\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2005(2005), No. 73, pp. 1--17.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2005 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2005/73\hfil Existence results for a second-order] {Existence results for a second-order abstract Cauchy problem with nonlocal conditions} \author[E. Hern\'{a}ndez \& M. Pelicer\hfil EJDE-2005/73\hfilneg] {Eduardo Hern\'{a}ndez M., Mauricio L. Pelicer} % in alphabetical order \address{Eduardo Hern\'{a}ndez M. \hfill\break Departamento de Matem\'atica \\ Instituto de Ci\^encias Matem\'aticas de S\~ao Carlos \\ Universidade de S\~ao Paulo \\ Caixa Postal 668 \\ 13560-970 S\~ao Carlos, SP, Brazil} \email{lalohm@icmc.sc.usp.br} \address{Mauricio L. Pelicer \hfill\break Departamento de Matem\'atica \\ Instituto de Ci\^encias Matem\'aticas de S\~ao Carlos \\ Universidade de S\~ao Paulo \\ Caixa Postal 668 \\ 13560-970 S\~ao Carlos, SP, Brazil} \email{mpelicer@icmc.sc.usp.br} \date{} \thanks{Submitted January 25, 2005. Published July 5, 2005.} \subjclass[2000]{47D09, 47N20, 34G10} \keywords{Abstract Cauchy problem; Cosine functions of operators} \begin{abstract} In this paper we study the existence of mild and classical solutions for a second-order abstract Cauchy problem with nonlocal conditions. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{definition}[theorem]{Definition} \newtheorem{remark}[theorem]{Remark} \newtheorem{proposition}[theorem]{Proposition} \section{Introduction} In this paper we study the existence of mild and classical solutions for a class of second-order abstract Cauchy problem with nonlocal conditions described in the form \begin{gather}\label{ne2} \frac{d}{dt}[x' (t)+g(t,x(t),x'(t))] = Ax(t)+f(t,x(t),x'(t)), \quad t\in I=[0,a], \\ \label{ne21} x(0)= y_{0}+p(x,x'), \\ \label{ne22} x'(0)=y_{1}+ q(x,x'), \end{gather} where $A$ is the infinitesimal generator of a strongly continuous cosine function of bounded linear operators $(C(t))_{t\in\mathbb{R}}$ on a Banach space $X$ and $ g,f:I\times X^{2}\to X$, $p,q: C(I;X)\times C(I;X) \to X$ are appropriate functions. \par The system \eqref{ne2}-\eqref{ne22} is a simultaneous generalization of the classical second order abstract Cauchy problem studied by Travis and Weeb in \cite{TW2,TW3} and of some recent developments for ordinary differential equations by Stan\v ek in \cite{St1,St2,St3,St4}. This generalization and their applications to partial second order differential equations are the main motivations of this paper. \par Initial value problems with nonlocal conditions arises to deal specially with some situations in physics. Motivated for numerous applications, Byszewski studied in \cite{BY1} the existence of mild, strong and classical solutions for the semilinear abstract Cauchy problem with nonlocal conditions \begin{gather*} x'(t) = Ax(t)\;+\;f(t,x(t)), \quad t\in I=[0,a], \\ x(0) = x_{0}\;+\; q(t_{1},t_{2},t_{3},\dots ,t_{n},x(\cdot))\in X. \end{gather*} In this system, $A$ denotes the infinitesimal generator of a strongly continuous semigroup of linear operators on $X$; $0 0$ in $Z$. Additionally, for a bounded function $\xi :I\to Z$ and $ t\in I $, we will employ the notation $\xi_{Z,\,t}$ for \[ \xi_{Z,t} =\sup\{\| \xi(s)\|_{Z} : s \in [0,t]\}, \] and we will write simply $\xi_{t}$ in the place of $\xi_{Z,\,t}$ when no confusion arises. This paper has five sections. In section \ref{existence} we discuss the existence of mild solutions for some abstract Cauchy problems similar to \eqref{ne2}-\eqref{ne22} and