\documentclass[reqno]{amsart} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2005(2005), No. 38, pp. 1--9.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2005 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2005/38\hfil Deficiency indices] {Deficiency indices of a differential operator satisfying certain matching interface conditions} \author[P. K. Baruah, M. Venkatesulu\hfil EJDE-2005/38\hfilneg] {Pallav Kumar Baruah, M. Venkatesulu} % in alphabetical order \address{Pallav Kumar Baruah \hfill\break Department of Mathematics and Computer Science\\ Sri Sathya Sai Institute of Higher Learning, Prasanthinilayam, India} \email{baruahpk@yahoo.com} \address{M. Venkatesulu \hfill\break % Senior Professor of Mathematics & Head, P.G. Department of Computer Applications, Arulmigu Kalasalingam College of Engineering, Krishnankoil-626190. Virudhunagar (District), Tamil Nadu, India} \email{venkatesulu\_m2000@yahoo.co.in} \date{} \thanks{Submitted October 7, 2004. Published March 29, 2005.} \subjclass[2000]{34B10} \keywords{Ordinary differential operators; Green's formula; deficiency index; \hfill\break\indent formal selfadjoint boundary-value problems; boundary form; deficiency space} \begin{abstract} A pair of differential operators with matching interface conditions appears in many physical applications such as: oceanography, the study of step index fiber in optical fiber communication, and one dimensional scattering in quantum theory. Here we initiate the study the deficiency index theory of such operators which precedes the study of the spectral theory. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{corollary}[theorem]{Corrolary} \section{Introduction} In the study of acoustic wave guides in the ocean, and of one dimensional time independent scattering in quantum theory, we come across of problems of the from $$ L_1 f_1=\sum_{k=0}^nP_k{df_1^k\over dt^k}=\lambda f_1 $$ defined on an interval $I_1 = (a,c]$ and $$ L_1f_1=\sum_{k=0}^nP_k{df_1^k\over dt^k}=\lambda f_1 $$ defined on an interval $I_2 = [c,b)$, with $-\infty \leq a