\documentclass[reqno]{amsart} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2005(2005), No. 66, pp. 1--14.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2005 Texas State University - San Marcos.} \vspace{8mm}} \begin{document} \title[\hfilneg EJDE-2005/66\hfil Integrodifferential inequalities] {Cone-valued impulsive differential and integrodifferential inequalities} \author[S. O. Ale, B. O. Oyelami, M. S. Sesay\hfil EJDE-2005/66\hfilneg] {Sam Olatunji Ale, Benjamin Oyediran Oyelami, Maligie S. Sesay} \address{Sam Olatunji Ale \hfill\break National Mathematical Centre, Abuja, Nigeria} \email{samalenmc@yahoo.com} \address{Benjamin Oyediran Oyelami \hfill\break National Mathematical Centre, Abuja, Nigeria} \email{boyelami2000@yahoo.com} \address{Maligie S. Sesay \hfill\break Mathematical Sciences Programme, Abubakar Tafawa Balewa University, Bauchi, Nigeria} \date{} \thanks{Submitted February 7, 2005. Published June 23,2005.} \subjclass[2000]{34A37} \keywords{Strict set contraction; monotone iterations techniques;\hfill\break\indent measure of non-compactness; maximal solutions} \begin{abstract} In this paper, we present impulsive analogues of the Gronwall-Bellman inequalities. Conditions for the existence of maximal solutions of some integrodifferential equations are obtained by finding upper bounds for these inequalities. Using monotone iterative techniques and a fixed point theorem, we obtained a priori estimates for the inequalities. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{corollary}[theorem]{Corollary} \section{introduction} Integral inequalities play crucial roles in the study of qualitative properties of systems particularly in the process of obtaining results involving the existence, uniqueness, boundedness and stability and comparison equations for the solution of systems of differential and integral equations. The most widely encountered inequalities are the Gronwall-Bellman and Pachpatte families and their varieties; such inequalities have found applications in ordinary differential equations (ODEs) (Akinyele \cite{a1}, Akinyele and Akpan \cite{a2}, Hale \cite{h1}). In the study of impulsive differential equations inequalities play the same crucial role just like the traditional ordinary differential equations (ODEs) ones. Hence, in the last few years, series of impulsive analogues of the Gronwall-Bellman inequalities have been evolved to study quantitative and qualitative properties of impulsive differential equations (Oyelami \cite{o3,o4}, Oyelami et al. \cite{o1,o2}, Bainov and Svetla \cite{b4}, Bainov and Stamova \cite{b5}) In this paper, some new inequalities are proposed with potential applications in impulsive ordinary differential equations (IODEs), impulsive control systems (ICS) and impulsive partial differential equations (IPDEs) which are still in cradle of development. The existing inequalities in (Bainov and Svetla \cite{b4}; Lakshimikantham et.al. cite{l1}) are special cases of these inequalities. Furthermore, by means of monotone iterative technique couple with a fixed point theorem of Guo and Lakshimikantham \cite{g1}, we obtain results on existence of the maxima solutions of the impulsive equation for the solution which gives the upper bound for the inequality .Some special cases of the inequalities were used in Ale et