in section \ref{regularity} we study the existence of classical solutions for \eqref{ne2}-\eqref{ne22}. In section \ref{Examples} some examples are considered. \section{Existence of mild solutions}\label{existence} To begin this section we study the abstract Cauchy problem with nonlocal conditions \begin{gather}\label{mild1} \frac{d}{dt}[x'(t)+g(t,x(t))]= Ax(t)+f(t,x(t)), \quad t\in I, \\ \label{P3} x(0) =y_{0}+p(x),\\ \label{P4} x' (0) =y_{1}+ q(x) , \end{gather} where $f,g:I\times X\to X$ and $ p,q:C(I;X)\to X$ are appropriate functions. If $u(\cdot)$ is a solution of \eqref{mild1}-\eqref{P4} and the mapping $t\to g(t,u(t)) $ is enough smooth, from (\ref{E1}) and the relation $ A\int_{r}^{s}S(\theta )x=C(s)x-C(r)x,\,x\in X$, we obtain \begin{align*} u(t)&=C(t) (y_{0}+p(u))+S(t)[y_{1}+q(u)+g(0, u(0))]- \int_{0}^{t}C(t-s)g(s,u(s))ds\\ &\quad + \int_{0}^{t} S(t-s) f(s,u(s)) ds,\quad t\in I. \end{align*} This expression is the motivation of the following definition. \begin{definition} \label{def3.1} \rm A function $u\in C(I;X)$ is a mild solution of \eqref{mild1}-\eqref{P4}, if $u(0) =y_{0}+p(u)$ and \begin{align*} u(t) &= C(t)(y_{0} + p(u)) + S(t)(y_{1} + q(u) + g(0,u(0))) - \int _0^t C(t-s)g(s,u(s))ds \\ &\quad + \int_0^t S(t-s)f(s,u(s))ds, \quad t \in I. \end{align*} \end{definition} Before establishing our first result of existence, we consider the following general lemma. \begin{lemma}\label{lema4} Let $(Z_{i},\|\cdot\|_{i})$, $i=1,2,3$, be Banach spaces, $L:I\times Z_{1}\to Z_{2}$ be a function, $\{ R(t):t\in I\}\subset \mathcal{L}(Z_{2},Z_{3}) $ and assume that the next conditions hold. \begin{itemize} \item[(a)] The function $L(\cdot)$ satisfies the following conditions. \begin{itemize} \item[(i)] For every $r>0$, the set $ L(I\times B_{r}(0;Z_{1}))$ is relatively compact in $Z_{2}$. \item[(ii)] The function $L(t, \cdot):Z_{1} \to Z_{2}$ is continuous $a.e.$ $t\in I$ \item[(iii)] For each $z \in Z_{1} $, the function $L(\cdot, z) : I \to Z_{2}$ is strongly measurable. \item[(iv)] There exist an integrable function $m_{L}:I\to [0, \infty )$ and a continuous function $ W_{L}:[0,\infty)\to [0,\infty)$ such that $$\| L(t,z )\|_{2} \leq m_{L}(t)W_{L}(\| z\|_{1})\quad (t,z)\in I\times Z_{1}.$$ \end{itemize} \item[(b)] The operator family $(R(t))_{t\in I}$ is strongly continuous, this means that $t\to R(t)z$ is continuous on $I$ for every $z\in Z_{2}$. \end{itemize} Then mapping $ \Gamma : C(I; Z_{1})\to C(I; Z_{3})$ defined by $$\Gamma u(t)=\int_0^t R(t-s)L(s,u(s)), $$ is completely continuous. \end{lemma} \begin{proof} It is clear that $\Gamma(\cdot) $ is well defined and continuous. From conditions (a) and (b), it follows that the set $\{\,R(s)L(\theta,z):s,\theta\in I,z\in B_{r}(0;Z_{1})\,\}$ is relatively compact in $Z_{3}$. If $u\in B_{r}(0;C(I;Z_{1}))$,\, from the mean value Theorem for the Bochner integral, see \cite[Lemma 2.1.3]{Ma}, we get \begin{eqnarray} \Gamma u(t) \in t \,{\overline{\mathop{\rm co}(\{\,R(s)L(\theta,z):s,\theta\in I,\, z\in B_{r}(0;Z_{1})\})}}^{\,\,Z_{3}} \end{eqnarray} where $\mathop{\rm co}(\cdot)$ denote the convex hull. Thus, $\{\Gamma u(t):u\in B_{r}(0;C(I;Z_{1})) \}$ is relatively compact in $Z_{3}$ for every $t\in I.