\documentclass[reqno]{amsart} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2005(2005), No. 31, pp. 1--14.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2005 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2005/31\hfil Periodic solutions] {Periodic solutions for a delayed predator-prey system with dispersal and impulses} \author[Q. Liu, S. Dong \hfil EJDE-2005/31\hfilneg] {Qiming Liu, Shijie Dong} \address{Qiming Liu \hfill\break Department of Mathematics, Shijiazhuang Mechanical Engineering College, Shijiazhuang 050003, China} \email{llqm2002@yahoo.com.cn} \address{Shijie Dong \hfill\break Department of Mathematics, Shijiazhuang Mechanical Engineering College, Shijiazhuang 050003, China} \email{j\_ds@sina.com} \date{} \thanks{Submitted November 1, 2004. Published March 18, 2005.} \subjclass{34K13, 34K45, 92D25} \keywords{Predator-prey system; impulse; dispersion; periodic solution; \hfill\break\indent coincidence degree} \begin{abstract} A delayed predator-prey system with prey dispersal in n-patch environments and impulse effects is investigated. By using Gaines and Mawhin's continuation theorem of coincidence degree theory, a set of easily verifiable sufficient conditions are derived for the existence of positive periodic solutions to the system. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] % theorems numbered with section # \newtheorem{lemma}[theorem]{Lemma} \section{Introduction} An important and ubiquitous problem in mathematical ecology concerns the effect of environment change in the growth and diffusion of a species in a heterogenous habitat. There have been many studies in the literatures that investigate the population dynamics with diffusion process \cite{k1,l1,s1,t1}. In most of the models considered so far, it has been assumed that all biological and environmental parameters are constants in time. However, any biological or environmental parameters are naturally subject to fluctuation in time. The effects of a periodically varying environment are important for evolutionary theory as the selective forces on systems in a fluctuating environment differ from those in a stable environment. Thus, the assumptions of periodicity of the parameters are a way of incorporating the periodicity of the environment (such as seasonal effects of weather, food supplies, mating habits and so forth); on the other hand, it is generally recognized that some kinds of time delays are inevitable in population interactions. Time delay due to gestation is a common example, because generally the consumption of prey by the predator throughout its past history governs the present birth rate of the predator. Therefore, more realistic models of population interactions should take into account the seasonality of the changing environment and the effect of time delays. There are still some other possible exterior effects under which the population densities change very rapidly. For example, impulse reduction of the population density of a given species is possible after its partial destruction by catching or by poisoning with chemical used at some transitory slots in fishing or agriculture \cite{b1,l2,t2}. Recently, many authors studies the existence of positive periodic solution in population models by using power and effective method of coincidence degree \cite{l3,z1}, In the present paper, we are concerned with the study on the combined effects of dispersion, periodicity of environment, time delays and impulses on the dynamics of predator-prey system. To do so we are devoted to the study of the following