ds\Bigr\}\\ &\le K_0+K_1 \int_{0}^{t}\frac{w(s)}{(t-s)^{1-\beta}}\, ds+K_2 \int_{0}^{t}q(s)\psi(w(s))\,ds,\quad t\in I, \end{align*} where $$K_{0}= \frac{F}{1-c_1\|(-A)^{-\beta}\|},\quad K_1=\frac{C_{1-\beta}c_1}{1-c_1\|(-A)^{-\beta}\|}\quad\mbox{ and}\quad K_{2}=\frac{M}{1-c_1\|(-A)^{-\beta}\|}. $$ From Lemma \ref{hen} we have $$ w(t)\le b\big(K_0+K_2\int_{0}^{t}q(s)\psi(w(s))\,ds\big), $$ where $$ b=e^{K_1^n(\Gamma(\beta))^{n}T^{n\beta}/\Gamma(n\beta)}\sum_{j=0}^{n-1} \Big(\frac{K_1T^{\beta}}{\beta}\Big)^{j}. $$ Let $$ m(t)=b\Big( K_{0}+ K_{2} \int_0^t q(s) \psi(w(s) )\,ds\Big),\quad t\in J. $$ Then we have $w(t)\le m(t)$ for all $t\in J$. Differentiating with respect to $t$, we obtain $$ m'(t)=bK_{2} q(t) \psi(w(t)),\quad \mbox{a.e. } t\in J,\,\,m(0)=K_{0}. $$ This implies $m'(t)\le bK_{2}q(t) \psi(m(t))$ a.e. $t\in J$; that is, $$ \frac{m'(t)}{\psi(m(t))}\le bK_{2}q(t),\quad \mbox{a.e. } t\in J. $$ Integrating from $0$ to $t$, we obtain $$ \int_0^t \frac{m'(s)}{\psi(m(s))}\,ds\le b K_{2}\int_0^tq(s)\, ds. $$ By the change of variable, $$ \int_{K_{0}}^{m(t)}\frac{ds}{\psi(s)}\le b K_{2}\int_0^T q(t)\, ds< \int_{K_{0}}^{\infty}\frac{ds}{\psi(s)}. $$ Hence there exists a constant $M$ such that $ m(t)\le M$ for all $t\in J$, and therefore $$ w(t)\le m(t)\le M \quad \mbox{for all } t\in J. $$ Now from the definition of $w$ it follows that $$ \|u\|=\sup_{t\in[-r,T]}\|u(t)\|=w(T)\le m(T)\le M, $$ for all $u\in \mathcal{E}$. This shows that the set $\mathcal{E}$ is bounded in $\Omega$. As a result the conclusion (ii) of Theorem \ref{t21} does not hold. Hence the conclusion (i) holds and consequently the initial value problem (\ref{e11})--(\ref{e13}) has a solution $x$ on $[-r,T]$. This completes the proof. \end{proof} \begin{thebibliography}{99} \bibitem{D} B. C. Dhage; Multi-valued mappings and fixed points I, {\em Nonlinear Func. Anal. \& Appl.} (to appear). \bibitem{He} E. Hernandez; Existence results for partial neutral functional integrodifferential equations with unbounded delay, {\em J. Math. Anal. Appl.} {\bf 292} (2004), 194--210. \bibitem{LBS} V. Lakshmikantham, D. D. Bainov, and P. S. Simeonov; \textit{Theory of Impulsive Differential Equations}, {World Scientific Pub. Co., Singapore, 1989.} \bibitem{LO} A. Lasota and Z. Opial; An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations, {\em Bull. Acad. Pol. Sci. Ser. Sci. Math. Astronom. Phys.} {\bf 13} (1965), 781-786. \bibitem{Pa} A. Pazy; {\em Semigroups of Linear Operators and Applications to Partial Differential Equations}, Applied Methematical Sciences, vol. 44, Springer Verlag, New York, 1983. \end{thebibliography} \end{document}