$ Next, we prove that $\Gamma (B_{r}(0;C(I;Z_{1}))=\{\Gamma u:u\in B_{r}(0;C(I;Z_{1})) \}$ is equicontinuous on $I$. Let $ \varepsilon>0$ and $r>0$. From the strong continuity of $(R(t))_{t\in I}$ and the compactness of $L(I\times B_{r}(0;Z_{1}))$, we can choose $\delta>0 $ such that $$ \| R(t)L(s,z)-R(t')L(s,z)\|_{3} \leq \varepsilon,\quad t',t,s\in I, \; z\in B_{r}(0;Z_{1}), $$ when $ | t-t'|\leq \delta $. Consequently, for $u\in B_{r}(0;C(I;Z_{1}))$, $t\in I$ and $| h| \leq \delta $ such that $t+h\in I$, we get \begin{align*} \| \Gamma u(t+h) - \Gamma u(t)\|_{3} &\leq \int_0^t \| (R(t+h-s)-R(t-s)) L(s,u(s))\|_{3} ds\\ &\quad + \sup_{\theta \in I}\| R(\theta)\|_{\mathcal{L}(Z_{2};Z_{3}) } \int_t^{t+h} \| L(s,u(s))\|_{2} ds \\ &\leq \varepsilon a+ \sup_{\theta \in I}\| R(\theta)\|_{\mathcal{L}(Z_{2};Z_{3}) } W_{L}(r)\int_t^{t+h} m_{L}(s) ds, \end{align*} which shows the equicontinuity at $t\in I$ and so that $\Gamma (B_{r}(0;C(I;Z_{1}))$ is equicontinuous on $I$. The assertion is now consequence of the Azcoli-Arzela criterion. The proof is complete. \end{proof} For the rest of this article we use the following hypotheses: \begin{itemize} \item[(H1)] The functions $f,g :I \times X\to X$ satisfies the following conditions. \begin{itemize} \item[(i)] The functions $f(t, \cdot):X \to X$, $g(t, \cdot):X \to X$ are continuous $a.e.$ $t\in I$; \item[(ii)] For each $x \in X $, the functions $f(\cdot, x) : I \to X $, $g(\cdot, x) : I \to X $ are strongly measurable. \end{itemize} \item[(H2)] The functions $ p,q:C(I;X)\to X$ are continuous and there are positive constants $ l_p,l_q $ such that \begin{gather*} \| p(u) - p(v)\| \leq l_p \| u-v\| _a , \hspace{0.5cm} u,v \in C(I;X),\\ \| q(u) - q(v)\| \leq l_q \| u-v\| _a , \hspace{0.5cm} u,v \in C(I;X). \end{gather*} \end{itemize} Now, we establish our first result of existence. \begin{theorem} \label{teo2} Assume (H1), (H2), and the following conditions: \begin{itemize} \item[(a)] For every $r>0$, the set $g(I\times B_{r}(0;X) )$ is relatively compact in X and there exists a constant $\alpha_r^g $ such that $\| g(t,x)\| \leq \alpha_r^g$ for every $(t,x) \in I \times B_{r}(0;X)$. \item[(b)] For every $0< t'< t\leq a$ and every $r>0$, the set $$U(t,t',r)= \{ S(t')f(s,x): s \in [0,t], x\in B_{r}(0;X)\}$$ is relatively compact in $X$ and there exists a positive constant $ \alpha_r^f$ such that $\| f(t,x)\| \leq \alpha_r^f$ for every $(t,x) \in I \times B_{r}(0;X)$. \end{itemize} If $$ (N l_p + \tilde{N} l_q ) + \liminf_{r \to + \infty} \frac{\tilde{N}\alpha_{r}^g + (N \alpha_r^g + \tilde{N} \alpha_r^f)a}{r} <1 , $$ then there exists a mild solution of \eqref{mild1}-\eqref{P4}. \end{theorem} \begin{proof} On the space $Y=C(I;X)$ endowed with the norm of the uniform convergence, we define the operator $\Gamma: Y \to Y$ by \begin{align*} \Gamma u(t)& = C(t)(y_{0} + p(u)) + S(t)(y_{1} +q(u) + g(0,u(0))) \\ &\quad - \int_0^t C(t-s)g(s,u(s))ds + \int_0^t S(t-s)f(s,u(s))ds. \end{align*} We claim that there exists $r^{*}>0$ such that $\Gamma(B_{r^{*}}(0,Y)) \subset B_{r^{*}}(0,Y)$. Assuming that the claim is false, then for every $r>0$ there exists $x^r \in B_{r}(0;Y)$ and $t^{r}\in I$ such that $\| \Gamma x^r(t^{r})\| > r$. This yields \begin{align*} r < \| x^r(t^{r})\| & \leq N( \| y_{0}\| + l_p r + \| p(0)\| ) + \tilde{N} ( \| y_{1}\| + l_q r+ \| q(0)\| + \alpha_{ r}^g )\\ &\quad + N \int_0^a \alpha_r^g ds + \tilde{N} \int_0^a \alpha_r^f ds, \end{align*} and then $$ 1 \leq (N l_p + \tilde{N} l_q ) + \liminf_{r \to + \infty} \frac{\tilde{N}\alpha_{ r }^g + (N \alpha_r^g + \tilde{N} \alpha_r^f)a}{r} \,, $$ which contradicts our assumptions. Now, we prove that $\Gamma(\cdot)$ is a condensing operator on $B_{r^{*}} (0,Y)$. For this purpose, we introduce the decomposition $\Gamma = \sum_{i=1}^{3}\Gamma_i$, where \begin{gather*} \Gamma_{1} u(t) = C(t)(y_{0} + p(u)) + S(t)(y_{1} +q(u)),\\ \Gamma_2 u (t)= S(t) g(0,u(0)) - \int_0^t C(t-s)g(s,u(s))ds,\\ \Gamma_3 u (t)= \int_0^t S(t-s)f(s,u(s))ds. \end{gather*} From Lemma \ref{lema4}, condition (a) and the Lipschitz continuity of $t\to S(t)$ we infer that $\Gamma_{2}(\cdot)$ is completely continuous on $Y$ and from the estimate \[ \| \Gamma_{1} u - \Gamma_{1} v\|_{a} \leq \left( Nl_p + \tilde{N} l_q \right) \| u-v\| _a,\quad u,v\in C(I;X), \] that $ \Gamma_{1}(\cdot)$ is a contraction on $Y$. Next, by using the Ascoli-Arzela criterion, we prove that $\Gamma_{3}(\cdot)$ is completely continuous on $Y$. In the next steps $r$ is a positive number. \noindent{\bf Step 1 } The set $\Gamma_{3} (B_{r}(0;Y))(t)= \{ \Gamma_{3} u(t) : u \in B_{r}(0;Y) \}$ is relatively compact in $X$ for every $t \in I$. Let $t \in I, \varepsilon >0$ and $0=s_1 < s_2 < \dots < s_k =t$ be numbers such that $| s_{i}-s_{i+1}|\leq \varepsilon $ for every $i= 1, 2,\dots k-1$. If $u\in B_{r}(0;Y)$, from the mean value Theorem for Bochner integral, see \cite[Lemma 2.1.3]{Ma}, we find that \begin{align*} \Gamma_3 u(t) &= \sum_{i=1}^{k-1} \int_{s_i}^{s_{i+1}} S(s_i) f(t-s,u(t-s))ds \\ &\quad + \sum_{i=1}^{k-1} \int_{s_i}^{s_{i+1}}(S(s) - S(s_i)) f(t-s, u(t-s))ds \\ &\in \sum_{i=1}^{k-1}( s_{i+1}- s_i ) \overline{\mathop{\rm co}(U(t,s_i,r))} + \epsilon N\alpha_r^f a B_{1}(0,X) , \end{align*} where $co(\cdot)$ denote the convex hull. Thus, $\Gamma_3 (B_{r}(0;Y))(t)$ is relatively compact in $X$. \noindent{\bf Step 2. } The set $\Gamma_{3} (B_{r}(0;Y))$ is uniformly equicontinuous on $I$. For $u \in B_{r}(0;Y)$, $ t \in I$ and $ h\in \mathbb{R}$ such that $t+h \in I$, we get \begin{align*} &\| \Gamma_{3} u(t+h) - \Gamma_{3} u(t)\| \\ &\leq \int_0^t \| (S(t+h-s) - S(t-s)) f(s,u(s))\| ds + \tilde{N}\int_t^{t+h} \| f(s,u(s))\| ds \\ & \leq N\alpha_r^f ah + \tilde{N} \alpha_{r}^f h, \end{align*} which implies that $\Gamma_{3} (B_{r}(0;Y))$ is uniformly equicontinuous on $I$. It follows from steps 1 and 2 that $\Gamma_3(\cdot) $ is completely continuous on $Y$. The previous remarks show that $\Gamma(\cdot) $ is condensing from $B_{r^{*}}(0,Y)$ into $B_{r^{*}}(0,Y)$. The existence of a mild solution of system \eqref{mild1}-\eqref{P4} is now a consequence of \cite[Corollary 4.3.2 ]{Ma}. The proof is completed. \end{proof} Using arguments similar to the ones above, we can prove the next result. \begin{proposition}\label{prop1} Let assumptions (H1), (H2) be satisfied. Suppose, furthermore, that condition $(a)$ of Theorem \ref{teo2} holds and that there exists $l_g \geq 0 $ such that \[ \| g(t,x)-g(t,y)\| \leq l_g \| x-y\| , \quad t\in I, x,y\in X. \] If \[ (N l_p + \tilde{N} l_q ) + ( \tilde{N}+Na )l_{g} + \tilde{N}a \liminf_{r \to + \infty} \frac{ \alpha_r^f }{r}<1 , \] then there exists a mild solution of \eqref{mild1}-\eqref{P4}. \end{proposition} Using the classical principle of contraction, we can prove the following result. \begin{theorem} \label{teo1} Let (H1), (H2) be satisfied and assume that there exist constants $l_f$, $l_g$ such that \begin{gather*} \| g(t,x)-g(t,y)\| \leq l_g \| x-y\| , \quad t\in I, x,y\in X,\\ \| f(t,x)-f(t,y)\| \leq l_f \| x-y\| , \quad t\in I,x,y\in X. \end{gather*} If $[N(l_p+al_g) + \tilde{N}(l_q+l_g + al_f)] < 1$, then there exists a unique mild solution of \eqref{mild1}-\eqref{P4}. \end{theorem} Next, we study the abstract Cauchy problem \eqref{ne2}-\eqref{ne22}. \begin{definition} \label{def3.6} \rm A function $u\in C(I;X)$ is called a mild solution of \eqref{ne2}-\eqref{ne22} if $u\in