al. \cite{a4} to obtain some biological policies on normal-malignant cancer model using the Gronwall-Bellman's kind of impulsive inequality. \section{Preliminaries, Notation and Definitions} Let $C(\mathbb{R}^{+},\mathbb{R}^{n})$ be the space of continuous functions in $\mathbb{R}^{+}=[0,+\infty )$ and taking values in $\mathbb{R}^{n}$. Let $C_{0}^{1}(\mathbb{R}^{+},\mathbb{R}^{n})$ be the space of continuously differentiable and bounded functions on $\mathbb{R}^{+}$ taking values in the $n$-dimensional Euclidean space $\mathbb{R}^{n}$. Let \begin{align*} PC(\mathbb{R}^{+},\mathbb{R}^{n}) &=\big\{y(t):y(t)\in C(\mathbb{R}^{+}\setminus \{t_k\},\mathbb{R}^{n}), \,k =1,2\dots, \\ &\quad\lim_{t\to t_k+0} y(t) \text{exists and equals } y(t_k) \big\}\,. \end{align*} \noindent\textbf{Definition (cones).} Let $\mathbb{R}^{n}$ be $n$-dimensional Euclidean space. A non-empty set $E\subset \mathbb{R}^{n}$ is said to be a cone if and only if it satisfies the Following conditions: \begin{enumerate} \item If there exist sequences $(x_{n},y_{n})\subset E$, $n\in N=\{1,2,\dots\}$ such that $x_{n}\to x$, $y_{n}\to y$ as $n\to \infty$. Then $\alpha x+\beta y\in E$, where $\alpha$ and $\beta$ are constants; \item If $x\in E$ then $\alpha x\in E$ for all $\alpha\geq 0$; \item If $x,-x\in E$ then $\{x\}\cap\{-x\}=\{\phi\}$, where $\phi$ is the zero element of the cone $E$. \end{enumerate} Let the specializing ordering on $E$ be $x\leq_E y$ if $x-y$ is in $E$; which reads $y$ weakly specializes $x$. Also let $x \leq_0 y$ if $y-x$ is in $\mathop{\rm int}E=E\setminus \{\phi\}$; which reads $y$ strongly specializes $x$. Let $M_{n}(E)$ be $n x n$ symmetric matrices define on the cone and let $M_{n}^*(E)$ denote its transpose. We introduce the generalized inner product on $E$ as follows: \smallskip \noindent\textbf{Definition (inner products on cones).} For $X(t)\in M_{n}'(PC(R,E))$ and $B(t)\in M_{n}'(E)$, let \[ \langle B(t),X(t)\rangle_{E}=\int_{t_0}^{t} B^{\ast}(s)X(s)ds\,. \] For the impulse set $Q_k=\{t_k\in \mathbb{R}^{+}:t_{0}0$ such that $|f|\leq_{E} m|g|$ for any $f,g\in E$ with $0\leq_{E}f\leq_{E}g$. \smallskip \noindent\textbf{Remark.} % 3 It is not difficult to show that $E$ is normal if and only if \for all $\delta>0$ such that $|f+g|>\delta$ for $f,g\in E$ with $|f|=|g|=1$ where $|.|$ is the Euclidean norm inherited by the cone $E$. \smallskip \noindent\textbf{Examples of Cones.} The set \[ R_{+}^{n}=\{u\in \mathbb{R}^{n}:u_{i} \geq 0,\quad i=1,2,\dots\,n ,u=(u_{1,}u_{2},\dots ,u_{n})\} \] is a cone. The set of non-negative functions in $L_{p}(0,1)$ with $p\geq1$ is a cone. The set of non-negative definite matrices $M_{n}(R^{+})$ is a cone. The set of monotone operators on any arbitrary Banach space is a cone. For further exposition on concept of abstract cones (see Huston and Pym \cite{h2}, Guo and Lakshimikantham \cite{g1}, Akinyele and Akpan \cite{a2}, Guo and Liu \cite{g2}, Akpan \cite{a3}). \smallskip \noindent\textbf{Definition (order intervals).} %5 The order interval in the cone $E$ can be define as \[ [U_{0},V_{0}]=\{U(t)\in E:U_{0}\leq U(t)\leq V_{0}(t),t\in \mathbb{R}^{+}\}\,. \] For the rest of this paper we use the following notation: $M_{n}^{+}(E)$ is the set of $n\times n$ matrices defined on the cone $E$. \\ $PC(\mathbb{R}^{+},E)$ is the subclass of $PC(\mathbb{R}^{+},\mathbb{R}^{n})$ where the values of $PC(\mathbb{R}^{+},\mathbb{R}^{n})$ is in the cone $E\subset \mathbb{R}^{n}$ \\ $M(.)