delayed periodic predator-prey system with prey dispersal in n-patch environments and impulses \begin{equation} \begin{gathered} \begin{aligned} \dot x_i(t)=&x_i(t)[r_i(t)-a_{ii}(t)x_i(t)-a_{i,n+1}(t)x_{n+1}(t)]\\ &+\sum_{j=1,j\neq i}^nD_j(t)[x_j(t)-x_i(t)],\quad i=1,\dots,n, \end{aligned}\\ \begin{aligned} \dot x_{n+1}(t)=&x_{n+1}(t)\Big[-r_{n+1}(t)+\sum_{j=1}^na_{n+1,j} (t)x_j(t-\sigma_j)\\ &-a_{n+1,n+1}(t)x_{n+1}(t-\sigma_{n+1})\Big],\quad t\neq \tau_k,\; k\in Z_+ , \end{aligned} \\ \Delta (x_i(\tau_k))=-c_{ik}x_i(\tau_k),\quad t=\tau_k, \; k\in Z_+, \quad i=1,2,\dots, n+1. \end{gathered} \label{e1.1} \end{equation} with initial conditions \begin{equation} x_i(s)=\phi_i(s),\quad s\in [-\sigma, 0],\quad \phi_i(0)>0,\quad i=1,\dots,n+1, \label{e1.2} \end{equation} where $x_i(t)$ $(i=1,\dots,n)$ denote the densities of prey species in patch $i$, $x_{n+1}$ denote the densities of all predator for all patches. $r_i(t)$ is the intrinsic growth rate of the prey, $a_{ii}(t)$ is the density-dependent coefficient of the prey species. $a_{i,n+1}(t)$ are the capturing rates of the predator and $a_{n+1,i}/a_{i,n+1}$ are the conversion rates of nutrients into the reproduction of predator, $r_{n+1}(t)$ are the death rates of the predator. $D_i(t)$ $(i=1,2,\dots,n)$ is dispersal rate of prey species, $\sigma_{n+1}\geq 0$ denotes the delay due to negative feedback of the predator species $\sigma_i$ $(i=1,2,\dots,n)$ are the time delays due to gestation, that is, mature adult predators can only contribute to the production of predator biomass. $a_{ii}(t)$, $a_{i,n+1}(t)$, $a_{n+1,i}$ $(i,j=1,\dots,n)$, $r_i(t)$ $(i=1,\dots, n+1)$ and $D_i(t)$ $(i=1,2,\dots,n)$ are continuously positive periodic functions with period $\omega >0$. $c_{ik}$ are positive constants and $00$ such that $c_{i(k+p)}=c_{ik}$, $\tau_{k+p}=\tau_k+\omega$. It is well known that by the fundamental theory of functional differential equations \cite{h1}, system \eqref{e1.1} has a unique solution $x(t)=(x_1(t),\dots,x_{n+1}(t))$ satisfying initial conditions \eqref{e1.2}. It is easy to verify that solutions of \eqref{e1.1} corresponding to initial conditions \eqref{e1.2} are defined on $[0,+\infty)$ and remain positive for all $t\geq 0$. In this paper, the solution of system \eqref{e1.1} satisfying initial conditions \eqref{e1.2} is said to be positive. We shall use the following notation: Let $J\subset R$. Denote by $PC(J,R)$ the set of function $\psi: J\to R$ which are continuous for $t\in J, t\neq \tau_k$, are continuous from the left for $t\in J$ and have discontinuities of the first kind at the points $\tau_k\in J$. Denote the Banach space of $\omega$-periodic functions by $PC_\omega=\{\psi \in PC[0,\omega], R\}| \psi (0)=\psi (\omega)\}$ and we denote $$ \bar{f}=\frac{1}{\omega}\int_{0}^{\omega}f(t)dt,\quad f^L=\min_{t\in [0, \omega]}f(t),\quad f^M=\max_{[0, \omega]}f(t), $$ where $f\in PC_\omega$. The organization of this paper is as follows. In the next section, by using Gaines and Mawhin's continuation theorem of coincidence degree theory, sufficient conditions are derived for the existence of positive periodic solutions of system \eqref{e1.1} with initial conditions \eqref{e1.2}. \section{Main result} In this section, by using Gaines and Mawhin's continuation theorem of coincidence degree theory, we show the existence of positive $\omega$-periodic solutions of \eqref{e1.1}-\eqref{e1.2}. To this end, we first introduce the following notations. Let $X, Z$ be real Banach spaces, let $L$: $\mathop{\rm Dom}L\subset X\to Z$ be a linear mapping, and $N:X\to Z$ be a