C^{1}(I;X)$, conditions (\ref{ne21}) and (\ref{ne22}) are satisfied and \begin{align*} u(t)& = C(t)(y_{0} + p(u,u')) + S(t)( y_{1} + q(u, u') + g(0,u(0),u'(0))) \\ &\quad - \int_0^t C(t-s)g(s,u(s),u'(s))ds + \int_0^t S(t-s)f(s,u(s),u'(s))ds,\quad t\in I. \end{align*} \end{definition} To study the system \eqref{ne2}-\eqref{ne22} we introduce the following conditions. \begin{itemize} \item[(H3) ] The function $f,g :I \times X\times X \to X$ satisfies the following conditions; \begin{itemize} \item[(i)] The function $f(t, \cdot):X\times X \to X$ is continuous $a.e.$ $t\in I$; \item[(ii)] The function $f(\cdot, x,y) : I \to X $ is strongly measurable for each $(x,y) \in X\times X $. \item[(iii)] The function $g(\cdot)$ is $E$-valued and $g:I \times X\times X \to E$ is continuous. \end{itemize} \item[(H4)] The function $ p,q:C(I;X)\times C(I;X) \to X$ are continuous, $p(\cdot)$ is $E$-valued and there exist positive constants $ l_p,l_q $ such that \begin{gather*} \| p(u_1,v_1) - p(u_2,v_2)\|_{E} \leq l_p ( \| u_1 - u_2\| _a + \| v_1 - v_2\| _a),\\ \| q(u_1,v_1) - q(u_2,v_2)\| \leq l_q ( \| u_1 - u_2 \|_a + \| v_1 - v_2\|_a ). \end{gather*} for every $u_i,v_i \in C(I;X)$. \end{itemize} \begin{remark} \label{rmk3.7} \rm In the rest of this paper, $ \rho=\sup_{\theta \in I}\| AS(\theta)\|_{ {\mathcal{L}(E;X)}}$. \end{remark} \begin{theorem}\label{teo4} Let $(y_{0},y_{1}) \in E \times X$ and assume (H3), (H4) be satisfied. Suppose in addition that the following conditions hold: \begin{itemize} \item[$\bf{(a)}$] For every $r>0$, the set $ f(I\times B_{r}(0;X)\times B_{r}(0;X)) $ is relatively compact in $X $ and there exists a constant $\alpha_r^f $ such that $\| f(t,x,y)\| \leq \alpha_r^f$ for every $(t,x,y)\in I\times B_{r}(0;X)\times B_{r}(0;X)$. \item[$\bf{(b)}$] The function $g(\cdot):I\times X\times X \to E$ is completely continuous and for every $r>0$ there exists a constant $\alpha_r^g $ such that $\| g(t,x,y)\|_{E} \leq \alpha_r^g$ for every $(t,x,y)\in I\times B_{r}(0;X)\times B_{r}(0;X)$. \item[$\bf{(c)}$] For every $r>0$, the set $\{t\to g(t,u(t),v(t)):u,v\in B_{r}(0;C( I;X)) \}$ is a equicontinuous subset of\, $C(I;X)$. \end{itemize} If $$ (N+\rho)l_p + (N+ \tilde{N})l_q + \liminf_{r \to \infty} \frac{(N + \tilde{N})( \alpha_{r }^g +a\alpha_r^f )+\alpha_{r }^g(1+ a (N+\rho) ) }{r} <1, $$ then there exists a mild solution of \eqref{ne2}-\eqref{ne22}. \end{theorem} \begin{proof} On the space $Y=C(I;X)\times C(I;X)$ endowed with the norm of the uniform convergence, $ \| (u,v)\|_{a} = \| u\|_{a}+ \| v\|_{a} $, we define the operator $\Gamma:Y \to Y$ by $ \Gamma (u, v) = (\Gamma_{1} (u, v),\Gamma_{2}(u, v))$ where \begin{align*} \Gamma_{1} (u, v)(t)&= C(t)(y_{0} + p(u,v)) + S(t)( y_{1} + q(u,v) + g(0,u(0),v(0))) \\ &\quad - \int_0^tC(t-s)g(s,u(s),v(s))ds + \int_0^t S(t-s)f(s,u(s),v(s))ds, \\ \Gamma_{2}(u, v)(t) &= AS(t)( y_{0} + p(u,v)) + C(t)(y_{1} + q(u,v) + g(0,u(0),v(0))) \\ & \quad - g(t,u(t),v(t)) - \int_0^t AS(t-s)g(s,u(s),v(s))ds \\ & \quad + \int_0^tC(t-s)f(s,u(s),v(s))ds. \end{align*} Using that $g(\cdot)$ and $p(\cdot)$ are $E$-valued continuous, it's easy to prove that $ \Gamma(\cdot)$ is well defined and continuous. Now, we show that there exists $r^{*}>0$ such that $\Gamma(B_{r^{*}}(0,Y)) \subset B_{r^{*}}(0,Y)$. Assume that this property is false. Then for every $r>0$ there exists $(u^r, v^{r}) \in B_{r}(0;Y)$ such that $r< \| \Gamma (u^r,v ^{r}) \|_{a}$. This yields \begin{align*} &r<\|\Gamma^{1} (u, v)\|_{a}+ \|\Gamma^{2} (u, v)\|_{a} \\ &\leq N \left( \| y_{0}\| + l_p