\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2005(2005), No. 53, pp. 1--12.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2005 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2005/53\hfil Throughout positive solutions] {Throughout positive solutions of second-order nonlinear differential equations} \author[Z. Zhang, C. Wang, Q. Li, F. Li \hfil EJDE-2005/53\hfilneg] {Zhenguo Zhang, Chunjiao Wang, Qiaoluan Li, Fang Li} % in initial order \address{Zhenguo Zhang \hfill\break College of Mathematics and Information Science, Hebei normal University, Heibei, Shijiazhuang, 050016, China} \email{Zhangzhg@mail.hebtu.edu.cn} \address{Chunjiao Wang \hfill\break College of Mathematics and Information Science, Hebei normal University, Heibei, Shijiazhuang, 050016, China} \email{ccjjj0601@sina.com.cn} \address{Qiaoluan Li \hfill\break College of Mathematics and Information Science, Hebei normal University, Heibei, Shijiazhuang, 050016, China} \email{qll71125@163.com} \address{Fang Li \hfill\break College of Mathematics and Information Science, Hebei normal University, Heibei, Shijiazhuang, 050016, China} \email{lifanglucky@126.com} \date{} \thanks{Submitted December 13, 2004. Published May 19, 2005.} \thanks{Supported by the Natural Science Foundation of Hebei Province and by the Main \hfill\break\indent Foundation of Hebei Normal University} \subjclass[2000]{34C10, 34K11} \keywords{Nonlinear differential equations; neutral term; \hfill\break\indent eventually positive solution; throughout positive solution} \begin{abstract} In this paper, we consider the second-order nonlinear and the nonlinear neutral functional differential equations $$\displaylines{ (a(t)x'(t))'+f(t,x(g(t)))=0,\quad t\geq t_0\cr (a(t)(x(t)-p(t)x(t-\tau))')'+f(t,x(g(t)))=0,\quad t\geq t_0\,. }$$ Using the Banach contraction mapping principle, we obtain the existence of throughout positive solutions for the above equations. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{example}[theorem]{Example} \section{Introduction} Recently, there has been an increasing interest in the study of the oscillation and nonoscillation of solutions of second-order ordinary and delay neutral differential and difference equations. Also eventually positive solutions and asymptotic behavior of nonoscillatory solutions have been investigated widely. Delay differential equations play a very important role in many practical problems. The papers \cite{l1,l2,s1,t1,y2,y3,z1} discuss the oscillation of second order differential and difference equations. The papers \cite{e1,l3} discuss the oscillation and non-oscillation criteria for second order differential equations. Of course there is also the discussion of the existence of eventually positive solutions, such as \cite{y1,l4,y4,y5}. But there are relatively few which guarantee the existence of throughout positive solutions. The paper \cite{w1} studies the positive solutions of the following second order non-neutral ordinary differential equation $$ y''(t)+F(t,y(t))=0,\quad t\geq a $$ where $F: [a,\infty)\times R \to R$ is continuous and nonnegative. We have studied further and extended the results of Erik Wahl\'{e}n \cite{w1} to the self-conjugate and neutral functional differential equations. We obtain the existence of throughout positive solutions by introducing a weighted norm (see \cite{e2,w1}) and using the Banach contraction mapping principle (see \cite{e2}). In this