continuous mapping. The mapping $L$ is called a Fredholm mapping of index zero if $\mathop{\rm dim }\ker L=\mathop{\rm codim}\mathop{\rm Im}L<+\infty$ and $\mathop{\rm Im}L$ is closed in $Z$. If $L$ is a Fredholm mapping of index zero and there exist continuous projectors $P: X\to X$, and $Q: Z\to Z$ such that $\mathop{\rm Im}P=\ker L$, $\ker Q=\mathop{\rm Im}L=\mathop{\rm Im}(I-Q)$, then the restriction $L_P$ of $L\to \mathop{\rm Dom}L\cap \ker P: (I-P)X\to \mathop{\rm Im}L$ is invertible. Denote the inverse of $L_P$ by $K_P$. If $\Omega$ is an open bounded subset of $X$, the mapping $N$ will be called $L$-compact on $\bar{\Omega}$ if $QN(\bar{\Omega})$ is bounded and $K_P(I-Q)N:\bar{\Omega}\to X$ is compact. Since $\mathop{\rm Im}Q$ is isomorphic to $\ker L$, there exists isomorphism $J:\mathop{\rm Im}Q\to \ker L$. For convenience, we introduce the continuation theorem of coincidence degree theory \cite{g1} and compactness criterion for set $F \subset PC_\omega$ \cite{b2} as follows. \begin{lemma} \label{lem1} Let $\Omega\subset X$ be an open bounded set. Let $L$ be a Fredholm mapping of index zero and $N$ be $L$-compact on $\bar\Omega$. Assume \begin{itemize} \item[(a)] For each $\lambda\in (0,1)$, $x\in \partial\Omega\cap\mathop{\rm Dom}L$, $Lx\neq \lambda Nx$ \item[(b)] For each $x\in \partial \Omega\cap \ker L$, $QNx\neq 0$ \item[(c)] $\deg\{JQN, \Omega\cap\ker L, 0\}\neq 0$. \end{itemize} Then $Lx=Nx$ has at least one solution in $\bar\Omega\cap \mathop{\rm Dom}L$. \end{lemma} \begin{lemma}[Compactness criterion] \label{lem2} A set $F \subset PC_\omega $ is relative compact if and only if \begin{itemize} \item[(a)] $F$ is bounded, that is, $\|\psi\|=sup\{|\psi|:t\in J\}\leq M$ for each $x\in F$ and some $ M>0$ \item[(b)] $F$ is quasiequicontinuous in $J$. \end{itemize} \end{lemma} We are now in a position to state our main result on the existence of a positive periodic solution to system \eqref{e1.1}. \begin{theorem} \label{thm1} System \eqref{e1.1} with initial conditions \eqref{e1.2} has at least one strictly positive $\omega$-periodic solution provided that \begin{itemize} \item[(H1)] $$ \sum_{j=1}^na_{n+1,j}^M(\overline{r_j}-\sum_{k=1,k\neq j}^n\overline{D_k}-\frac{1}{\omega}\ln\prod_{k=1}^p\frac{1}{1-c_{jk}})/a_{jj}^M>\overline{r_{n+1}} +\frac{1}{\omega}\ln\prod_{k=1}^p\frac{1}{1-c_{n+1,k}} $$ \item[(H2)] For $i=1,2,\dots,n$, \begin{align*} &\overline{r_i}-\sum_{j=1,j\neq i}^n\overline{D_j}-\frac{1}{\omega}\ln\prod_{k=1}^p\frac{1}{1-c_{ik}}\\ &>a_{i,n+1}^M\frac{A\sum_{j=1}^na_{n+1,j}^M-\overline{r_{n+1}}-\frac{1}{\omega} \ln\prod_{k=1}^p\frac{1}{1-c_{n+1,k}}}{a_{n+1,n+1}^L}, \end{align*} \end{itemize} where $A=\max_{1\leq i\leq n}\{[(r_i-\sum_{j=1,j\neq i}^nD_j)^M+\sum_{j=1,j\neq i}^nD_j^M]/a_{ii}^L\}$. \end{theorem} \begin{proof} Since solutions of \eqref{e1.1}-\eqref{e1.2} remain positive for all $t\geq 0$, we let \begin{equation} \quad y_i(t)=\ln [x_i(t)],~i=1, \dots, n+1. \label{e2.1} \end{equation} Substituting \eqref{e2.1} into system \eqref{e1.1}, we derive \begin{equation} \begin{gathered} \begin{aligned} \dot y_i(t)=& r_i(t)-\sum_{j=1,j\neq i}^nD_j(t)-a_{ii}(t)e^{y_i(t)} -a_{i,n+1}(t)e^{y_{n+1}(t)}]\\ &+\sum_{j=1,j\neq i}^nD_j(t)e^{y_j(t)-y_i(t)},\quad i=1,\dots, n, \end{aligned}\\ \begin{aligned} \dot y_{n+1}(t)=&-r_{n+1}(t)+\sum_{j=1}^na_{n+1,j}(t)e^{y_j(t-\sigma_j)} -a_{n+1,n+1}(t)e^{y_{n+1}(t-\sigma_{n+1})},\\ & t\neq\tau_k, \; k\in Z_+, \end{aligned}\\ \Delta (y_i(\tau_k))=\ln(1-c_{ik}),\quad t=\tau_k, ~k\in Z_+, \quad i=1,2,\dots,n+1. \end{gathered} \label{e2.2} \end{equation} It is easy