r + \| p(0,0)\| \right) + \tilde{N} ( \| y_{1}\| + l_{q} r + \| q(0,0)\| + \alpha_{r}^g ) \\ &\quad + a(N \alpha_{r}^g + \tilde{N} \alpha_r^f ) +\sup_{\theta \in I}\| AS(\theta) \|_{{\mathcal{L}(E;X)}} \left( \| y_{0}\|_{E} + l_p r + \| p(0,0)\|_{E} \right) \\ &\quad + N ( \| y_{1}\| + l_q r + \| q(0,0)\| + \alpha_{r}^g ) + \alpha_{r}^g \\ &\quad + \int_{0}^{a}\sup_{\theta \in I}\| AS(\theta) \|_{{\mathcal{L}(E;X)}} \| g(s,u(s),v(s))\|_{E}ds + N \alpha_r^f a \\ &\leq (N+\rho) \left( \| y_{0}\|_{E} + l_p r + \| p(0,0)\|_{E} \right) + \alpha_{r}^g \\ &\quad + (N + \tilde{N}) \left( \| y_{1}\| + l_q r + \| q(0,0)\| + \alpha_{r }^g \right) + a\left( \alpha_r^g (N+\rho) + \alpha_r^f (N + \tilde{N}) \right) \end{align*} and hence $$ 1\leq (N+\rho)l_p + (N+ \tilde{N})l_q + \liminf_{r \to \infty} \frac{(N + \tilde{N})( \alpha_{r }^g +a\alpha_r^f )+\alpha_{r }^g(1+ a (N+\rho) ) }{r}, $$ which is contrary to the hypotheses. Next, we prove that $ \Gamma(\cdot)$ is condensing from $B_{r^{*}}(0,Y)$ into $B_{r^{*}}(0,Y)$. Consider the decomposition $ \Gamma= \bar{\Gamma}_1 + \bar{\Gamma}_2$ where $ \bar{\Gamma}_{2} (u, v) = (\bar{\Gamma}_{2}^{1} (u, v),\bar{\Gamma}_{2}^{2} (u, v))$ and \begin{align*} \bar{\Gamma}_{2}^{1}(u, v)(t)&= S(t)g(0,u(0),v(0))- \int_0^t C(t-s)g(s,u(s),v(s))ds \\ &\quad + \int_0^t S(t-s)f(s,u(s),v(s))ds, \\ \bar{\Gamma}_{2}^{2}(u, v)(t) & = C(t)g(0,u(0),v(0)) -g(t,u(t),v(t)) \\ &\quad - \int_0^t AS(t-s)g(s,u(s),v(s))ds + \int_0^tC(t-s)f(s,u(s),v(s))ds. \end{align*} Simple calculus using the properties of $p(\cdot)$ and $q(\cdot)$ proves that \begin{eqnarray} \| \bar{\Gamma}_{1}( u,v) - \bar{\Gamma}_{1} ( w,z)\|_{a}& \leq & \left( (N+\rho)l_p + (N+\tilde{N})l_q \right) \| ( u,v)-(w,z)\|_{a}, \end{eqnarray} and so that $\bar{\Gamma}_{1}(\cdot) $ is a contraction on $Y.$ On the other hand, from Lemma \ref{lema4} and the properties of $f(\cdot)$ and $g(\cdot)$, it's easy to infer that $\bar{\Gamma}_{2}(\cdot)$ is completely continuous on $Y$. From the previous remark, it follows that $\Gamma(\cdot) $ is a condensing operator from $B_{r^{*}}(0,Y)$ into $B_{r^{*}}(0,Y)$. The assertion is now a consequence of \cite[Corollary 4.3.2 ]{Ma}. \end{proof} Proceeding as in the proof of Theorem \ref{teo4} we can prove the next existence result. \begin{proposition} \label{prop3.9} Let $(y_{0},y_{1}) \in E \times X$ and conditions (H3), (H4) be satisfied. Suppose that $f(\cdot)$ satisfies condition ${\bf(a)}$ of Theorem \ref{teo4} and that there exists a constant $l_g \geq 0 $ such that \begin{eqnarray} \| g(t,x_1,z_1) - g(t,x_2,z_2)\|_{E} &\leq & l_g ( \| x_1 - x_2 \| + \| z_1 - z_2\| ), \end{eqnarray} for every $ t\in I$ and every $ x_{i},z_{i}\in X$. If $$ (N+\rho)l_p + ( N+ \tilde{N})l_q+ l_g((N+\rho) a+\tilde{N}+N+1)+ ( N+ \tilde{N})\liminf_{r \to \infty} \frac{\alpha_r^f}{r}) <1, $$ then there exists a mild solution of \eqref{ne2}-\eqref{ne22}. \end{proposition} \begin{theorem}\label{teo3} Assume (H3), (H4), $(y_{0},y_{1}) \in E \times X$ and that there exist constants $l_f,l_g$ such that \begin{gather*} \| f(t,x_1,z_1) - f(t,x_2,z_2)\| \leq l_f( \| x_1 - x_2 \| + \| z_1 - z_2\| ), \\ \| g(t,x_1,z_1) - g(t,x_2,z_2)\|_{E} \leq l_g ( \| x_1 - x_2 \| + \| z_1 - z_2\| ), \end{gather*} for every $x_i,z_i \in X$. \par If $\max\{ N(l_p+al_g)+ \tilde{N}(l_q + l_g+a l_f),\,\, N( l_q + l_g+al_f ) + \rho ( l_p +al_g)+l_g\} <1,$ then there exists a unique mild solution of \eqref{ne2}-\eqref{ne22}. \end{theorem} \begin{proof} Let $\Gamma(\cdot) $ be the map defined in the proof