$ Denotes the measure of non-compactness of $(.)$ \\ $L^{1}(\mathbb{R}^{+}X\mathbb{R}^{+}XE,E)$ is the space of absolutely integrable functions on $\mathbb{R}^{+}X\mathbb{R}^{+}XE$ and taking values in the cone $E$. \smallskip \noindent\textbf{Definition.} % 6 Let $X$ be a Banach space. Denote by $CO\bar{\Omega}$ the convex hull of the set $\Omega \subset X$, $\bar{\Omega}$ is the closure of $\Omega$ and $\partial\Omega$ is the boundary of $\Omega$. To each bounded set $Y\subset E\subseteq\Omega$, and associate the nonnegative number $\Psi(Y)$. The function defined this way is called a measure of non-compactness of the set $Y$ if the following conditions are satisfied: \begin{itemize} \item[(a)] $\Psi(\overline{COY})=\Psi(Y)$ \item[(b)] If $Y_{1}\subset Y_{2}\in\Omega$ then $\Psi(Y)\leq\Psi(Y_{2})$ \end{itemize} \smallskip \noindent\textbf{Definition.} % 7 The continuous and bounded operator $A$ define on $\Omega$ is called $\Psi$-condensing if for a noncompact set $Y\subset\Omega$, $\Psi(Y_{1})\leq\Psi(Y)$ for every $Y_{1}\subset\Omega$. \smallskip \noindent\textbf{Definition (set contractive).} % 8 A map $A:Dom(A)\to R(A)$, from its domain $Dom(A)$ to its range$R(A)$, is said to be strict set contractive, if it is bounded, continuous and there exists a constant $\gamma>0$ such that $M(A(Q))\leq\gamma M(Q)$, where $M(.)$ denotes the Kuratowski's measure of non-compactness. We introduce the concepts of measure of non-compactness and condensing maps due to Krasnose'skii, Zabreiko and Sadovskii (see Bainov and Kazakova \cite{b1}). Many types of measure of non-compactness have been defined by different academicians and employed to study qualitative properties of solutions of varieties of dynamical systems (see Hu et al\cite{h3}; Deimling \cite{d1}, Rzezuchowski \cite{r1}; Guo and Liu \cite{g2}). Concepts of measure compactness of operator has a fundamental advantage of estimating a priori bonds without undergoing laborious estimation. \section{Statement of the problem} Consider the impulsive inequality \begin{equation} \label{e3} \begin{gathered} u(t)\leq f(t,u(t))+W(t,\int_{t_{0}}^{t} G(t,s,u(s))ds),\quad t\neq t_k,\; k=1,2,3,\dots \\ \Delta u(t=t_k)\leq I(u(t_k))\\ u(\phi)\leq v_{0}\,. \end{gathered} \end{equation} For an increasing sequence of times, $00$ such that \[ |G(t,s,u_{2}(t))-G(t,s,u_{1}(t)))|\leq_{E}k|u_{2}(t)-u_{1}(t)| \] for $u_{2}(t),u_{1}(t)\in E$. \item[(A3)] $I(.)$ is continuous on $(.)$ and $I(\phi)$. \end{itemize} \section{Main results} Consider the impulsive analogue of the Gronwall-Bellman inequalities defined on the cone $\mathbb{R}^{+}$:. \begin{lemma} \label{lem1} Let $u(t)\in PC(\mathbb{R}^{+},\mathbb{R}^{+})$, $\beta_k(t)\in PC(\mathbb{R}^{+},\mathbb{R}^{+})$ and $\gamma(t)\in C(\mathbb{R}^{+},\mathbb{R}^{+})$ and $C\geq0$ be a nonnegative constant such that \begin{equation} \label{e4} u(t)\leq C+\int_{t_{0}}^{t}\gamma(s)u(s)ds+\sum_{t_{0}\geq_{E}-L\eta(t_{i})$ for some $\eta(t)\in E$. \item[(H3)] $G(t,s,.)