to see that if \eqref{e2.2} has one $\omega$-periodic solution $(y_1^*(t),\dots,y_{n+1}^*(t))^T,$ then $x^*(t)=(x_1^*(t),\dots,x_{n+1}^*(t))^T=(\exp[y_1^*(t)],\dots,\exp[y_{n+1}^*(t)])^T$ is a positive $\omega$-periodic solution of system \eqref{e1.1}. Therefore, to complete the proof, it suffices to show that system \eqref{e2.2} has one $\omega$-periodic solution. Let $$ X=\{x\in PC(R,R^{n+1}): y(t+\omega)=y(t)\}, $$ with the norm $\| x\| =\sup_{t\in [0,\omega]}\sum_{i=1}^{n+1}|y_i(t)|$, where $x=(y_1,y_2,\dots,y_{n+1})^T$. Let $Z=X\times R^{np}$ with the norm $\| (x,a_1,\dots,a_p)\|=(\|x\|^2+|a_1|^2+\dots+|a_p|^2)^{1/2}$\,. Then $X$ and $Z$ are Banach spaces. Let $$L: \mathop{\rm Dom}L\to Z \quad L(x)(t)=(\dot x, \Delta (y(\tau_1),\dots,\Delta (y(\tau_p)) $$ where $\mathop{\rm Dom}L$ consist of functions $x\in X$ such that $x$ is continuous for $t\neq \tau_k$, $x$ is continuous from the left for $t=\tau_k$, and $\dot x(\tau_k)$ exists. Let $N: X\to Z$, be defined as $$ (Nx)(t)=(f(t,x(t)), C_1,C_2,\dots,C_p), $$ where $f(t,x)$ equals $$ \begin{pmatrix} r_1(t)-\sum_{j=2}^nD_j(t)-a_{11}(t)e^{y_1(t)}-a_{1,n+1}(t)e^{y_{n+1}(t)}] +\sum_{j=2}^nD_j(t)e^{y_j(t)-y_1(t)}\\ \vdots\\ r_n(t)-\sum_{j=1}^{n-1}D_j(t)-a_{nn}(t)e^{y_n(t)}-a_{n,n+1}(t)e^{y_{n+1}(t)}] +\sum_{j=1}^{n-1}D_j(t)e^{y_j(t)-y_n(t)}\\ -r_{n+1}(t)+\sum_{j=1}^na_{n+1,j}(t)e^{y_j(t-\sigma_j)}-a_{n+1,n+1}(t)e^{y_{n+1}(t-\sigma_{n+1})}, \end{pmatrix} $$ and $$ C_k=(\ln(1-c_{1k}),\ln(1-c_{2k}),\dots,\ln(1-c_{n+1,k}))^T,\quad k=1,2,\dots,p. $$ Define two projectors $P$ and $Q$ as $$ P:X\to \ker L,\quad Py=\frac{1}{\omega}\int_0^{\omega}ydt, $$ $$ Q:Z\to Z,\quad Q(y,C_1,\dots,Cp)=\Big(\frac{1}{\omega}\int_0^{\omega}ydt+\sum_{k=1}^pC_k, \Big\{\begin{pmatrix}0\\\vdots\\0\end{pmatrix}\Big\}_{k=1}^{p}\Big), $$ It is clear that \begin{gather*} \ker L=\{x : x\in X,\; x=h,\; h\in R^{n+1}\},\\ \mathop{\rm Im}L=\{z=(y, C_1,\dots,C_p) \in Z, \; {\int_{0}^{\omega}}y(t)dt+\sum_{k=1}^pC_k=0\}\hbox{ is closed in } Z,\\ \mathop{\rm dim }\ker L=\mathop{\rm codim\, Im}L=n+1. \end{gather*} Therefore, $L$ is a Fredholm mapping of index zero. It is easy to show that $P$ and $Q$ are continuous projectors such that $$ \mathop{\rm Im}P=\ker L,\quad \ker Q=\mathop{\rm Im}L=\mathop{\rm Im}(I-Q). $$ Furthermore, the inverse $K_P$ of $L_P$ exists and is given by $K_P:\mathop{\rm Im}Lto\mathop{\rm Dom}L\cap \ker P$, $$ K_P(z)=\int_{0}^{t}y(s)ds- \frac{1}{\omega}\int_{0}^{\omega}\int_{0}^{t}y(s)ds-\sum_{k=1}^pC_k. $$ Then $QN: X\to Z$ and $K_P(I-Q)N: X\to X$ read $$ QNx=\Big(\frac{1}{\omega}\int_{0}^{\omega}f(t,x)dt+\frac{1}{\omega}\sum_{k=1}^pC_k, \Big\{\begin{pmatrix} 0\\\vdots\\0\end{pmatrix}\Big\}_{k=1}^{p}\Big), $$ \begin{align*} &K_P(I-Q)Nx\\ &=\frac{1}{\omega}\int_{0}^tf(t,x)dt+\frac{1}{\omega}\sum_{t>\tau_k}C_k -\Big(\frac{1}{\omega}\int_{0}^{\omega}\int_{0}^{t}f(t,x)ds+\sum_{k=1}^pC_k\Big)\\ &- \Big((\frac{t}{\omega}-\frac{1}{2})\frac{1}{\omega}\int_{0}^{\omega}f(t,x)dt +\frac{1}{\omega}\sum_{k=1}^pC_k\Big). \end{align*} Clearly, $QN$ and $K_P(I-Q)N$ are continuous. To apply Lemma \ref{lem1}, we need to search for an appropriate open, bounded subset $\Omega$. Corresponding to the operator equation $Lx=\lambda Nx$, $\lambda \in (0,1)$, we obtain \begin{equation} \begin{gathered} \begin{aligned} \dot y_i(t)=&\lambda \Big[r_i(t)-\sum_{j=1,j\neq i}^nD_j(t)-a_{ii}(t)e^{y_i(t)}-a_{i,n+1}(t) e^{y_{n+1}(t)}\Big]\\ &+\sum_{j=1,j\neq i}^nD_j(t)e^{y_j(t)-y_i(t)}],\quad i=1,\dots, n, \end{aligned}\\ \begin{aligned} \dot y_{n+1}(t)=&\lambda\Big[-r_{n+1}(t) +\sum_{j=1}^na_{n+1,j}(t)e^{y_j(t-\sigma_j)} -a_{n+1,n+1}(t)e^{y_{n+1}(t-\sigma_{n+1})}\Big],\\ & t\neq\tau_k,\; k\in Z_+, \end{aligned}\\ \Delta (y_i(\tau_k))=\lambda\ln(1-c_{ik}),\quad t=\tau_k, \; k\in Z_+, \; i=1,2,\dots,n+1. \end{gathered} \label{e2.3} \end{equation} Suppose that $ (y_1(t), \dots, y_{n+1}(t))^T \in X $ is a solution of \eqref{e2.3} for some $\lambda \in (0,1)$. Integrating system \eqref{e2.3} over $[0,\omega]$, for $i=1,2,\dots,n$, we have \begin{equation} \begin{aligned} &{\int_{0}^{\omega}}a_{ii}(t)e^{y_i(t)}dt+ {\int_{0}^{\omega}}a_{i,n+1}(t)e^{y_{n+1}(t)}dt+\ln\prod_{k=1}^p\frac{1}{1-c_{ik}}\\ &={\int_{0}^{\omega}}(r_i(t)-\sum_{j=1,j\neq i}^nD_j(t))dt+\sum_{j=1,j\neq i}^n{\int_0^\omega} D_j(t)e^{y_j(t)-y_i(t)}dt, \end{aligned} \label{e2.4} \end{equation} and \begin{equation} \begin{aligned} &\int_{0}^{\omega}r_{n+1}(t)dt+ \int_{0}^{\omega}a_{n+1,n+1}(t) e^{y_{n+1}(t-\sigma_{n+1})} dt+\ln\prod_{k=1}^p\frac{1}{1-c_{n+1,k}}\\ &=\sum_{j=1}^n\int_{0}^{\omega}a_{n+1,j}(t)e^{y_j(t-\sigma_j)}dt. \end{aligned} \label{e2.5} \end{equation} Multiplying the $i$th equation \eqref{e2.3} by $e^{y_i(t)}$ and integrating over $[0,\omega]$ gives \begin{align*} &\int_{0}^{\omega}a_{ii}(t)e^{2y_i(t)}dt\\ &\leq \int_{0}^{\omega}(r_i(t)-\sum_{j=1,j\neq i}^nD_j(t))e^{y_i(t)}dt+\sum_{j=1,j\neq i}^n\int_0^\omega D_j(t)e^{y_j(t)}dt+\sum_{k=1}^p\Delta(e^{y_i(\tau_k)}), \end{align*} in which $\Delta(e^{y_i(\tau_k)})=[(1-c_{ik})^\lambda-1]e^{y_i(\tau_k)}\leq 0$, then we have \begin{equation} a_{ii}^L\int_{0}^{\omega}e^{2y_i(t)}dt\leq [(r_i-\sum_{j=1,j\neq i}^nD_j)^M]\int_{0}^{\omega}e^{y_i(t)}dt+\sum_{j=1,j\neq i}^nD_j^M\int_0^\omega e^{y_j(t)}dt\,. \label{e2.6} \end{equation} Using the inequality $$ \Big(\int_{0}^{\omega}e^{y_i(t)}dt\Big)^2\leq \omega \int_{0}^{\omega}e^{2y_i(t)}dt, $$ it follows from \eqref{e2.6} that \begin{equation} \frac{1}{\omega}a_{ii}^L(\int_{0}^{\omega}e^{y_i(t)}dt)^2 \leq \big[(r_i-\sum_{j=1,j\neq i}^nD_j)^M\big]\int_{0}^{\omega}e^{y_i(t)}dt+\sum_{j=1,j\neq i}^nD_j^M\int_0^\omega e^{y_j(t)}dt.\label{e2.7} \end{equation} Using the fact that if $i=k$, $$ \int_{0}^{\omega}e^{y_k(t)}dt\geq \max\big\{\int_{0}^{\omega}e^{y_i(t)}dt, i=1,\dots,n\big\} $$ this , together with \eqref{e2.7}, leads to \begin{align*} &\frac{1}{\omega}a_{kk}^L(\int_{0}^{\omega}e^{y_k(t)}dt)^2\\ &\leq \big[(r_k-\sum_{j=1,j\neq k}^nD_j)^M\big]\int_{0}^{\omega}e^{y_k(t)}dt+(\sum_{j=1,j\neq k}^nD_j^M)\int_0^\omega e^{y_k(t)}dt, \end{align*} which implies \begin{equation} \begin{aligned} \max\{\int_{0}^{\omega}e^{y_i(t)}dt, i=1,\dots,n\} \leq& \int_{0}^{\omega}e^{y_k(t)}dt \\ \leq& \frac{[(r_k-\sum_{j=1,j\neq k}^nD_j)^M+\sum_{j=1,j\neq k}^nD_j^M]\omega}{a_{kk}^L}. \end{aligned} \label{e2.8} \end{equation} Set $$ A=\max_{1\leq i\leq n}\Big\{\frac{(r_i-\sum_{j=1,j\neq i}^nD_j)^M+\sum_{j=1,j\neq i}^nD_j^M}{a_{ii}^L}\Big\}, $$ we have from \eqref{e2.8} that \begin{equation} \int_{0}^{\omega}e^{y_i(t)}dt\leq A\omega,\quad i=1,\dots,n. \label{e2.9} \end{equation} Since $y_i\in PC_\omega$, there exists $t_i,T_i\in [0,T]\cup \{\tau_1^+,\tau_2^+,\dots,\tau_p^+\}$ such that $$ y_i(t_i)=\min_{t\in [0,\omega]}y_i(t), \quad y_i(T_i)=\max_{t\in [0,\omega]}y_i(t),\quad i=1,2,\dots,n. $$ It follows from \eqref{e2.9} that \begin{equation} y(t_i)\leq \ln A,\quad i=1,2,\dots,n. \label{e2.11} \end{equation} We derive from \eqref{e2.5} that \begin{equation} \begin{aligned} &{\int_0^\omega} a_{n+1,n+1}(t)e^{y_{n+1}(t-\sigma_{n+1})}dt\\ &\leq \sum_{j=1}^na_{n+1,j}^M{\int_0^\omega}e^{y_j(t-\sigma_j)}dt -\overline{r_{n+1}}\omega-\ln\prod_{k=1}^p\frac{1}{1-c_{n+1,k}}\\ &=\sum_{j=1}^na_{n+1,j}^M{\int_0^\omega} e^{y_j(t)}dt-\overline{r_{n+1}}\omega -\ln\prod_{k=1}^p\frac{1}{1-c_{n+1,k}}\\ &\leq (A\sum_{j=1}^na_{n+1,j}^M-\overline{r_{n+1}})\omega -\ln\prod_{k=1}^p\frac{1}{1-c_{n+1,k}}, \end{aligned}\label{e2.12} \end{equation} which yields $$ y_{n+1}(t_{n+1})\leq \ln\frac{A\sum_{j=1}^na_{n+1,j}^M-\overline{r_{n+1}} -\frac{1}{\omega}\ln\prod_{k=1}^p\frac{1}{1-c_{n+1,k}}}{\overline{a_{n+1,n+1}}}, $$ and \begin{equation} \begin{aligned} {\int_0^\omega} e^{y_{n+1}(t)}dt &=\int_0^\omega e^{y_{n+1}(t-\sigma_{n+1})}dt\\ &\leq \frac{A\sum_{j=1}^na_{n+1,j}^M-\overline{r_{n+1}} -\frac{1}{\omega}\ln\prod_{k=1}^p\frac{1}{1-c_{n+1,k}}}{a_{n+1,n+1}^L}\omega\,. \end{aligned}\label{e2.13} \end{equation} It follows from \eqref{e2.4}, \eqref{e2.5}, \eqref{e2.9} and \eqref{e2.13} that \begin{equation} \begin{aligned} &{\int_{0}^{\omega}}|\dot y_{n+1}(t)|dt\\ &={\int_{0}^{\omega}}\lambda|-r_{n+1}(t)+\sum_{j=1}^na_{n+1,j}(t) e^{y_j(t-\sigma_j)}-a_{n+1,n+1}(t)e^{y_{n+1}(t-\sigma_{n+1})}|dt\\ &\leq{\int_{0}^{\omega}}[r_{n+1}(t)+\sum_{j=1}^na_{n+1,j}(t) e^{y_{n+1}(t-\sigma_j)}+a_{n+1,n+1}(t)e^{y_{n+1}(t-\sigma_{n+1})}]dt\\ &\leq 2{\int_{0}^{\omega}}\sum_{j=1}^na_{n+1,j}(t)e^{y_j(t-\sigma_j)}dt -\ln\prod_{k=1}^p\frac{1}{1-c_{n+1,k}}\\ &< 2A\omega\sum_{j=1}^na_{n+1,j}^M :=d_{n+1}, \end{aligned} \label{e2.14} \end{equation} and \begin{equation} \begin{aligned} {\int_{0}^{\omega}}|\dot y_i(t)|dt &={\int_{0}^{\omega}}\lambda|r_i(t)-\sum_{j=1,j\neq i}^nD_j(t)-a_{ii}(t) e^{y_i(t)}-a_{i,n+1}(t)e^{y_{n+1}(t)}\\ &\quad +\sum_{j=1,j\neq i}^nD_j(t)e^{y_j(t)-y_i(t)}|dt\\ &\leq{\int_{0}^{\omega}}[r_i(t)+\sum_{j=1,j\neq i}^nD_j(t)+a_{ii}(t)e^{y_i(t)}+a_{i,n+1}(t)e^{y_{n+1}(t)}\\ &\quad +\sum_{j=1,j\neq i}^nD_j(t)e^{y_j(t)-y_i(t)}]dt\\ &\leq 2{\int_0^\omega} [a_{ii}(t)e^{y_i(t)}+a_{i,n+1}(t)e^{y_{n+1}(t)}]dt+\ln\prod_{k=1}^p\frac{1}{1-c_{ik}}\\ &\leq 2\big[a_{ii}^M\int_0^\omega e^{y_i(t)}dt+a_{i,n+1}^M{\int_0^\omega} e^{y_{n+1}(t)}dt\big] +\ln\prod_{k=1}^p\frac{1}{1-c_{ik}}\\ &<2A\big[a_{ii}^M +a_{i,n+1}^M(\sum_{j=1}^na_{n+1,j}^M)/a_{n+1,n+1}^L\big]\omega +\ln\prod_{k=1}^p\frac{1}{1-c_{ik}} :=d_i, \end{aligned} \label{e2.15} \end{equation} $i=1,\dots,n$. From \eqref{e2.11}, \eqref{e2.15} and \eqref{e2.13}, \eqref{e2.14}, we have \begin{equation} \begin{aligned} &y_{n+1}(t)\\ & \leq y_{n+1}(t_{n+1})+{\int_{0}^\omega}|\dot y_{n+1}(t)|dt+\big|\ln\prod_{k=1}^p\frac{1}{1-c_{n+1,k}}\big|\\ &\leq \ln\frac{A\sum_{j=1}^na_{n+1,j}^M-\overline{r_{n+1}} -\frac{1}{\omega}\ln\prod_{k=1}^p\frac{1}{1-c_{n+1,k}}}{\overline{a_{n+1,n+1}}} +d_{n+1}+\big|\ln\prod_{k=1}^p\frac{1}{1-c_{n+1,k}}\big|, \end{aligned} \label{e2.16} \end{equation} and \begin{equation} \begin{aligned} y_i(t)\leq& y_i(t_i)+{\int_{0}^\omega}|\dot y_i(t)|dt+\big|\ln\prod_{k=1}^p\frac{1}{1-c_{ik}}\big| \\ \leq&\ln A+d_i+\big|\ln\prod_{k=1}^p\frac{1}{1-c_{ik}}\big|, \quad i=1,2,\dots, n. \end{aligned} \label{e2.17} \end{equation} On the other hand, it follows from \eqref{e2.4} and \eqref{e2.9} that \begin{align*} a_{ii}^Me^{y_i(T_i)}\omega &\geq(\overline{r_i}-\sum_{j=1,j\neq i}^n\overline{D_j})\omega-\ln\prod_{k=1}^p\frac{1}{1-c_{ik}} -a_{i,n+1}^M{\int_0^\omega} e^{y_{n+1}(t)}dt\\ &\geq (\overline{r_i}-\sum_{j=1,j\neq i}^n\overline{D_j})\omega-\ln\prod_{k=1}^p\frac{1}{1-c_{ik}} \\ &\quad-a_{i,n+1}^M\Big(A\sum_{j=1}^na_{n+1,j}^M-\overline{r_{n+1}} -\frac{1}{\omega}\ln\prod_{k=1}^p\frac{1}{1-c_{n+1,k}}\Big)\omega/a_{n+1,n+1}^L, \end{align*} which implies \begin{equation} \begin{aligned} y_i(T_i)\geq& \ln\Big[ \frac 1{a_{ii}^M} \Big( \overline{r_i}-\sum_{j=1,j\neq i}^n\overline{D_j}-\frac{1}{\omega}\ln\prod_{k=1}^p\frac{1}{1-c_{ik}}\\ &\quad -a_{i,n+1}^M(A\sum_{j=1}^na_{n+1,j}^M-\overline{r_{n+1}} -\frac{1}{\omega}\ln\prod_{k=1}^p\frac{1}{1-c_{n+1,k}})/a_{n+1,n+1}^L \Big)\Big] :=\rho_i. \end{aligned} \label{e2.18} \end{equation} From \eqref{e2.14} and \eqref{e2.18} it follows that for $i=1,2\dots,n$, \begin{equation} y_i(t)\geq y_i(T_i)-\int_0^\omega |\dot y_i(t)|dt-|\ln\prod_{k=1}^p\frac{1}{1-c_{ik}}|\geq \rho_i-d_i-|\ln\prod_{k=1}^p\frac{1}{1-c_{ik}}|, \label{e2.19} \end{equation} Note that $$ \int_0^\omega a_{ii}(t)e^{y_i(t)}dt+\int_0^\omega a_{i,n+1}(t)e^{y_{n+1}(t)}dt \geq (\overline{r_i}-\sum_{j=1,j\neq i}^n\overline{D_j})\omega-\ln\prod_{k=1}^p\frac{1}{1-c_{ik}}, $$ which, together with \eqref{e2.5}, leads to \begin{align*} &a_{n+1,n+1}^My_{n+1}(T_{n+1})\omega\\ &\geq\sum_{j=1}^na_{n+1,j}^L{\int_0^\omega} e^{y_j(t)}dt -\overline{r_{n+1}}\omega\\ &\geq \sum_{j=1}^na_{n+1,j}^L\frac{(\overline{r_j}-\sum_{k=1,k\neq j}^n\overline{D_k}-\frac{1}{\omega}\ln\prod_{k=1}^p\frac{1}{1-c_{jk}} -\overline{a_{j,n+1}}e^{y_n+1(T_{n+1})})\omega}{a_{jj}^M}\\ &\quad -\overline{r_{n+1}}\omega-\ln\prod_{k=1}^p\frac{1}{1-c_{n+1,k}} \end{align*} which yields \begin{equation} \begin{aligned} y_{n+1}(T_{n+1})\geq& \frac 1{a_{n+1,n+1}^M+(\sum_{j=1}^na_{n+1,j}^M\overline{a_{j,n+1}})/a_{jj}^M}\\ &\times\Big( \sum_{j=1}^na_{n+1,j}^M\big(\overline{r_j}-\sum_{k=1,k\neq j}^n\overline{D_k}-\frac{1}{\omega}\ln\prod_{k=1}^p\frac{1}{1-c_{jk}}\big)/a_{jj}^M\\ &-\overline{r_{n+1}}-\frac{1}{\omega}\ln\prod_{k=1}^p\frac{1}{1-c_{n+1,k}} \Big) :=\rho_{n+1}. \end{aligned} \label{e2.20} \end{equation} From what has been discussed above, we finally derive that for $i=1,\dots,n$, \begin{align*} &\max_{t\in [0, \omega]}|y_i(t)|\\ &\leq \max\big\{|\ln A|+d_i+|\ln\prod_{k=1}^p\frac{1}{1-c_{ik}}|, |\rho_i|+d_i+|\ln\prod_{k=1}^p\frac{1}{1-c_{ik}}|\big\} :=B_i, \end{align*} and \begin{equation} \begin{aligned} & \max_{t\in [0, \omega]}|y_{n+1}(t) \\ &\leq| \max \{|\ln\frac{A\sum_{j=1}^na_{n+1,j}^M-\overline{r_{n+1}} \frac{1}{\omega}\ln\prod_{k=1}^p\frac{1}{1-c_{n+1,k}}}{\overline{a_{n+1,n+1}}}|\\ &\quad +d_{n+1}+|\ln\prod_{k=1}^p\frac{1}{1-c_{n+1,k}}| ,|\rho_{n+1}|+d_{n+1}+|\ln\prod_{k=1}^p\frac{1}{1-c_{n+1,k}}|\big\} :=B_{n+1}. \end{aligned} \label{e2.21} \end{equation} Clearly, $B_i$ $(i=1,2,\dots,n+1)$ are independent of $\lambda$. Denote $B=\sum_{i=1}^{n+1}B_i+B_0$, here $B_0$ is taken sufficiently large such that each solution $(v_1^\ast,v_2^\ast,...,v_n^\ast,v_{n+1}^\ast)^T$ of the system of algebraic equations \begin{equation} \begin{gathered} \overline{r_i}-\sum_{j=2}^n\overline{D_j}-\frac{1}{\omega}\ln\prod_{k=1}^p\frac{1}{1-c_{ik}} -\overline{a_{ii}}e^{v_i}-\overline{a_{i,n+1}}e^{v_{n+1}} +\sum_{j=1,j\neq i}^n\overline{D_j}e^{v_j-v_i}=0,\\ i=1,2,\dots,n,\\ -\overline{r_{n+1}}-\frac{1}{\omega}\ln\prod_{k=1}^p\frac{1}{1-c_{n+1,k}} +\sum_{j=1}^n\overline{a_{n+1,j}}e^{v_j}-\overline{a_{n+1,n+1}}e^{v_{n+1}}=0, \end{gathered} \label{e2.22} \end{equation} satisfies $\| (v_1^\ast,v_2^\ast,\dots ,v_{n+1}^\ast)^T\| =\sum_{i=1}^{n+1}|v_i^\ast|0 $$ for $i=1, \dots, n$, and \begin{align*} u_{n+1}^\ast&=\frac{1}{\overline{a_{n+1,n+1}}} \Big( \sum_{j=1}^n\overline{a_{n+1,j}}\big(\overline{r_j}-\sum_{j=1,j\neq i}^n\overline{D_j}-\frac{1}{\omega}\ln\prod_{k=1}^p\frac{1}{1-c_{ik}}\big)/(\overline{a_{jj}})\\ &\quad -\overline{r_{n+1}}-\frac{1}{\omega}\ln\prod_{k=1}^p\frac{1}{1-c_{n+1,k}}\Big)\\ &\geq \frac{1}{\overline{a_{n+1,n+1}}} \Big( \sum_{j=1}^na_{n+1,j}^M\big(\overline{r_j}-\sum_{j=1,j\neq i}^n\overline{D_j}-\frac{1}{\omega}\ln\prod_{k=1}^p\frac{1}{1-c_{ik}}\big)/(\overline{a_{jj}})\\ &\quad -\overline{r_{n+1}}-\frac{1}{\omega}\ln\prod_{k=1}^p\frac{1}{1-c_{n+1,k}}\Big) >0. \end{align*} A direct calculation shows that \begin{align*} &\deg (JQN(y_1,y_2,\dots,y_{n+1})^T,\Omega\cap KerL,(0,0,\dots,0)^T)\\ &=\mathop{\rm sgn}\big(\prod_{i=1}^{n+1}(-\overline{a_{ii}})\big)=(-1)^{n+1}\neq 0. \end{align*} Finally, easily we show that the set $\{K_P(I-Q)Nu|u\in\bar{\Omega}\}$ is equicontinuous and uniformly bounded. Using Lemma \ref{lem2} and the Arzela-Ascoli Theorem, we see that $K_P(I-Q)N:\overline{\Omega}\to X$ is compact. Moreover, $QN(\bar{\Omega})$ is bounded. Consequently, $N$ is $L-$compact. We have proved that $\Omega$ satisfies all the requirements in Lemma \ref{lem1}. Hence, system \eqref{e2.2} has at least one $\omega$-periodic solution. Accordingly, system \eqref{e1.1} has at least one positive $\omega$-periodic solution. This completes the proof. \end{proof} \subsection*{Remark} In this paper, by borrowing Gaines and Mawhin's continuation theorem of coincidence degree theory, we have established sufficient conditions for the existence of positive periodic solutions to system \eqref{e1.1} with initial conditions \eqref{e1.2}. We would like to mention here that it is interesting but challenging to discuss the existence of positive periodic solutions of \eqref{e1.1} when we incorporate time delays to the self-regulated terms of the prey in n-patch environments. We leave this for our future work. \begin{thebibliography}{00} \bibitem{b1} G. Ballinger and X. Liu; \emph{Permanence of population growth models with impulse effects}, Mathl. Comput. Modelling, 26 (1997) 59-72. \bibitem{b2} D. Bainov and P. Simeonov; \emph{Impulsive differential equations: periodic solutions and application}, Pitman Monographs and Surveys in pure and applied Mathematics, 66 (1993), p. 25. \bibitem{g1} R. E. Gaines and J. L. Mawhin; \emph{Coincidence Degree and Nonlinear Differential Equations}, Springer-Verlag, Berlin, 1977, p. 40. \bibitem{h1} J. Hale; \emph{Theory of Functional Differential Equations}, Springer-Verlag, Heidelberg, 1977. \bibitem{k1} Y. Kuang and Y. Takeuchi; \emph{Predator-prey system dynamics in models of prey Dispersal in two-patch environment}, Math.Biosci. 120 (1994) 77-98. \bibitem{l1} S. A. Leven; \emph{Dispersion and population interaction}, The Amer. Naturalist, 108 (1974) 207-228. \bibitem{l2} X. Liu and L. Chen; \emph{Complex dynamics of Holling type II Lotka-Volterra predator-prey syetem with impulsive perturbations on predator}, Chaos Solutions and Fractals, 16 (2003) 311-320. \bibitem{l3} Q. Liu; \emph{Periodic solution for a delayed two-predator and one-prey syetem with Holling type II functional response}, Nonlinear Funct. Anal.\& Appl. 9 (2004) 1-13. \bibitem{r1} M. G. Robits and R. R. Kao; \emph{The dynamics of an infectious disease in a population with birth pulses}, Math. Biosci. 149 (1998) 23-36. \bibitem{s1} J. D. Skellem; \emph{Random dispersal in theoretical population}, Biometrika, 38 (1951) 196-216. \bibitem{t1} Y. Takeuchi; \emph{Conflict between the need to forage and the need to avoid competition: Persistence of two-species model}, Math. Biosci. 99 (1990) 181-194. \bibitem{t2} S. Tang and L. Chen; \emph{The periodic predator-prey Lotka-Volterra model with impulsive effect}, J. Mechanics in Medicine and Biology, 2 (2002) 207-206. \bibitem{z1} Z. Zhang and Z. Wang; \emph{Periodic solution for a two-species nonautonomous competition lotka-volterra patch system with time delay}, J. Math. Anal. Appl. 265 (2002) 38-48. \end{thebibliography} \end{document}