of Theorem \ref{teo4}. It's clear that $\Gamma(\cdot) $ is well defined and continuous. Moreover, for $u_i,v_i \in C(I;X)$ $$ \| \Gamma_1 (u_1,v_1) - \Gamma_1 (u_2,v_2) \|_{a} \leq [ N(l_p+al_g)+ \tilde{N}(l_q + l_g+a l_f)]\| (u_1,v_1) - (u_2,v_2)\|_{a} $$ and \begin{align*} &\| \Gamma_2 (u_1,v_1) - \Gamma_2 (u_2,v_2)\|_{a} \\ &\leq \| AS(t)\| _{_{\mathcal{L}(E;X) }}\| p(u_1,v_1) - p(u_2,v_2)\|_{E} \\ &\quad + (N(l_q + l_g ) + l_g + a N l_f )\| (u_1,v_1) - (u_2,v_2)\|_{a}\\ &\quad +\int_0^t \| AS(t-s)\| _{_{\mathcal{L}(E;X) }} \| g(s,u_1(s),v_1(s)) - g(s,u_2(s),v_2(s)))\| _{E}ds \\ &\leq \left( \rho l_p + N( l_q + l_g ) + l_g +aN l_f +a\rho l_g\right)\| ( u_1,v_1) - (u_2,v_2)\|_{a}\\ &\leq ( N( l_q + l_g+al_f ) + \rho ( l_p +al_g)+l_g) \| ( u_1,v_1) - (u_2,v_2)\|_{a}, \end{align*} which implies that $\Gamma$ is a contraction. The statement of the theorem is now a consequence of the contraction mapping principle. \end{proof} \section{Classical Solutions}\label{regularity} In this section we establish the existence of classical solutions for \eqref{ne2}-\eqref{ne22}. First, we introduce some definitions, notation and preliminary results. \begin{definition} \label{def4.1} \rm A function $u\in C^{2}(I;X)$ is a classical solution of \eqref{ne2}-\eqref{ne22}, if the mapping $ t\to u(t)+ \int_{0}^{t}g(s,u(s),u'(s))ds$ is in $C^{2}(I:X)$, $u(t)\in D(A) $ for every $t\in I$, and \eqref{ne2}-\eqref{ne22} are satisfied. \end{definition} In the next pages, we use the assumption \begin{itemize} \item[(H5)] The function $g(\cdot)$ is $[ D(A)]$-valued and $g:I\times X\times X\to [D(A)] $ is continuous. \end{itemize} The remark below is a consequence of our preliminary results. \begin{remark}\label{remark2} \rm If $u(\cdot)$ is a mild solution of \eqref{ne2}-\eqref{ne22}, $\varphi(0) \in E$ and the function $s\to g(s,u(s),u'(s))$ is continuous from $I$ into $E$, then $u \in C^{1}$ and \begin{align*} u'(t) &= AS(t)(y_{0} + p(u,u'))+ C(t)( y_{1} + q(u, u')+ g(0,u(0),u'(0))) \\ & \quad - g(t,u(t), u'(t)) -\int_{0}^{t} A S(t-s) g(s,u(s),u'(s)) ds \\ &\quad + \int_{0}^{t} C(t-s) f(s,u(s),u'(s)) ds. \label{HH4} \end{align*} \end{remark} \begin{lemma}\label{teo7} Let $u(\cdot)$ be a mild solution of \eqref{ne2}-\eqref{ne22} and assume that (H5) holds. If $y_{0}+ p(u,u')\in D(A)$, $y_{1}+q(u,u')\in E$, $f(\cdot)$ is Lipschitz continuous on bounded subsets of $I\times X\times X$ and there exist constants $l_{g}^{1}>0$, $0 0$, there exists $\delta >0$ such that $$ \| R_{Z_{1},Z_{2}}^{Z_{3}}(j(t,z_{1},z_{2}),s-t ,\bar{z}_{1}-z_{1},\bar{z}_{2}-z_{2})\| _{ Z_{3}} <\varepsilon, \quad t,s\in I,\; (z_{1},z_{2}), (\bar{z}_{1},\bar{z}_{2})\in K $$ when $ \| (s-t,\bar{z}_{1}-z_{1},\bar{z}_{2}-z_{2})\|_{ Z_{1}, Z_{2}}\leq \delta $. \end{lemma} \begin{theorem}\label{teo8} Let condition (H5) be satisfied and $u(\cdot)$ be a mild solution of \eqref{ne2}-\eqref{ne22}. Assume that the functions $f:I\times X^{2}\to X $, $g:I\times X^{2}\to E $ are continuously differentiable, $ (y_{0}+p(u,u'), y_{1}+q(u,u'))\in D(A)\times E$ and that there exist constants $l_{g}^{1}>0$, $00$, we obtain \begin{align*} \| \zeta_{h}(t)\| &\leq \xi_{3}(h,t)+ \frac{1}{\mu}\| (1,\partial_{h} u(t), \partial_{h}u'(t) )\|_{ X} \| R_{X}^{X}(\tilde{g}(t),h,h\partial_{h} u(t),h\partial_{h} u'(t))\| \\ &\quad + \frac{1}{\mu} \int_{0}^{t}\left[\rho \| D_{3}g(w(s))\|_{{\mathcal{L}}(X;E)}+ N\| D_{3}f(w(s))\|_{{\mathcal{L}}(X)}\right]\| \zeta_{h}(s)\| ds\\ &\quad + \frac{\rho}{\mu} \int_{0}^{t}\| (1,\partial_{h} u(s),\partial_{h} u'(s) ) \|_{ X} \| R_{X}^{E}(\tilde{g}(s),h,h\partial_{h}u(s),h\partial_{h}u'(s))\|_{E} ds\\ &\quad + \frac{N}{\mu} \int_{0}^{t}\| (1,\partial_{h} u(s),\partial_{h} u'(s) )\|_{ X} \| R_{X}^{X}(\tilde{f}(s),h,h\partial_{h}u(s),h\partial_{h}u'(s))\| ds \end{align*} where $\xi_{3}(h,t)\to 0$ as $h\to 0$. This inequality, jointly with the Lipschitz continuity of $u(\cdot)$ and $u'(\cdot)$, see Lemma \ref{teo7}, the Gronwall Bellman inequality and Lemma \ref{lema5}, permit to conclude that $u'' (\cdot)$ exists and that $u''(\cdot)=v(\cdot)$ on $ I$. \par From \cite[Proposition 2.4]{TW3}, we know that the mild solution, $y(\cdot)$, of the abstract Cauchy problem \begin{equation}\label{last} \begin{gathered} x''(t) = Ax(t) +f(t,u(t),u'(t))- A\int_{0}^{t}g(s,u(s),u'(s))ds, \quad t\in I, \\ x(0)= y_{0}+p(u,u') \quad x' (0) = y_{1}+q(u,u')+g(0,u(0),u'(0)), \end{gathered} \end{equation} is a classical solution (see Definition \ref{classical}). The uniqueness of solution of (\ref{last}) and Remark \ref{remark2}, permit to conclude that $y(t)=u(t)+\int_{0}^{t}g(s,u(s),u'(s))ds$ is a function of class $C^{2}$ on $I$ and that $u(t)\in D(A)$ for every $t\in I$ since $ g(\cdot)$ is $[D(A)]$-valued continuous. This completes the proof that $u(\cdot)$ is a classical solution. \end{proof} \section{Applications}\label{Examples} In this section we apply some of the results established in this paper. First, we introduce the required technical framework. On the space $X = L^{2}([0, \pi])$ we consider the operator $ A f(\xi) = f''(\xi) $ with domain $ D(A)= \{ f(\cdot) \in H^{2}(0,\pi) : f(0) = f(\pi) = 0 \}$. It is well known that $A$ is the infinitesimal generator of a strongly continuous cosine function, $(C(t))_{t\in\mathbb{R}}$, on $X$. Furthermore, $A$ has discrete spectrum, the eigenvalues are $-n^{2}$, $n \in \mathbb{N}$, with corresponding normalized eigenvectors $z_{n} (\xi) := (\frac{2}{\pi})^{1/2} \sin(n \xi)$ and \begin{itemize} \item[(a)] $\{z_{n} : n \in \mathbb{N}\}$ is an orthonormal basis of $X$. \item[(b)] If $\varphi \in D(A)$ then $A \varphi = - { \sum_{n=1}^{\infty} n^{2} \langle \varphi, z_{n}\rangle z_{n}}$. \item[(c)] For $\varphi \in X$, $C(t)\varphi = { \sum_{n=1}^{\infty} \cos(nt) \langle \varphi, z_{n}\rangle z_{n}}$. It follows from this expression that $S(t) \varphi =\sum_{n=1}^{\infty} \frac{\sin(nt)}{n} \langle\varphi,z_{n}\rangle z_{n}$ for every $\varphi \in \mathcal{B}$. Moreover, $S(t)$ is a compact operator and $\|C(t)\| =\|S(t)\|= 1$ for every $ t \in \mathbb{R}$. \item[(d)] If $\Phi$ is the group of translations on $X$ defined by $\Phi(t)x(\xi)=\tilde{x}(\xi+t)$, where $\tilde{x}(\cdot) $ is the extension of $x(\cdot)$ with period $2\pi$, then $C(t)=\frac{1}{2}(\Phi(t)+\Phi(-t))$ and $A=B^{2}$, where $B$ is the infinitesimal generator of $\Phi$ and $ E=\{ x \in H^{1}(0,\pi) : x(0) = x(\pi) = 0 \}$, see \cite{Fa} for details. \end{itemize} First, we consider the partial second-order differential equation with nonlocal conditions \begin{gather} \begin{gathered} \frac{ \partial } {\partial t}[\frac{ \partial u( t,\xi)} {\partial t} + G(t,\xi, u(t,\xi))] = \frac{\partial^{2} u(t,\xi)} {\partial \xi^{2}} +F(t,\xi, u(t,\xi)),\\ \xi\in J=[0,\pi],\,\,t\in I=[0,a], \end{gathered} \label{eqe1}\\ \label{eqe2} u(t,0 )=u(t,\pi )=0,\quad t\in I, \\ \label{eqe33} u(0,\xi ) = y_{0}(\xi)+ \sum_{i=1}^{n}\alpha_{i}u(t_{i}, \xi ),\quad \xi \in J, \\ \label{eqe34} \frac{ \partial u(0,\xi )}{\partial t} = y_{1}(\xi)+\sum_{i=1}^{k} \beta_{i}u(s_{i},\xi), \quad \xi \in J, \end{gather} where $0