paper, we are concerned with existence of throughout positive solutions for the following self-conjugate nonlinear differential equations \begin{gather} (a(t)x'(t))'+f(t,x(g(t)))=0,\quad t\geq t_0 \label{e1.1}\\ (a(t)(x(t)-p(t)x(t-\tau))')'+f(t,x(g(t)))=0,\quad t\geq t_0 \label{e1.2} \end{gather} where $a(t)>0$ is continuous; $f(t,x)$ is continuous and satisfies $f(t,x)x>0$ for $x\neq 0$; $g(t)$ is continuous, increasing and satisfies $g(t)\leq t$, $\lim_{t\to\infty} g(t)=\infty$. \subsection{Definitions} A solution of differential equation is said to be oscillatory if it has arbitrarily large zeros; otherwise it is said to be non-oscillatory. A solution of differential equation is said to be eventually positive solution if there exists some $T\geq t_0$ such that $x(t)>0$ for all $t\geq T$. A solution of differential equation is said to be throughout positive solution if $x(t)>0$ for all $t\geq t_0$. \subsection*{Related Lemmas} To obtain our main results, we need the following lemma. \begin{lemma} \label{lem1} Assume $x(t)$ is bounded, $\lim_{t\to \infty}p(t)=p$, $p\neq \pm 1$, $$ z(t)=x(t)-p(t)x(t-\tau),\quad \lim_{t\to \infty}z(t)=l, $$ then $\lim_{t\to \infty}x(t) $ exists and $\lim_{t\to \infty}x(t) =l/(1-p)$. \end{lemma} \begin{proof} \textbf{(1)} $p\in(-\infty, -1)$. Since $x(t)$ is bounded, we get that $\limsup_{t\to \infty}x(t)=M$ and $\liminf_{t\to\infty}x(t)=m$ exist. Then there exists a sequence $\{t_n\}$ such that $\lim_{n\to \infty}x(t_n-\tau)=M$ and \[ l =\limsup_{n\to \infty}z(t_n) =\limsup_{n\to \infty}(x(t_n)-p(t_n)x(t_n-\tau)) \geq m-p M \,. \] Similarly there exists a sequence $\{t_n'\}$ such that $\lim_{n\to \infty}x(t_n'-\tau)=m$ and \[ l =\liminf_{n\to \infty}z(t_n') =\liminf_{n\to \infty}(x(t_n')-p(t_n')x(t_n'-\tau)) \leq M-pm \,. \] So we have $M-pm \geq m-pM$, that is, $(1+p)M\geq (1+p)m$. In view of $1+p<0$, we get $M\leq m$. Hence $M=m$ and $\lim_{t\to \infty} x(t)$ exists. By the assumption, we obtain $\lim_{t\to\infty}x(t) =1/(1-p)$. \noindent \textbf{(2)} $p\in (-1,0)$. Similarly, there exists a sequence $\{t_n\}$ such that $\lim_{n\to \infty}x(t_n)=M$. Then there exists a sequence $\{t_n'\}$ such that $\lim_{n\to \infty}x(t_n')=m$ and \begin{gather*} l =\limsup_{n\to \infty}z(t_n) =\limsup_{n\to \infty}(x(t_n)-p(t_n)x(t_n-\tau)) \geq M-pm ,\\ l =\liminf_{n\to \infty}z(t_n') =\liminf_{n\to \infty}(x(t_n')-p(t_n')x(t_n'-\tau)) \leq m-p M \,. \end{gather*} Therefore, $M-pm\leq m-pM$, that is, $(1+p)M\leq (1+p)m$. In view of $1+p>0$, we get $M\leq m$. Hence $M=m$ and $\lim_{t\to \infty} x(t)$ exists. By the assumption, we obtain $\lim_{t\to \infty}x(t) =1/(1-p)$. \noindent \textbf{(3)} $p\in [ 0,1)$. Similarly, there exists a sequence $\{t_n\}$ such that $\lim_{n\to \infty}x(t_n)=M$. Then there exists a sequence $\{t_n'\}$ such that $\lim_{n\to \infty}x(t_n')=m$ and \begin{gather*} l =\limsup_{n\to \infty}z(t_n) =\limsup_{n\to \infty}(x(t_n)-p(t_n)x(t_n-\tau)) \geq M(1-p) ,\\ l =\liminf_{n\to \infty}z(t_n') =\liminf_{n\to \infty}(x(t_n')-p(t_n')x(t_n'-\tau)) \leq m(1-p)\,. \end{gather*} Therefore, $M(1-p)\leq m(1-p)$. In view of $1-p>0$ we get $M\leq m$. Hence $M=m$ and $\lim_{t\to \infty} x(t)$ exists. By the assumption, we obtain $\lim_{t\to \infty}x(t) =1/(1-p)$. \noindent\textbf{(4)} $p\in (1,+\infty)$. Similarly, there exists a sequence $\{t_n\}$ such that $\lim_{n\to \infty}x(t_n-\tau)=M$. Then there exists a sequence $\{t_n'\}$ such that $\lim_{n\to \infty}x(t_n'-\tau)=m$ and \begin{gather*} l =\limsup_{n\to \infty}z(t_n) =\limsup_{n\to \infty}(x(t_n)-p(t_n)x(t_n-\tau)) \leq M(1-p) ,\\ l =\liminf_{n\to \infty}z(t_n') =\liminf_{n\to \infty}(x(t_n')-p(t_n')x(t_n'-\tau)) \geq m(1-p) \,. \end{gather*} Therefore, $M(1-p)\geq m(1-p)$. In view of $1-p<0$ we get $M\leq m$. Hence $M=m$ and $\lim_{t\to \infty} x(t)$ exists. By the assumption, $\lim_{t\to \infty}x(t) =l/(1-p)$ which completes the proof. \end{proof} \section{Main Results} In this section we give existence theorems of throughout positive solutions for equations \eqref{e1.1} and \eqref{e1.2}. First of all we need the following conditions: Assume that the nonlinearity $f$ satisfies a Lipschitz condition \begin{equation} |f(t,u)-f(t,v)| \leq k(t) |u-v| ,\quad \mbox{for } 0\leq u,\; v \leq C \mbox{ and } t\geq t_0, \label{e3.1} \end{equation} where the constant $C$ will be specified in the theorems below, and $k(t)>0$ is a continuous function satisfying \begin{equation} \int_{t_0}^{\infty} \frac{s}{\overline{a}(s)} k(s) ds < \infty , \label{e3.2} \end{equation} where $\overline{a}(s)=\min\{a(\theta):\min \{t_0-\tau,g(t_0)\}\leq \theta \leq s\}$. \begin{theorem} \label{thm3.1} For equation \eqref{e1.1}, we define the set $$ X=\{u\in C^1[t_0,\infty),\; 0\leq u(t)\leq M, \mbox{ for } t\geq t_0; u(t)=u(t_0),\mbox{ for } g(t_0)\leq t1$ such that $0<\frac{l}{N}<1$, where $l(N)=\max\{\frac{G(g(t))}{G(t)}$, $t\geq t_0\}$, $G(t)= \exp (N \int_t^{\infty}\frac{s}{\overline{a}(s)}k(s) ds)$. Then equation \eqref{e1.1} has a throughout positive solution $x(t)$ on $[t_0, \infty)$ satisfying $\lim_{t\to \infty} x(t)=M$. \end{theorem} \begin{proof} Define a mapping $\mathcal{T}$ on $X$ as follows \begin{equation} (\mathcal{T} x)(t)=\begin{cases} M-\int_t^{\infty} \frac{ds}{a(s)} \int_s^{\infty} f(\theta,x(g(\theta)))d \theta & t\geq t_0\\ (\mathcal{T}x)(t_0) & g(t_0)\leq t0$ for $t\geq t_0$. Clearly $x(t)$ satisfies $$ (a(t)x'(t))'+f(t,x(g(t)))=0, $$ thus $x(t)$ is a throughout positive solution of \eqref{e1.1} and $\lim_{t\to\infty}x(t)=M$. The proof is complete. \end{proof} Now we discuss the equation \eqref{e1.2}. \begin{theorem} \label{thm3.2} Assume that $\lim_{t\to\infty}p(t)=p$, where $p\in[0,1)$ and $01$ such that $0<(p+\frac{1}{N})l<1$, where $l(N)=\max\{\frac{G(t-\tau)}{G(t)}, \frac{G(g(t))}{G(t)}, t\geq t_0\}$, $G(t)= \exp\ (N \int_t^{\infty}\frac{s}{\overline{a}(s)}k(s) ds)$. Then equation \eqref{e1.2} has a throughout positive solution $x(t)$ on $[t_0, \infty)$ satisfying $\lim_{t\to\infty}x(t)=M$. \end{theorem} \begin{proof} Define a mapping $\mathcal{T}$ on $X$ as follows $$ (\mathcal{T} x)(t)=\begin{cases} M(1-p)+p(t)x(t-\tau)-\int_t^{\infty} \frac{ds}{a(s)} \int_s^{\infty} f(\theta,x(g(\theta)))d \theta \qquad t\geq t_0\\ (\mathcal{T}x)(t_0) \hfill \min \{t_0-\tau,g(t_0)\}\leq t\leq t_0\,. \end{cases} $$ For $t\geq t_0$, from \eqref{e3.5} and $p(t)\leq p$, we have $0\leq(\mathcal{T}x)(t)\leq M(1-p)+pM=M$, so $\mathcal{T}X\subseteq X$. We introduce the norm $\|\cdot\|$ on $X$, $\|x\|=\sup_{t\geq t_0} |x(t)|/G(t)$. Now we show that $\mathcal{T}$ is a contraction mapping on $X$. For any $x_1,x_2\in X$, in view of the assumptions we have \begin{align*} & \frac{|(\mathcal{T}x_1)(t)-(\mathcal{T}x_2)(t)|}{G(t)}\\ &\leq p(t)\frac{|x_1(t-\tau)-x_2(t-\tau)|}{G(t)}\\ &\quad +\frac{1}{G(t)} \int_t^{\infty} \frac{d s}{a(s)}\int_s^{\infty}|f(\theta, x_1(g(\theta)))-f(\theta, x_2(g(\theta)))| d\theta\\ &\leq p(t)\frac{G(t-\tau)}{G(t)}\frac{|x_1(t-\tau)-x_2(t-\tau)|}{G(t-\tau)}\\ &\quad + \frac{1}{G(t)} \int_t^{\infty} \frac{d s}{a(s)}\int_s^{\infty}|f(\theta, x_1(g(\theta)))-f(\theta, x_2(g(\theta)))| d\theta\\ &\leq p\ l\ \|x_1-x_2\| +\frac{1}{G(t)} \int_t^{\infty} \frac{d s}{a(s)}\int_s^{\infty} \frac{G(g(\theta))k(\theta)|x_1(g(\theta))-x_2(g(\theta))|}{G(g(\theta))} d\theta\\ &\leq p\ l\ \|x_1-x_2\|+ \frac{1}{G(t)} \|x_1-x_2\| \int_t^{\infty} \frac{d s}{a(s)} \int_s^{\infty}G(\theta)k(\theta)\frac{G(g(\theta))}{G(\theta)}d\theta\\ &\leq p\ l\ \|x_1-x_2\|+ \frac{l}{G(t)} \|x_1-x_2\| \int_t^{\infty} \frac{(s-t)G(s)k(s)}{\overline{a}(s)} ds\\ &\leq p\ l\ \|x_1-x_2\|+ \frac{l}{G(t)} \|x_1-x_2\| \int_t^{\infty} \frac{s G(s)k(s)}{\overline{a}(s)} ds\\ &= p\ l\ \|x_1-x_2\|+ \frac{l}{G(t)} \|x_1-x_2\| \int_t^{\infty} (-\frac{1}{N})G'(s)ds\\ &\leq \big(p+\frac{G(t)-1}{N G(t)}\big)\ l\ \|x_1-x_2\|\\ &\leq (p+\frac{1}{N})\ l\ \|x_1-x_2\|. \end{align*} Since $0<(p+\frac{1}{N}) l <1$, $\mathcal{T}$ is a contraction mapping on $X$. Finally we use the Banach fixed point theorem to deduce the existence of a unique fixed point in $X$ $$ x(t)=(\mathcal{T}x)(t)=M(1-p)+p(t)x(t-\tau)-\int_t^{\infty}\frac{ds}{a(s)} \int_s^{\infty} f(\theta,x(g(\theta)))d \theta . $$ From the condition \eqref{e3.5} and $p(t)x(t-\tau)\geq 0$ we know that $x(t)>0$ for $t\geq t_0$. Clearly $x(t)$ satisfies $$ (a(t)(x(t)-p(t)x(t-\tau))')'+f(t,x(g(t)))=0, $$ thus $x(t)$ is a throughout positive solution of \eqref{e1.2} and $$ \lim_{t\to\infty}(x(t)-p(t)x(t-\tau))=M(1-p)\,. $$ In view of the Lemma \ref{lem1}, $\lim _{t\to\infty}x(t)=M$ which completes the proof. \end{proof} \begin{theorem} \label{thm3.3} Assume that $\lim_{t\to\infty}p(t)=p$ where $ p\in (-1,0)$ and $p\leq p(t)<0$ and define \begin{align*} Y&=\{\ u\in C^1[t_0,\infty),\; 0\leq u(t)\leq M(1-p),\mbox{ for} t\geq t_0;\; u(t)=u(t_0),\\ &\quad \mbox{ for } \min\{g(t_0),t_0-\tau\}\leq t1$ such that $0<(\frac{1}{N}-p)l <1$, where $l(N)=\max\{\frac{G(t-\tau)}{G(t)}, \frac{G(g(t))}{G(t)}, t\geq t_0\}$, $G(t)=\exp(N\int_t^{\infty}\frac{s}{\overline{a}(s)}\ k(s) ds)$. Then equation \eqref{e1.2} has a throughout positive solution $x(t)$ on $[t_0, \infty)$ satisfying $\lim_{t\to\infty}x(t)=M$. \end{theorem} \begin{proof} Define a mapping $\mathcal{T}$ on $Y$ as follows $$ (\mathcal{T} x)(t)=\begin{cases} M(1-p)+p(t)x(t-\tau)-\int_t^{\infty} \frac{ds}{a(s)} \int_s^{\infty} f(\theta,x(g(\theta)))d \theta \qquad t\geq t_0\\ (\mathcal{T}x)(t_0) \hfill \min \{t_0-\tau,g(t_0)\}\leq t\leq t_0\,. \end{cases} $$ Since $p(t)<0$, we easily know that $0\leq (\mathcal{T}x)(t)\leq M(1-p)$. So $\mathcal{T}X\subseteq X$. We introduce the norm $\|\cdot\|$ on $Y$, $\|x\|=\sup_{t\geq t_0} |x(t)|/G(t)$. We now show that $\mathcal{T}$ is a contraction mapping on $Y$. Similar to the proof of Theorem \ref{thm3.2}, for any $x_1,x_2\in Y$, in view of the assumptions we have \begin{align*} \frac{|(\mathcal{T}x_1)(t)-(\mathcal{T}x_2)(t)|}{G(t)} &\leq |p(t)|\frac{G(t-\tau)}{G(t)}\frac{|x_1(t-\tau)-x_2(t-\tau)|}{G(t-\tau)}\\ &\quad + \frac{1}{G(t)} \int_t^{\infty} \frac{d s}{a(s)}\int_s^{\infty}|f(\theta, x_1(g(\theta)))-f(\theta, x_2(g(\theta)))| d\theta\\ &\leq |p|\ l\ \|x_1-x_2\|+\frac{l}{N}\|x_1-x_2\|\\ &= (\frac{1}{N}-p)\ l\ \|x_1-x_2\|. \end{align*} Since $0<(\frac{1}{N}-p) l <1$, $\mathcal{T}$ is a contraction mapping on $Y$. Finally we use the Banach