$ is a nonnegative definite and monotonic nondecreasing function with respect to second variable such that exists a constant $p>0$ such that \[ %(11) W(t,\int_{t_{0}}^{t}G(s,t,\eta_{1}(s))ds)-W(t,\int_{t_{0} }^{t}G(s,t,\eta_{2}(s))ds) \geq-p(\eta_{1}(t)-\eta_{2}(t)) \] \item[(H4)] \[ u(t)\leq H(t)+W(t,\int_{t_{0}}^{t}G(s,t,u(s))ds)+_{t=t_k} \] \end{itemize} \begin{theorem} \label{thm1} Assume $u(t)\in PC(\mathbb{R}^{+},E)$, $H(t)\in M_{n}'(E),\beta(t)\in M_{n}'(E)$ and $W\in C^{1}(\mathbb{R}^{+}XE,E)$ and that (H1)--(H4) are satisfied. Then \begin{equation} \label{e12} u(t)\leq H(t)+W(t,u^{\ast}(t)) \end{equation} where $u^{\ast}(t)$ is the maximal solution of the impulsive integral equation \begin{equation} \label{e13} u(t)=\int_{t_{0}}^{t}G(t,s,u(s))ds+\langle B(t),u(t)\rangle_{t=t_k},\quad k=1,2,\dots \end{equation} \end{theorem} \begin{proof} The strategy is to show that the solution of the integral equation in \eqref{e13} exists in a normal cone in an order interval containing the cone $E$. Moreover, $u^{\ast}(t)$ is the maximal solution of \eqref{e13} and satisfies the inequality \eqref{e12}. Now define \begin{gather*}%(14) A_{1}u(t)=\int_{t_{0}}^{t} G(t,s,u(s))ds\\ A_{2}u(t)=\langle \beta(t_{i}),u(t_{i})\rangle_{i=1,2,3,\dots }\,. \end{gather*} Let $A=A_{1}+A_{2}$ be such that \[ A:\mathop{\rm Dom}(A_{1})\cup \mathop{\rm Dom}(A_{2})\supset [U_{0},V_{0}]\to PC(\mathbb{R}^{+},E) \] and $M(A_{1}(Q))=\sup_{t\in \mathbb{R}^{+}}M(A_{1}(Q(t))$, where \[ Q(t)\in \mathop{\rm Dom}(A_{1}) =\{u(t)\in PC(\mathbb{R}^{+},E):\big|\int_{t_{0}}^{t} G(t,s,u(s))ds\big|<\infty\} \] similarly \[ %(15) Q(t_{i})\in \mathop{\rm Dom} (A)=\{u(t_{i}):|\langle B(t_{i}),u(t_{i})\rangle |<+\infty,\;i=1,2,\dots \}\,. \] By \cite[Lemma 1]{g2} it follows easily that there exist constants $L_{1}$ and $L_{2}$ such that \begin{gather*} M(A_{1}(Q(t_{i})))\leq\alpha L_{1}M(Q(t)),\\ M(A_{2}(Q(t_{i})))\leq L_{2}M(Q(t))+\epsilon \end{gather*} For some arbitrary small positive number $\epsilon$ and since $t_{0}D(t)[u_{0}+u^{\ast}(t)+F(t,u^{\ast}(t))]+ \langle D(t_k)B(t_k),u^{\ast}(t_k)\rangle ]\,. \end{equation} We show that there does not exist a function $u(t)$ in $[U_{0},V_{0}]$ such that $u(t)>u^{\ast}(t)\geq u_{\ast}(t)$, otherwise $u^{\ast}(t)$ would cease to be maximal. Let \begin{equation} \label{e29} \begin{aligned} Au_{n}(t)&=\int_{t_{0}}^{t}d\tau Z(t,\tau)W(t,\int_{t_{0}}^{t}G(t,s,H(s)A_{\ast}(s)u_{n}(s))ds)\\ &\quad +\int_{t_{0}}^{t}d\tau Z(t,\tau)W_{2}(t,F(t,u_{n}(t),\int_{t_{0}}^{t}G(t,s,H(s)A_{\ast}(s)u_{n}(s))ds). \end{aligned} \end{equation} Then $Au_{0}\geq u_{0}\geq u_{0}$, $Av_{0}\leq v_{0}$ and the operator $A$ is a set contraction if \begin{gather*} \gamma=\alpha Z_{0}(h_{0}A_{0}L_{1}+\alpha A_{0}h_{0}L_{2})<1, \quad Z_{0}=\max_{\tau ,t}\in \mathbb{R}^{+}|Z(t,\tau)|,\\ A_{0}=\max_{\tau} |A_{\ast}(t)|, \quad h_{0}=\max_{\tau}|H(\tau)|, \end{gather*} and $L_{1}, L_{2}$ are constants. Hence by Theorem \ref{thm1}, there exists a maximal solution $u^{\ast}(t)$ of \eqref{e29} in $[U_{0},V_{0}]$ which is in fact the fixed point of $A$. Now let \[ \delta_{\ast}=u_{0}+F(t,u^{\ast}(t))+\langle D(t_k)B(t_k)u^{\ast}(t_k)\rangle \] then $\delta_{\ast}(t)\in E$ such that \begin{gather*} u(t)>D(t)[u^{\ast}(t)+\delta_{\ast}(t)],\\ \psi(u(t)_{\ast}\delta_{\ast}(t))>u^{\ast}(t), \end{gather*} where $\psi(u(t)_{\ast}\delta_{\ast}(t))-(D^{-1}(t)u(t)-\delta_{\ast}(t))\in[ u_{0}-\delta_{(\ast},v_{0}-\delta_{\ast}]\subseteq\lbrack U_{0},V_{0}]$. But $u^{\ast}(t)$ is maximal. Hence there does not exist an element $\psi(u(t)_{\ast}\delta_{\ast}(t))$ in the other interval$[U_{0},V_{0}]$ such that equation \eqref{e28} is satisfied which is a contradiction. Hence, \[ %(30) u(t)\leq D(t)[u_{0}+F(t,u^{\ast}(t))+u^{\ast}(t)] \] \end{proof} \begin{theorem} \label{thm3} Under the conditions of Theorem \ref{thm2}, assume following conditions: \begin{align*} \frac{du(t)}{dt} &\leq A_{\ast}(t)H(t)u(t)+F(t,u(t))\\ &\quad +\int_{t_{0}}^{t}A_{\ast}(\tau)H(\tau)W(t,\int_{t_{0}}^{t}G(t,s,A(s)H(s)u(s)ds)d\tau )\\ &\quad+ \int_{t_{0}}^{t}A_{\ast}(\tau)H(\tau )W_{2}(t,F(\tau,u(t)) \int_{t_{0}}^{t}G(t,s,u(s)ds)d\tau) \end{align*} $\triangle u(t=t_k)\leq \langle B(t_k),u(t_k)\rangle_{k=1,2,3\dots }$; and the commutant satisfies \begin{gather*} [A(t),H(t)]=A_{\ast}^{\ast}(t)H.(t)-H^{\ast }(t)A\ast(t)=\phi,\\ \det(H(t)A_{\ast}^{\ast}(t)A_{\ast}(t)H(t)>0\,. \end{gather*} Also assume that \begin{gather} F(t,u(t))=O(|u(t)|_{E}), \label{cond2}\\ \lim_{|x(t)|_{E}\to \phi} \frac{|W_{2}(.,.,x(t))|_{E}}{|x(t)|_{E}}=\phi, \label{cond3}\\ \lim_{|y(t)|_{E}\to \phi} \frac{|W_{{}}(.,Y(t))|_{E}}{|Y(t)|_{E}}=\phi \label{cond4} \end{gather} For $y(t)\in L^{^{\prime}}(E)$. Then \begin{equation} \label{e31} u(t)0,\beta>0$, $u(t)=(u_{1}(t),u_{2}(t))$, \[ G(t,s,H(s)A(s)u(s))=\begin{cases} \frac{t-s}{h}\mathop{\rm diag}[ae^{\alpha t}\;be^{\beta t}] u(t) &t\geq s,\\ 0 &t0,\quad \alpha+\beta>0\,. \] Therefore, $v_{i}(t)$ are estimated as \begin{gather*} v_{1}(t)\leq\frac{a^{2}}{h}\int_{0} ^{t}\int_{\theta+s}^{\theta}u_{1}(-\tau)d\tau ds,\\ v_{2}(t)\leq\frac{b^{2}}{h}\int_{0} ^{t}\int_{\theta+s}^{\theta}u_{2}(-\tau)d\tau ds, \\ v_{^{\ast}1}(t)\leq\frac{a^{2}}{h} \int_{0}^{t}\int_{\theta+s}^{\theta}\max_{\tau\in [0,\theta+s]}u_{1}(-\tau)d\tau ds =\frac{a^{2}}{h}t^{\ast}|u_{1}(-\tau)|_{R_{0}} \\ v_{^{\ast}2}(t)\leq\frac{b^{2}}{h} \int_{0}^{t}\int_{\theta+s}^{\theta}\max_{\tau\in [0,\theta+s]} u_{2}(-\tau)d\tau ds=\frac{b^{2}}{h}t^{\ast}|u_{1}(-\tau)|_{R_{0}} \end{gather*} Here $t^{\ast}$ is the threshold value of $t$ taken across the interval $[0,\theta+s]$. Therefore, applying theorem \ref{thm3} to (llS) yields. where \begin{align*} u^{\ast}(t)&=\int_{t_{0}}^{t}D(\tau)A^{\ast}(\tau) w(tau,\int_{t_{0}}^{t}G(t,s,A_{1}(s)H(s)u^{\ast}(s)ds)d\tau\\ &\quad + \int_{t_{0}}^{t}d\tau D(\tau)A^{\ast}(\tau) \begin{pmatrix} w_{1}(t,\frac{a^{2}t^{\ast}}{h}|u_{1}(-\tau)|R_{0})\\ w_{2}(t,\frac{b^{2}t^{\ast}}{h}|u_{2}(-\tau)|_{R_{0}} \end{pmatrix} \end{align*} Therefore, the right-hand side provides the upper bound for $u(t)$. \subsection*{Acknowledgements} The authors hereby acknowledge support from Abubakar Tafawa Balewa University, Bauchi Nigeria and from the National Mathematical Centre, Abuja, Nigeria. The authors are also grateful for suggestions from the anonymous referee. \begin{thebibliography}{00} \bibitem{a1} Akinyele, Olusola; \emph{On some fundamental matrix integral inequalities and their applications}. Analele stintifice Ale Universitii al, 1-cuza, Din lasi Tomul XX1-75 la Mathematical (1985). \bibitem{a2} Akinyele, O. and Akpan, P. Edet; \emph{On the $\phi$ -stability of comparison differential systems}. J. Math. Anal Appli 164 (1992), No. 2 , 307--324.. \bibitem{a3} Akpan, Edet P.; \emph{On the $\phi\sb 0$-stability of perturbed nonlinear differential systems}. Dynam. Systems Appl. 4 (1995), no. 1, 57--78. \bibitem{a4} Ale, S. O.; Deshliev, A.; Oyelami, B. O.; \emph{On