fixed point theorem to deduce the existence of a unique fixed point in $Y$, $$ x(t)=(\mathcal{T}x)(t)=M(1-p)+p(t)x(t-\tau)-\int_t^{\infty}\frac{ds}{a(s)} \int_s^{\infty} f(\theta,x(g(\theta)))d \theta . $$ Since $x\in Y$ and $p\leq p(t)<0$, we have $p(t)x(t-\tau)\geq pM(1-p)$. From the inequality and the condition \eqref{e3.6}, we obtain $$ x(t)> M(1-p)+pM(1-p)-M(1-p^2)=0. $$ Hence $x(t)>0$ for $t\geq t_0$. Substituting $x(t)$ into \eqref{e1.2}, we know that $x(t)$ is a throughout positive solution of equation \eqref{e1.2} and $$ \lim_{t\to\infty}(x(t)-p(t)x(t-\tau))=M(1-p). $$ In view of the Lemma \ref{lem1}, $\lim _{t\to\infty}x(t)=M$ which completes the proof. \end{proof} \begin{theorem} \label{thm3.4} Assume that $\lim_{t\to\infty}p(t)=p$ where $ p\in (-\infty,-1)$ and $ p(t)\leq p$. Define \begin{align*} Z&=\big\{\ u\in C^1[t_0,\infty),\; 0\leq u(t)\leq \frac{M(1+|p|)}{|p|}, \mbox{ for }t\geq t_0;\; u(t)=u(t_0),\\ &\quad\mbox{for } g(t_0)\leq t1$ such that $0<\frac{1}{|p|}(1+\frac{l}{N})<1$, where $l(N)=\max\{ \frac{G(g(t))}{G(t)}, t\geq t_0\}$, $G(t)= \exp\ (N \int_t^{\infty} \frac{s}{\overline{a}(s)}\ k(s) ds)$. Then equation \eqref{e1.2} has a throughout positive solution $x(t)$ on $[t_0, \infty)$ satisfying $\lim_{t\to\infty}x(t)=M$. \end{theorem} \begin{proof} Define a mapping $\mathcal{T}$ on $Z$ as follows $$ (\mathcal{T} x)(t)=\left\{\begin{array}{l} \frac{1}{-p(t+\tau)}\big[ M(1-p)-x(t+\tau)-\int_{t+\tau}^{\infty} \frac{ds}{a(s)} \int_s^{\infty} f(\theta,x(g(\theta)))d \theta \big] \; t\geq t_0\\ (\mathcal{T}x)(t_0) \hfill g(t_0)\leq t\leq t_0. \end{array}\right. $$ From \eqref{e3.7}, we have $0\leq (\mathcal{T}x)(t)\leq \frac{M(1+|p|)}{|p|}$. So $\mathcal{T}Z\subseteq Z$. We introduce the norm $\|\cdot\|$ on $Z$, $\|x\|=\sup_{t\geq t_0} |x(t)|/G(t)$. We now show that $\mathcal{T}$ is a contraction mapping on $Z$. For any $x_1,x_2\in Z$, in view of the assumptions we have \begin{align*} & \frac{|(\mathcal{T}x_1)(t)-(\mathcal{T}x_2)(t)|}{G(t)}\\ &\leq \frac{-1}{G(t+\tau)p(t+\tau)}|x_1(t+\tau)-x_2(t+\tau)|\\ &\quad + \frac{-1}{G(t)p(t+\tau)}\int_{t+\tau}^{\infty} \frac{d s}{a(s)} \int_s^{\infty}|f(\theta, x_1(g(\theta)))-f(\theta, x_2(g(\theta)))| d\theta \\ &\leq \frac{1}{|p|}\|x_1-x_2\| +\frac{1}{G(t)|p|} \int_{t+\tau}^{\infty} \frac{d s}{a(s)}\int_s^{\infty} \frac{G(g(\theta))k(\theta)|x_1(g(\theta))-x_2(g(\theta))|}{G(g(\theta))} d\theta\\ &\leq \frac{1}{|p|}\|x_1-x_2\|+ \frac{1}{G(t)|p|} \|x_1-x_2\| \int_{t+\tau}^{\infty} \frac{d s}{a(s)} \int_s^{\infty}G(\theta)k(\theta)\frac{G(g(\theta))}{G(\theta)}d\theta\\ &\leq \frac{1}{|p|}\|x_1-x_2\|+ \frac{l}{G(t)|p|} \|x_1-x_2\| \int_{t+\tau}^{\infty} \frac{(s-t-\tau)G(s)k(s)}{\overline{a}(s)} ds\\ &\leq \frac{1}{|p|}\|x_1-x_2\|+ \frac{l}{G(t)|p|} \|x_1-x_2\| \int_{t+\tau}^{\infty} \frac{s G(s)k(s)}{\overline{a}(s)} ds\\ &= \frac{1}{|p|}\|x_1-x_2\|+ \frac{l}{G(t)|p|} \|x_1-x_2\| \int_{t+\tau}^{\infty} (-\frac{1}{N})G'(s)ds\\ &\leq \frac{1}{|p|}\left(1+l\ \frac{G(t+\tau)-1}{N G(t)}\right)\|x_1-x_2\|\\ &\leq \frac{1}{|p|}(1+\frac{l}{N})\|x_1-x_2\|. \end{align*} Since $0<\frac{1}{|p|}(1+\frac{l}{N})<1$, $\mathcal{T}$ is a contraction mapping on $Z$. Finally we use the Banach fixed point theorem to deduce the existence of a unique fixed point in $Z$, \begin{align*} x(t)&=(\mathcal{T}x)(t)\\ &=\frac{1}{-p(t+\tau)}\Big[M(1-p)-x(t+\tau)-\int_{t+\tau}^{\infty} \frac{ds}{a(s)}\int_s^{\infty} f(\theta,x(g(\theta)))d\theta \Big]. \end{align*} Since $x\in Z$, we have $x(t+\tau)\leq \frac{M(1+|p|)}{|p|}$. From the inequality and the condition \eqref{e3.7}, we obtain $$ x(t)>\frac{1}{-p(t+\tau)}\big[M(1-p)-\frac{M(1+|p|)}{|p|}-\frac{M(p^2-1)}{|p|} \big]=0. $$ Hence $x(t)>0$ for $t\geq t_0$. Substituting $x(t)$ into \eqref{e1.2}, we know that $x(t)$ is a throughout positive solution of \eqref{e1.2} and $$ \lim_{t\to\infty}(x(t)-p(t)x(t-\tau))=M(1-p). $$ In view of Lemma \ref{lem1}, we have $\lim _{t\to\infty}x(t)=M$. The proof is complete. \end{proof} \begin{theorem} \label{thm3.5} Assume that $\lim_{t\to\infty}p(t)=p$ where $ p\in (1,+\infty)$ and $ p(t)\geq p$. Define \begin{align*} \Omega&=\big\{u\in C^1[t_0,\infty),\;0\leq u(t)\leq \frac{M(1+p)}{p}, \mbox{ for }t\geq t_0;\;u(t)=u(t_0), \\ &\quad \mbox{for } g(t_0)\leq t1$ such that $0<\frac{1}{p}(1+\frac{l}{N})<1$, where $l(N)=\max\{\frac{G(g(t))}{G(t)}, t\geq t_0\}$, $G(t)= \exp(N \int_t^{\infty}\frac{s}{\overline{a}(s)}\ k(s) ds)$. Then \eqref{e1.2} has a throughout positive solution~ $x(t)$ on $[t_0, \infty)$ satisfying $\lim_{t\to\infty}x(t)=M$. \end{theorem} \begin{proof} Define a mapping $\mathcal{T}$ on $\Omega$ as follows $$ (\mathcal{T} x)(t)=\begin{cases} \frac{1}{p(t+\tau)}\big[ M(p-1)+x(t+\tau)+\int_{t+\tau}^{\infty} \frac{ds}{a(s)} \int_s^{\infty}f(\theta,x(g(\theta)))d \theta \big] \quad t\geq t_0\\ (\mathcal{T}x)(t_0) \hfill g(t_0)\leq t\leq t_0\,. \end{cases} $$ From \eqref{e3.8}, we have $0\leq (\mathcal{T}x)(t)\leq \frac{p+1}{p}M$. So $\mathcal{T}\Omega \subseteq \Omega$. We introduce the norm $\|\cdot\|$ on $\Omega$, $\|x\|=\sup_{t\geq t_0} |x(t)|/G(t)$. We now show that $\mathcal{T}$ is a contraction mapping on $\Omega$. Similar to the proof of Theorem \ref{thm3.4}, for any $x_1,x_2\in \Omega$, in view of the assumptions we have \begin{align*} & \frac{|(\mathcal{T}x_1)(t)-(\mathcal{T}x_2)(t)|}{G(t)}\\ &\leq \frac{1}{G(t+\tau)p(t+\tau)}|x_1(t+\tau)-x_2(t+\tau)|\\ &\quad + \frac{1}{G(t)p(t+\tau)}\int_{t+\tau}^{\infty} \frac{d s}{a(s)}\int_s^{\infty}|f(\theta, x_1(g(\theta)))-f(\theta, x_2(g(\theta)))| d\theta \\ &\leq \frac{1}{p}(1+\frac{l}{N})\|x_1-x_2\|. \end{align*} Since $0<\frac{1}{p}(1+\frac{l}{N})<1$, $\mathcal{T}$ is a contraction mapping on $\Omega$. Finally we use the Banach fixed point theorem to deduce the existence of a unique fixed point in $\Omega$, \begin{align*} x(t)&=(\mathcal{T}x)(t)\\ &=\frac{1}{p(t+\tau)}\big[M(p-1)+x(t+\tau)+\int_{t+\tau}^{\infty}\frac{ds}{a(s)} \int_s^{\infty} f(\theta,x(g(\theta)))d \theta \big]. \end{align*} Because $p>1$, that is $M(p-1)>0$, and all the other terms which are in the expression of $x(t)$ are nonnegative, we easily know that $x(t)>0$ for $t\geq t_0$. Substituting $x(t)$ into \eqref{e1.2}, we know that $x(t)$ is a throughout positive solution of equation \eqref{e1.2} and $$ \lim_{t\to\infty}(x(t)-p(t)x(t-\tau))=M(1-p). $$ In view of the Lemma \ref{lem1} we have $\lim _{t\to\infty}x(t)=M$. The proof is complete. \end{proof} \section{Examples} \begin{example} \label{ex1} \rm Consider the second order self-conjugate differential equation \begin{equation} (tx'(t))'+\frac{4(t-1)^6}{t^6(t-2)^3}\quad x^3(t-1)=0,\quad t\geq t_0=6. \label{e4.1} \end{equation} In our notation, $a(t)=t$, $\overline{a}(s)=5$, $g(t)=t-1$, $f(t,u)=\dfrac{4(t-1)^6}{t^6(t-2)^3}~u^3$. We choose $M=1$, $k(t)=\dfrac{12(t-1)^6}{t^6(t-2)^3}$, $N=3$. We know that for any $0\leq u,v\leq 1$, \begin{eqnarray*} |f(t,u)-f(t,v)|&=&|~\frac{4(t-1)^6}{t^6(t-2)^3}~(u^3-v^3)| \leq \frac{12(t-1)^6}{t^6(t-2)^3}~|u-v|. \end{eqnarray*} For any $u,v\in X$ $$ \int_{t_0}^{\infty}\frac{s}{\overline{a}(s)}~k(s)~ds=\frac{1}{5}\int_6^{\infty} \frac{12(s-1)^6}{s^5(s-2)^3}~ds< \infty$$ \begin{align*} \int_{t_0}^{\infty}\frac{d s}{a(s)}\int_s^{\infty}f(\theta,u(g(\theta)))\,d\theta &=\int_6^{\infty}\frac{4}{s}~ds\int_s^{\infty}\frac{(\theta-1)^6 (u(\theta-1))^3}{\theta^6 (\theta-2)^3}\,d\theta\\ &\leq \int_6^{\infty}\frac{4}{s}\,ds \int_s^{\infty}\frac{d\theta}{(\theta-2)^3}\\ &= \frac{1}{4}+\frac{1}{2}\ln\frac{4}{6} \leq \frac{1}{4} < 1\,, \end{align*} $$ l=\exp\Big(N \int_{t_0-1}^{t_0}\frac{s}{t_0-1} \frac{12(s-1)^6}{s^6(s-2)^3} ds \Big) =\exp\Big(3 \int_{5}^6\frac{s}{5}\frac{12(s-1)^6}{s^6(s-2)^3} ds\Big)<3. $$ Thus the conditions in Theorem \ref{thm3.1} are satisfied. So \eqref{e4.1} has a throughout positive solution $x(t)$ on $[t_0,\infty)$ and $\lim_{t\to \infty}x(t)=1$. In fact, $x(t)=1-\frac{1}{t^2}$ is such a solution. \end{example} \begin{example} \rm Consider the second-order neutral differential equation \begin{equation} (x(t)-\frac{1}{2}x(t-1))''+\frac{2(t-1)^3-t^3}{(t-1)^3(t-2)^3}x^3(t-1)=0,\quad t\geq t_0=13 .\label{e4.2} \end{equation} Here $a(t)=1$, $\overline{a}(s)=1$, $p(t)=\dfrac{1}{2}$, $g(t)=t-1$, $f(t,u)=\dfrac{[2(t-1)^3-t^3]u^3}{(t-1)^3(t-2)^3}$. We choose $M=1$, $k(t)=\dfrac{3[2(t-1)^3-t^3]}{(t-1)^3(t-2)^3}$, $N=4$. It is easy to show that for any $0\leq u,v\leq 1$, $$ |f(t,u)-f(t,v)|=|\frac{2(t-1)^3-t^3}{(t-1)^3(t-2)^3}(u^3-v^3)|\leq \frac{3[2(t-1)^3-t^3]}{(t-1)^3(t-2)^3}|u-v|. $$ For any $u,v\in X$ $$ \int_{t_0}^{\infty}\frac{s}{\overline{a}(s)}k(s)\,ds =\int_{13}^{\infty}3s \frac{2(s-1)^3-s^3}{(s-1)^3(s-2)^3}\,ds< \infty\,, $$ \begin{align*} \int_{t_0}^{\infty}\frac{d s}{a(s)}\int_s^{\infty}f(\theta,u(g(\theta)))d\theta &=\int_{13}^{\infty}\int_s^{\infty}\frac{2(\theta-1)^3-\theta^3}{(\theta-1)^3 (\theta-2)^3}(u(\theta-1))^3d\theta ds\\ &=\int_{13}^{\infty} (\theta-t)\frac{2(\theta-1)^3-\theta^3}{(\theta-1)^3(\theta-2)^3} (u(\theta-1))^3d\theta\\ &\leq \int_{13}^{\infty}\frac{2\theta}{(\theta-2)^3}~d\theta\\ &= \frac{24}{121}< \frac{1}{2}\,, \end{align*} $$ (p+\frac{1}{N})l=(\frac{1}{2}+\frac{1}{4})\ \exp\ \big(4\int_{12}^{13} s\frac{3[2(s-1)^3-s^3]}{(s-1)^3(s-2)^3}\ ds\big)<1. $$ Thus the conditions in Theorem \ref{thm3.2} are satisfied. So \eqref{e4.2} has a throughout positive solution $x(t)$ on $[t_0,\infty)$ and $\lim_{t\to \infty}x(t)=1$. In fact, $x(t)=1-\frac{1}{t}$ is such a solution. \end{example} \begin{example} \rm Consider the second-order self-conjugate neutral differential equation \begin{equation} \big[\frac{t^3(t-1)}{4((t-1)^3+2t^3)}(x(t)+2x(t-1))'\big]' +\frac{(t-1)^3}{t^3(t-2)^3}~x^3(t-1)=0,\ t\geq t_0=9. \label{e4.3} \end{equation} In our notation, $p(t)=-2$, $g(t)=t-1$, $\tau=1$, $a(t)=\dfrac{t^3(t-1)}{4((t-1)^3+2t^3)}$, $\overline{a}(s)=\frac{896}{1367}$, $f(t,u)=\dfrac{(t-1)^3}{t^3(t-2)^3}~u^3$. We choose that $M=1$, $k(t)=\dfrac{27(t-1)^3}{4t^3(t-2)^3}$, $N=3$. Here we define $Z=\{u\in C^1[t_0,\infty): 0\leq u(t)\leq \frac{3}{2},\; t\geq t_0 \}$. It is easy to show that for any $0\leq u,v\leq \frac{3}{2}$, $$ |f(t,u)-f(t,v)|=|\frac{(t-1)^3}{t^3(t-2)^3}(u^3-v^3)|\leq \frac{27(t-1)^3}{4t^3(t-2)^3} |u-v|. $$ For any $u,v\in Z$, $$ \int_{t_0}^{\infty}\frac{s}{\overline{a}(s)}k(s)\,ds=\frac{1367}{896} \int_9^{\infty} \frac{27(s-1)^3}{4s^2(s-2)^3}~ds< \infty\,, $$ \begin{align*} &\int_{t_0}^{\infty}\frac{ds}{a(s)}\int_s^{\infty}f(\theta,u(g(\theta)))d\theta\\ &\leq \frac{4((t_0-1)^3+2t_0^3)}{t_0^3(t_0-1)}\int_9^{\infty}ds\int_s^{\infty} \frac {(\theta-1)^3(u(\theta-1))^3}{\theta^3(\theta-2)^3}~d\theta\\ &\leq \frac{12}{t_0-1}\int_9^{\infty}ds\int_s^{\infty} \frac{d\theta}{(\theta-2)^3}\\ &= \frac{3}{28} < \frac{3}{2}\,, \end{align*} $$ \frac{1}{|p|}(1+\frac{l}{N})=\frac{1}{2}\Big[1+\frac{1}{3} \exp \Big(3\int_{8}^9 s\frac{4((9-2)^3+2(9-1)^3)}{(9-1)^3(9-2)} \frac{27(s-1)^3}{4s^2(s-2)^3}~ds\Big)\Big]<1. $$ Thus the conditions in Theorem \ref{thm3.4} are satisfied. So \eqref{e4.3} has a throughout positive solution $x(t)$ on $[t_0,\infty)$ and $\lim_{t\to \infty}x(t)=1$. In fact, $x(t)=1-\frac{1}{t^2}$ is such a solution. \end{example} \begin{thebibliography}{00} %%%% no.1. \bibitem{e1} M. M. A. El-Sheikh; {\it Oscillation and nonoscillation criteria for second order nonlinear differential equations.} J. Math. Anal. Appl. 179(1993) 14-27. %%%% no.2. \bibitem{e2} L. H. Erbe; Qingkai. Kong; B. G. Zhang; Oscillation theory for functional differential equations. New York. Basel. Hong Kong, 1995. %%%% no.4. \bibitem{l1} W. T. Li and J. R. Yan; {\it Oscillation criteria for second order superlinear differential equations.} Indina. J. Pure. Appl. Math. 28(6)(1997) 735-740. %%%% no.5. \bibitem{l2} W. T. Li; {\it Oscillation of certain second order nonlinear differential equations.} J. Math. Anal. Appl. 217(1998) 1-14. %%%% no.6. \bibitem{l3} A. Lomtatidze; {\it Oscillation and nonoscillation criteria for second order linear differential equations.} Georgian. Math. Journal. Vol4. No.2 (1997) 129-138. %%%% no.7. \bibitem{l4} K. Y. Liu, Z. Q. Zhang; {\it Existence of positive solutions in neutral differential and differnce equations with delays.} Acta Sci. Nat. Univ. Norm. Hunan . Vol21. (1998) 12-18. %%%% no.8. \bibitem{s1} S. H. Saker; {\it Oscillation of second order nonlinear delay difference equations.} Bull. Korean. Math. Soc. 40(2003) No.3 489-501. %%%% no.9. \bibitem{t1} E. Thandapani, K. Ravi; {\it Oscillation of second order half-linear difference equations.} Applied Math. Letters. 13(2000) 43-49. %%%% no.10. \bibitem{w1} E. Wahl\'{e}n; {\it Positive solutions of second order differential equations.} Nonlinear Analysis. 58(2004) 359-366. %%%% no.3. \bibitem{y1} Jun Yang, Xin Ping Guan; {\it Positive solution of a class of neutral delay difference equations.} Acta Mathematic Sinica. Vol. 44. No.3 (2001) 409-416. %%%% no.11. \bibitem{y2} J. R. Yan; {\it Oscillation of second order neutral functional differential equations.} Appl. Math. Comp. 83(1997) 27-41. %%%% no.12. \bibitem{y3} J. R. Yan; {\it The oscillation properties for the solution of the second order differential equation with "integral small" coefficient.} Acta. Math. Sinica. 30(2)(1987) 206-215. %%%% no.13. \bibitem{y4} X. J. Yang; {\it Nonoscillation criteria for second order nonlinear differential equations.} Appl. Math. Comp. 131(2002) 125-131. %%%% no.14. \bibitem{y5} J. S. Yu, M. P. Chen, H. Zhang; {\it Oscillation and nonoscillation in neutral equations with integrable coefficients.} Comp. Math. Applic. Vol35. No.6 (1998) 65-71. %%%% no.15. \bibitem{z1} Z. G. Zhang, J. L. Zhang; {\it Oscillation criteria for second order functional difference equations with ``summation small" coefficient.} Comp. Math. Appl. 38(1999) 25-31. \end{thebibliography} \end{document}