chemotherapy of impulsive model involving malignant cancer cells}. Abacus J. Math. Asso. Nig. Vol. 24(1996), No. 2, 2-10. \bibitem{b1} Bainov, D. D. and Kazakova, N. G.; \emph{Finite difference method for solving the periodic problem for autonomous differential equation with maxima mathematics}. Reports from Tayoma University 15 (1992) No. 5,1-13. \bibitem{b5} Bainov, D. D. and Stamova, I. M.; \emph{Uniform asymptotic stability of impulsive differential -difference equations of neutral type using lyapunov direct method}. J. Comp. Math \& Applic. 62 (1995) No. 5, 359-369. \bibitem{b4} Bainov, D. D. and Svetla, D. D.; \emph{Averaging method for neutral type impulsive differential equations with supremums}. Annales de la aculte des science de Toulause Vol. Xii (1991), No. 3. \bibitem{d1} Deimling, K. and Lakshimikantham, V.; \emph{Quasi-sutions and their role in the qualitative theory of differential equations}. Nonlinear Analysis 4(1980) No. 1, 657-663. \bibitem{g1} Guo, Dajun and Lashimikatham, V.; \emph{Nonlinear problems in abstract cones}. Academic Press New York, (1988). \bibitem{g2} Guo, Dajun and Liu, Xinzhi; \emph{Extremal solutions of nonlinear impulsive integrodifferential equations in banach space}. J. Math. Anal. Appli., 177(1993), 538-552. \bibitem{h1} Hale, Jack K.; \emph{Ordinary differential equations}. Pure and Applied Mathematics, Vol. XXI. Wiley-Interscience, New York-London-Sydney, (1969). \bibitem{h3} Hu, Shouchuan; Lashimikantham, V. and Papageorgions, N.; \emph{Extremal solutions of functional differential equations}. J. Math. Anal . Appli., 173 (1993), 430-435. \bibitem{h2} Huston, V. C. L. and Pym, J. S.; \emph{Application of functional analysis and operator theory}. Academic Press London, New York/Toronto/Sydney (1980). \bibitem{l1} Lakshimikantham, V.; Bainov, D. D. and Simeonov, P. P.; \emph{Theory of impulsive differential equations}. World Scientific Publishing Company, Singapore, New Jersey, Hong Kong, (1989). \bibitem{o1} Oyelami, B. O.; Ale, S. O. and Sasey, M. S.; \emph{On existence of solutions of impulsive differential difference equations}. Proceeding of Conference on Ordinary Differential Equations July 28-29 at National Mathematical Centre, Abuja, Vol. 1 (2000), 101-117. \bibitem{o2} Oyelami, B. O.; Ale, S. O. and Sasey, M. S.; \emph{Topological degree approach to study of the existence of solution of impulsive initial-boundary value problems}. J. Nig. math. Soc.,Vol. 21 (2002), 13-26. \bibitem{o3} Oyelami, B. O.; \emph{Asymptotic behavior of impulsive systems}. Unpublished M. sc. Dissertation University of Ibadan , Ibadan, Nigeria (1991). \bibitem{o4} Oyelami, B. O.; \emph{Instability theorems of certain testable impulsive systems}. Abacus J. Math. Asso. Nig. vol. 30 (2003) No. 2A, 95-104. \bibitem{o5} Oyelami, B. O.; \emph{Boundedness of solution of a delay impulsively perturbed systems}. Int. J. Nonlinear Diff. Equ. (To appear) \bibitem{o6} Oyelami, B. O.; \emph{On military model for impulsive reinforcement functions using exclusion and marginalization technique.} Nonlinear Analysis 35 (1999), 947-958. \bibitem{r1} Rzezuchouski, T.; \emph{Scorza-Dragoni theorem for upper semi continuous multi valued function}. Bulletin Polish Academy of Science 28 (1980), 661-666. \end{thebibliography} \end{document}